JPS62132532A - Method for granulating latent heat type heat storage material - Google Patents

Method for granulating latent heat type heat storage material

Info

Publication number
JPS62132532A
JPS62132532A JP27347385A JP27347385A JPS62132532A JP S62132532 A JPS62132532 A JP S62132532A JP 27347385 A JP27347385 A JP 27347385A JP 27347385 A JP27347385 A JP 27347385A JP S62132532 A JPS62132532 A JP S62132532A
Authority
JP
Japan
Prior art keywords
storage material
heat storage
latent heat
type heat
heat type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27347385A
Other languages
Japanese (ja)
Inventor
Hiroyuki Watanabe
裕之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP27347385A priority Critical patent/JPS62132532A/en
Publication of JPS62132532A publication Critical patent/JPS62132532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glanulating (AREA)

Abstract

PURPOSE:To form a uniform granular body and to remarkably shorten a granulating process of a latent heat type storage material by cooling and solidifying a metal liquid of the latent heat type heat storage material while stirring it. CONSTITUTION:Stirring of a degree overcoming at least crystal growth velocity and flocculation velocity of a melted liquid of a latent heat type heat storage material (e.g. inorganic hydrate such as CaCl2.6H2O) is performed for the melted liquid of the latent heat type heat storage material. A granular material having about 0.1-5mm grain size is obtained by cooling and solidifying the melted liquid preferably in about 0.5-5 deg.C/min velocity while stirring it. Still further stirring may be performed by rotation and/or vibration from the inside and/or outside of a vessel incorporated with the melted liquid of the latent heat type heat storage material. Also the melted liquid may be added with a nucleating agent and/or a thickening agent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、取り扱い作業が容易な比較的粒径の揃った粒
状蓄熱材を簡易に取得する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for easily obtaining granular heat storage material with relatively uniform particle size that is easy to handle.

(従来の技術) 融解 凝固により潜熱を吸収・放出する潜熱型蓄熱材の
移送性、取扱作業性などを向上させるため、それを粒状
化させることが行なわれている。
(Prior Art) In order to improve the transportability and handling workability of latent heat type heat storage materials that absorb and release latent heat through melting and solidification, they are granulated.

また、粒状体に表面コーティングを施して製造される蓄
熱材カプセルにおいて、融解、凝固などの体積変化の際
における応力集中がカプセルに生じないようにするため
にも、潜熱型蓄熱材を予め粒状化させておくことは重要
な事柄である。
In addition, in heat storage material capsules manufactured by applying surface coating to granular materials, in order to prevent stress concentration from occurring in the capsules during volume changes such as melting and solidification, the latent heat type heat storage material is granulated in advance. It is an important thing to let them do so.

ところで−最に、潜熱型蓄熱材を調製する場合には、蓄
熱材原料と過冷却防止材等の添加材とが均一に混合され
たものとするために、それらを一旦加熱融解する方法が
採用されており、そしてこのような加熱融解後、冷却し
て得られる潜熱型蓄熱材は室温で塊状物となっている。
By the way, when preparing latent heat type heat storage materials, in order to uniformly mix the heat storage material raw materials and additives such as supercooling prevention materials, a method is adopted in which they are heated and melted once. After such heating and melting, the latent heat type heat storage material obtained by cooling becomes a lump at room temperature.

そのため、この得られた潜熱型蓄熱材を別の容器に分納
するなどして、取り扱うには、再度加熱融解するか、あ
るいは塊状物を粉砕する方法が取られていた。
Therefore, in order to handle the obtained latent heat type heat storage material, such as storing it in separate containers, it has been necessary to heat and melt it again, or to crush the lumps.

(発明が解決しようとする問題点) しかし、前記加熱融解する方法では分納中に融液が冷え
て固化することを防ぐため、容器を高温のまま保持しな
けしればならないことと、また、高温のまま取り汲うた
ぬ火傷を受ける危険があるなどのため作業性が悪かった
(Problems to be Solved by the Invention) However, in the method of heating and melting, the container must be kept at a high temperature in order to prevent the melt from cooling and solidifying during dispensing. Workability was poor because there was a risk of getting burnt if the water was removed as is.

一方、潜熱型蓄熱材、特に無機水和物は、無機貫成分と
結晶水成分とが一定の割合で結合されているものである
ところ、その結晶水含水量は外気の湿度に強く影響を受
けて変化し易く、潜熱型蓄熱材は容易に変質してしまう
。そのため塊状物を粉砕して粒状化する際には、塊状物
のまま粉砕する場合、それを密封した状態で粉砕しなけ
ればならず、これもまた作業性の悪いものであった。
On the other hand, latent heat type heat storage materials, especially inorganic hydrates, have an inorganic component and a crystal water component combined in a certain ratio, and the crystal water content is strongly influenced by the humidity of the outside air. The latent heat type heat storage material easily deteriorates in quality. Therefore, when a lump is pulverized into granules, it must be ground in a sealed state, which also has poor workability.

(問題点を解決するための手段〉 本発明者は上記問題点に鑑み研究を進めた結果、前記の
ごとく蓄熱材融液は融解後静止状態にて冷却固化すると
一塊の固体塊状物となってしまうが。
(Means for Solving the Problems) The inventor of the present invention conducted research in view of the above problems and found that, as described above, when the heat storage material melt is cooled and solidified in a stationary state after melting, it becomes a solid lump. I'll put it away.

それを撹拌しながら冷却固化させるとほぼ均一な多数の
粒状体となることを偶然見出だした。
It was accidentally discovered that by cooling and solidifying it while stirring, it becomes a large number of almost uniform granules.

−この理由は明らかではないがこれは、蓄熱材の固化に
際して発生した結晶核が通常はそのまま成長し、互いに
凝集し合って全体が一つの塊となるのに対し、人為的な
撹拌付与により、融液が互いに激しく相対運動を生じて
いる状態では発生した結晶核がそのまま成長できず、核
同志の衝突や容器壁との衝突によって、核が粉砕され、
二次核形成がなされ、また成長した微結晶粒も激しく相
対運動をするために互いに凝集できず、結果的に均一な
粒径の結晶粒として残ってしまうためであると考えられ
る。
- The reason for this is not clear, but the reason for this is that normally, the crystal nuclei generated when the heat storage material solidifies, grow as they are, and aggregate together to form a single lump, but by artificial stirring, When the melt is in strong relative motion with respect to each other, the generated crystal nuclei cannot grow as they are, and the nuclei are crushed by collisions between the nuclei and the walls of the container.
This is thought to be because secondary nucleation occurs and the grown microcrystalline grains also undergo intense relative motion, making it impossible for them to aggregate with each other, resulting in them remaining as crystalline grains of uniform size.

したがって、融液に激しい相対運動(回転撹拌や振どう
撹拌で達成可能)を付与することは蓄熱材の造粒に非常
に有効なものとなる。
Therefore, imparting intense relative motion to the melt (which can be achieved by rotational stirring or shaking stirring) is very effective in granulating the heat storage material.

そして、本発明における融液に対する激しい相対運動の
付与は、容器内に収容された融液の内及び/又は外部か
ら回転及び/又は振とうによる撹拌によって行うことが
できる。
In the present invention, the application of intense relative motion to the melt can be performed by stirring the melt contained in the container by rotation and/or shaking from inside and/or from the outside.

潜熱型蓄熱材としては、一般に次に例示されるような無
機水和物が用いられる。
As the latent heat type heat storage material, inorganic hydrates such as those exemplified below are generally used.

11水■〕−JL立−1丞JJ【 CaCl2・6t+20     29℃     1
.5ONa2CO:+ + 10H2032℃    
 135Na2S0. □ 1011+0      
     1.3ONaiPO1・12H2036℃ 
    1.42Zn(No、>2 ・61120  
         1.80Ca(N(ls)i  ・
 4H2045℃          1.72Na2
S20z ・51120    48℃     1.
65C)+3COONll ・3H−058℃    
 1,32なお、これらの無機水和物には通常、過冷却
を防止するための発核剤及び/又は相分離を防止するた
めの増粘剤などが添加される。
11 Water ■] - JL Stand - 1 JJ [CaCl2・6t+20 29℃ 1
.. 5ONa2CO: + + 10H2032℃
135Na2S0. □ 1011+0
1.3ONaiPO1・12H2036℃
1.42Zn (No, >2 ・61120
1.80Ca(N(ls)i・
4H2045℃ 1.72Na2
S20z ・51120 48℃ 1.
65C)+3COONll ・3H-058℃
1,32 Note that a nucleating agent to prevent supercooling and/or a thickening agent to prevent phase separation are usually added to these inorganic hydrates.

本発明方法における撹拌力は、少なくとも潜熱型蓄熱材
融液の結晶成長速度及び凝集速度に打ち勝つ程度である
ことが必要であり、冷却速度は通常05〜5°C,/m
in程度が好ましい、そして、得られる造粒物の粒径は
一般に0.1〜5論m程度である。
The stirring force in the method of the present invention needs to be at least strong enough to overcome the crystal growth rate and aggregation rate of the latent heat storage material melt, and the cooling rate is usually 05 to 5°C/m
The particle size of the resulting granules is preferably about 0.1 to 5 mol.m.

(実施PA) 酢酸ナトリウム・3水和物(N aCHyCOo・3H
20)(融解温度58°C)に過冷却防止材(発核材)
としてリン酸三ナトリウム・12水和物(Na=PO1
・12H20>を3重量%添加し、これを100梢1ポ
リエチレン容器に60g収納した後、80℃に加熱して
完全に融解させた。
(Implementation PA) Sodium acetate trihydrate (NaCHyCOo・3H
20) Supercooling prevention material (nucleating material) (melting temperature 58°C)
as trisodium phosphate dodecahydrate (Na=PO1
- 3% by weight of 12H20> was added, and 60g of this was stored in a polyethylene container of 100 pieces, and then heated to 80°C to completely melt it.

次に、これを1秒間に2回の割合で振どう撹拌しながら
室温まで冷却し蓄熱材を固化させたところ、固化した蓄
熱材は粒径的lll1mの均一な結晶粒となり、収り扱
い易いものとなって、別な容器への分納が非常に容易と
なった。
Next, the heat storage material was cooled to room temperature while being shaken twice per second to solidify the heat storage material.The solidified heat storage material became uniform crystal grains with a particle size of 1/1 m, making it easy to store and handle. It has become very easy to divide the product into separate containers.

〈発明の効果) 本発明によれば、調製した蓄熱材融液を冷却固化させる
時に機械的な撹拌を付与するだけで、多数の均一な結晶
粒を得ることが可能となり、その結果その粒状化工程を
著しく可縮化することができる。そして得られる潜熱型
蓄熱材は取り汲いが容易となり、その移送性や他の容器
(こ分納する際の作業性、安全性などが向上したものと
なる。
<Effects of the Invention> According to the present invention, it is possible to obtain a large number of uniform crystal grains simply by applying mechanical stirring when cooling and solidifying the prepared heat storage material melt, and as a result, the granulation of the melt is reduced. The process can be made significantly more flexible. The obtained latent heat type heat storage material can be easily taken out, and its transportability, workability and safety when storing it in other containers (in other containers) are improved.

Claims (5)

【特許請求の範囲】[Claims] (1)潜熱型蓄熱材の融液を、撹拌しながら冷却固化さ
せることを特徴とする潜熱型蓄熱材の造粒方法。
(1) A method for granulating a latent heat type heat storage material, which comprises cooling and solidifying a melt of the latent heat type heat storage material while stirring.
(2)潜熱型蓄熱材が無機水和物である特許請求の範囲
第1項記載の潜熱型蓄熱材の造粒方法。
(2) The method for granulating a latent heat type heat storage material according to claim 1, wherein the latent heat type heat storage material is an inorganic hydrate.
(3)潜熱型蓄熱材の融液が容器内に収容された状態で
ある特許請求の範囲第1項又は第2項記載の潜熱型蓄熱
材の造粒方法。
(3) The method for granulating a latent heat type heat storage material according to claim 1 or 2, wherein the melt of the latent heat type heat storage material is contained in a container.
(4)撹拌が潜熱型蓄熱材の融液が収容された容器の内
及び/又は外側から、回転及び/又は振とうによつて行
なわれる特許請求の範囲第1項ないし第3項のいずれか
に記載の潜熱型蓄熱材の造粒方法。
(4) According to any one of claims 1 to 3, wherein stirring is performed by rotation and/or shaking from inside and/or outside of the container containing the melt of the latent heat storage material. A method for granulating the latent heat type heat storage material described above.
(5)潜熱型蓄熱材の融液が、発核剤及び/又は増粘剤
が添加されたものである特許請求の範囲第1項ないし第
4項のいずれかに記載の潜熱型蓄熱剤の造粒方法。
(5) The latent heat type heat storage material according to any one of claims 1 to 4, wherein the melt of the latent heat type heat storage material has a nucleating agent and/or a thickener added thereto. Granulation method.
JP27347385A 1985-12-06 1985-12-06 Method for granulating latent heat type heat storage material Pending JPS62132532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27347385A JPS62132532A (en) 1985-12-06 1985-12-06 Method for granulating latent heat type heat storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27347385A JPS62132532A (en) 1985-12-06 1985-12-06 Method for granulating latent heat type heat storage material

Publications (1)

Publication Number Publication Date
JPS62132532A true JPS62132532A (en) 1987-06-15

Family

ID=17528404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27347385A Pending JPS62132532A (en) 1985-12-06 1985-12-06 Method for granulating latent heat type heat storage material

Country Status (1)

Country Link
JP (1) JPS62132532A (en)

Similar Documents

Publication Publication Date Title
JPH06178802A (en) Production of agent for artificial kidney perfusion for bicarbonate dialysis and the agent
US3579299A (en) Porous silicate
AU606497B2 (en) Method of producing sucrose fatty acid ester granules
KR20010042784A (en) Wet granulation method for generating granules
US5108728A (en) Process for the production of granulated dicalcium phosphate dihydrate
EP0062897A1 (en) Heat storage material
JP2003034785A (en) Method for manufacturing thermal storage medium
JPH0412105B2 (en)
JPS62132532A (en) Method for granulating latent heat type heat storage material
JP3667791B2 (en) L-menthol-containing powder
CZ306507B6 (en) A method of manufacturing products containing nitrates from undercooled melts
US1891891A (en) Granular organic material
KR100327679B1 (en) How to make fine granules
JP4252118B2 (en) Method for producing supercooling inhibitor of salt hydrate
JP3774530B2 (en) Manufacturing method of heat storage material
JP2682099B2 (en) Easily soluble baking soda and method for producing the same
US4709057A (en) Method of preparing fine crystal particles of maleic anhydride
JPS63273787A (en) Capsule for heat accumulating material
US4381245A (en) Supercooling inhibitor and process for preparing the same
JPS5827301B2 (en) Supercooling prevention material and its manufacturing method
JPH04360880A (en) Granulation of aromatic triazoles
US2092054A (en) Process for granulating materials
JP2607587B2 (en) Food additive and method for producing the same
JP2003033640A (en) Dropping granulation method of slurry melt and producing method of urea compound fertilizer granulated material using the same
BR112021014256A2 (en) METHOD FOR PRODUCTION OF 1,2-ALKANEDIOLS IN A SOLID PHARMACEUTICAL FORM.