JPS5825412A - Desulfurizing and dephosphorizing method for molten iron - Google Patents

Desulfurizing and dephosphorizing method for molten iron

Info

Publication number
JPS5825412A
JPS5825412A JP12364081A JP12364081A JPS5825412A JP S5825412 A JPS5825412 A JP S5825412A JP 12364081 A JP12364081 A JP 12364081A JP 12364081 A JP12364081 A JP 12364081A JP S5825412 A JPS5825412 A JP S5825412A
Authority
JP
Japan
Prior art keywords
dephosphorization
desulfurization
hot metal
slag
molten iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12364081A
Other languages
Japanese (ja)
Inventor
Minoru Kitamura
実 喜多村
Shuzo Ito
修三 伊東
Masahiko Ogami
大神 正彦
Junichiro Katsuta
勝田 順一郎
Masayasu Kimura
木村 雅保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12364081A priority Critical patent/JPS5825412A/en
Publication of JPS5825412A publication Critical patent/JPS5825412A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To desulfurize anbd dephosphorize molten iron continuously witout intermediate slag discharge by desulfurizing the low Si molten iron in a mixer car by addition of a desulfurizing agent thereto then adding a dephosphorizing agent to the iron and blowing oxygen thereto. CONSTITUTION:Low Si molten iron of <=0.3% content of Si is put in a mixer car, and first a desulfurizing agent consisting essentially of CaC2 and CaO is blown thereto to convert the S contained therein to CaS and to remove the same as slag. In succession, a dephosphorizing agent consisting of a flux such as CaO, iron oxide, fluorite or the like and a reaction acceelerator of alkeli metal compds. such as sodium carbonate, sodium borate, cryolite or the like is blown into the molten iron and further gaseous oxygen is top blown to create an oxidizing atmoshere to remove P as P2O5 together with CaO in a stable form in slag, whereby the molten iron is dephosphorized. The molten iron is desulfurized and dephosphorized continuously with high heat efficiency without intermediate slag discharge and without decrease in productivity.

Description

【発明の詳細な説明】 本発明は溶銑の脱硫・脱燐方法に関し、詳細には溶銑を
混銑車内で効率良く連続的に脱硫・脱燐処理する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for desulfurizing and dephosphorizing hot metal, and more particularly to a method for efficiently and continuously desulfurizing and dephosphorizing hot metal in a pig iron mixing car.

溶銑の脱硫及び脱燐処理法としては予備処理炉で行なう
方法が主流を占めているが、一連の処理時間を短縮する
と共に処理工程を簡略化する為、混銑車内で脱硫及び脱
燐を行なう方法も注目されている。この方法は、混銑車
内の溶銑中にキャリヤガスと共に脱硫用フラックス或い
は脱燐用フラックスを吹き込む方法であり、脱硫及び脱
燐の個々の効率については満足し得る値を得ている。
The mainstream method for desulfurization and dephosphorization of hot metal is to perform it in a pretreatment furnace, but in order to shorten the series of treatment times and simplify the treatment process, there is a method in which desulfurization and dephosphorization are carried out in a pig iron mixing car. is also attracting attention. This method is a method in which desulfurization flux or dephosphorization flux is blown into hot metal in a pig iron mixing car together with a carrier gas, and satisfactory values have been obtained for the individual efficiencies of desulfurization and dephosphorization.

一方混銑車内で脱硫と脱燐を連続的に行なう方法もある
が、以下に示す様な理由から処理工程の途中で生成する
スラグを除去する必要があり、種々の問題が指摘されて
いる。
On the other hand, there is a method in which desulfurization and dephosphorization are performed continuously in a pig iron mixing car, but for the following reasons, it is necessary to remove slag generated during the treatment process, and various problems have been pointed out.

即ち脱硫はCmCmやCaO等の脱硫−フラックスを不
活性ガスと共に溶銑内へ吹き込むことにより、CaC露
+S −Cali の反応化よってSをCm8として固定しスラグとして除
去する方式であり、この反応は還元性雰囲気で進行する
。一方説燐は、CaO−酸化鉄一媒溶剤系或いはこれら
とNagCOs等の脱硫用スラックスをキャリヤガスと
共に溶銑内へ吹き込み、同時に酸素ガスを上吹きするこ
とにより、 2F + 5F@0−Pros +Fe4F+50雪 
 → 2PPO5 mcsiO+mPxOsi −e ncaO−mixe
sの反応によってPをスラグに固定する方式であり、こ
の反応は酸化性雰囲気で進行する。この様に脱硫反応と
脱燐反応は相反する反応条件によって進行するほか、生
成スラグの組成も看しく異なるから、脱硫又は脱燐反応
のいずれかを行なった後生成スラグを除去することなく
引続いて脱燐又は脱硫反応を行なうと復硫又は復燐が起
こる。従って脱硫又は脱燐の終了後に一旦生成スラグを
除去(中間排滓)しなければならず、作業が煩雑になっ
て作業能率が低下する他、中間排滓によって生じる溶銑
のロス、熱ロス等種々の問題が派生する。
That is, desulfurization is a method in which a desulfurization flux such as CmCm or CaO is blown into the hot metal together with an inert gas, and S is fixed as Cm8 through the reaction of CaC dew + S -Cali and removed as slag. This reaction is a reduction process. It progresses in a sexual atmosphere. On the other hand, theoretical phosphorus is produced by blowing a CaO-iron oxide monosolvent system or a desulfurization slack such as NagCOs together with a carrier gas into the hot metal, and at the same time blowing oxygen gas upward.
→ 2PPO5 mcsiO+mPxOsi -e ncaO-mixe
This method fixes P to the slag by the reaction of s, and this reaction proceeds in an oxidizing atmosphere. In this way, the desulfurization reaction and the dephosphorization reaction proceed under contradictory reaction conditions, and the composition of the produced slag is also strikingly different. When a dephosphorization or desulfurization reaction is performed, resulfurization or rephosphorization occurs. Therefore, after desulfurization or dephosphorization is completed, the produced slag must be removed (intermediate slag), which makes the work complicated and reduces work efficiency, as well as causing various losses such as hot metal loss and heat loss caused by intermediate slag. The problem arises.

本発明者等は上記の様な事情に着目し、混銑車内で中間
排滓を行なうことなく溶銑の脱硫及び脱燐を連続的に実
施し得る様な方法の開発を期して鋺意研究を進めてきた
。本発明はかかる研究の結果完成されたものであって、
その構成は、混銑車内において、81含有率の低い溶銑
にCmC1又はCaOを主成分とする脱硫用フラックス
を不活性ガスと共に溶銑内へ吹き込み、次いで生成スラ
グを除去することなく、該溶銑内にC@b、酸化鉄及び
媒溶剤或いはこれらと反応促進剤よりなる脱燐用フラッ
クスを不活性ガスと共に吹き込むと共に、酸素ガスを上
吹きするところに要旨が存在する。
The inventors of the present invention focused on the above-mentioned circumstances, and conducted research with the aim of developing a method that would enable continuous desulfurization and dephosphorization of hot metal without intermediate removal of slag in a pig iron mixing car. It's here. The present invention was completed as a result of such research, and
The structure is that a desulfurization flux containing CmC1 or CaO as a main component is blown into the hot metal with a low 81 content together with an inert gas in the hot metal mixing car, and then C is added to the hot metal without removing the generated slag. @b, The gist is that a dephosphorizing flux consisting of iron oxide and a solvent or a reaction accelerator and these is blown in together with an inert gas, and at the same time oxygen gas is blown over.

本発明では、Si含有率の低い溶銑を対象とすることを
前提とする。これは、溶銑中に多量のSiが含まれてい
ると、脱硫工程でたとえ大量の脱硫用フラックスを用い
ても十分に脱硫することができず、しかも多量の脱硫ス
ラグが生成するばかその後の脱燐工程で多量のSlog
が生成し、復硫が起こり易くなるからである。ところが
5i含有率の低い溶銑を使用すると、若干の脱硫能の低
下は認められるものの、問題となるレベルではなく、生
成スラグを中間排滓することなく連続して脱燐を行なっ
ても復硫が殆んど起こらない。尚Si含有率の臨界的上
限を定めることは困難であるが、上記の効果を有効に発
揮させる為にはS1含有率が0.3%以下の溶銑を使用
するのがよく、この条件を満たす様に予め脱珪処理した
溶銑を使用する必要がある。
The present invention is based on the premise that hot metal with a low Si content is targeted. This is because if hot metal contains a large amount of Si, it cannot be desulfurized sufficiently even if a large amount of desulfurization flux is used in the desulfurization process, and a large amount of desulfurization slag is produced. A large amount of Slog in the phosphorus process
This is because, as a result, resulfurization is likely to occur. However, when hot metal with a low 5i content is used, although a slight decrease in desulfurization ability is observed, it is not at a problematic level, and resulfurization does not occur even if dephosphorization is performed continuously without intermediate removal of the generated slag. Almost never happens. Although it is difficult to determine the critical upper limit of the Si content, in order to effectively exhibit the above effects, it is best to use hot metal with an S1 content of 0.3% or less, which satisfies this condition. It is necessary to use hot metal that has been desiliconized in advance.

脱硫処理は、混銑車内の溶銑に不活性ガス(Wl累やア
ルゴン等)と共に脱硫用フラックスを吹き込むことによ
って行なわれる。脱硫用フラックスとしてはNazCO
s、 CmO又はCaCtを主成分とするものが知られ
ているが、本発明ではCi+O又はCmCtを主成分と
するもののみが用いられる。しかしてNBColは最も
優れた溶銑脱硫剤として最近特に注目を集めているが、
これは強アルカリ性物質であって混銑車の耐火壁を着し
く溶損させるという問題があるため、本発明では脱硫剤
として使用し得ない。しかしながらCaO又はCaCt
を主成分とするものは高軟化点の脱硫スラグを生成し、
中間排滓を行なうことなく脱燐処理を行なった場合でも
復硫が殆んど起こらず、最終的な脱硫率を十分に高める
ことができる。しかもCaOやCmC2は耐火物をNa
zCO@はどには溶損させないから、混銑車の寿命を短
縮させる恐れもない。尚CaOやCaCgは夫々単独で
使用しても適量ずつ混合使用してもよいが、通常はC1
り等の媒溶剤を少量併用して融点を低下させた方が脱硫
率を高くすることができる。脱硫用フラックスの使用量
も特に制限されないが、実験によって確認した最も好ま
しい使用量は溶銑1トン当り1.5〜2.0即であった
Desulfurization treatment is performed by blowing a desulfurization flux together with an inert gas (Wl mixed, argon, etc.) into the hot metal in the pig iron mixing car. NazCO as a desulfurization flux
s, CmO or CaCt are known as main components, but in the present invention, only those containing Ci+O or CmCt as main components are used. However, NBCol has recently attracted particular attention as the most excellent hot metal desulfurization agent.
This is a strongly alkaline substance and has the problem of severely dissolving the fireproof walls of pig iron mixers, so it cannot be used as a desulfurization agent in the present invention. However, CaO or CaCt
The main component is that which produces desulfurization slag with a high softening point.
Even when dephosphorization treatment is performed without performing intermediate slag, resulfurization hardly occurs, and the final desulfurization rate can be sufficiently increased. Moreover, CaO and CmC2 replace refractories with Na
Since zCO@ does not melt or damage, there is no risk of shortening the life of the mixed pig iron car. Note that CaO and CaCg may be used alone or mixed in appropriate amounts, but usually C1
The desulfurization rate can be increased by lowering the melting point by using a small amount of a solvent such as silica. The amount of desulfurization flux used is also not particularly limited, but the most preferable amount confirmed through experiments was 1.5 to 2.0 flux per ton of hot metal.

上記の脱硫用フラックスはキャリヤガスと共に溶銑中に
吹き込まれるが、脱硫反応が還元性雰囲気で進行するこ
とを考慮し、キャリヤガスとしては不活性ガスを使用す
ることとした。
The desulfurization flux described above is blown into the hot metal together with a carrier gas, but considering that the desulfurization reaction proceeds in a reducing atmosphere, it was decided to use an inert gas as the carrier gas.

この様にして脱硫処理を行なった後は、脱硫スラグを除
去することなくそのまま連続して脱燐処理を行なう。脱
燐処理としてはCab、酸化鉄及び媒溶剤或いはこれら
と反応促進剤よりなる脱燐用フラックスをキャリヤガス
と共に脱硫溶銑内へ吹き込みつつ酸素ガスを上吹きする
方法が採用される。
After performing the desulfurization treatment in this manner, the dephosphorization treatment is continued without removing the desulfurization slag. For the dephosphorization treatment, a method is adopted in which a dephosphorization flux consisting of Cab, iron oxide, and a solvent or a reaction accelerator and a carrier gas is blown into the desulfurized hot metal, while oxygen gas is blown upward.

まずCaOは脱燐処理工程で生成する510gと共に低
融点のスラグを生成し、溶銑中のPをP!06としてス
ラグ中に固定するのに不可欠の成分である。CmOの添
加量は特に制約がなく、殊に本発明ではS1含有率の低
い溶銑を使用しているから脱硫及び脱燐工程で生成する
8!Os量が少なく、比較的少量の添加でも十分な脱燐
効率を得ることができる。しかしながら脱燐スラグの塩
基度(Ca07540g)が低いと、脱燐効率が低下す
ると共に、スラグの流動性が高くなって脱硫スラグと接
触したときに復硫が著しくなる傾向があるので、生成す
るSingの量を考慮してスラグの塩基度を高めに維持
できる番こ足るC鳳0添加量を確保することが望まれる
。即ち溶銑中の3iは脱燐工程で殆んどが酸化されて5
insとなり、スラグ中に移行するので、溶銑中のSt
含有率を予め算曳しておき、この量に応じて必要十分量
のCaOを添加すればよい。実験により確認したところ
では、溶銑中のSi含有率を1%としたとき、溶銑1ト
ン当りBox(即)以上の00を添加してやれば、高い
脱燐効率が得られると共に復硫現象を最小限に抑え得る
ことが確認された。参考までにこのCaO添加量を採用
したときの生成スラグの塩基度は、次式の計算より1.
45以上となる。
First, CaO generates low melting point slag with 510g produced in the dephosphorization process, and P! It is an essential component for fixing in the slag as 06. There are no particular restrictions on the amount of CmO added, especially since hot metal with a low S1 content is used in the present invention, 8! Since the amount of Os is small, sufficient dephosphorization efficiency can be obtained even with the addition of a relatively small amount. However, if the basicity (Ca07540g) of the dephosphorization slag is low, the dephosphorization efficiency will decrease, and the fluidity of the slag will increase, so resulfurization tends to be significant when it comes into contact with the desulfurization slag. It is desirable to ensure that the amount of carbon added is sufficient to maintain the basicity of the slag at a high level. In other words, most of the 3i in hot metal is oxidized during the dephosphorization process and becomes 5
ins and migrates into the slag, so the St in the hot metal
The content rate may be calculated in advance, and a necessary and sufficient amount of CaO may be added according to this amount. It has been confirmed through experiments that when the Si content in hot metal is 1%, if more than 0000 is added per ton of hot metal, high dephosphorization efficiency can be obtained and the resulfurization phenomenon can be minimized. It was confirmed that it was possible to suppress the For reference, the basicity of the generated slag when this CaO addition amount is adopted is 1.
45 or more.

しかしながらCaO添加量が多すぎると副原料費が高く
なって不経済であると共に、スラグ量が増加して鉄の歩
留りが低下するので、50 x(k)程度以下に止める
のがよい。
However, if the amount of CaO added is too large, the cost of auxiliary raw materials will increase and it will be uneconomical, and the amount of slag will increase and the yield of iron will decrease, so it is preferable to limit the amount to about 50 x (k) or less.

次に酸化鉄は、フラックスの融点を降下させてフラック
ス・メタル反応を促進し、且つフラックスの酸素ポテン
シャルを高めて脱燐反応を促進するのに不可欠の成分で
あり、これらの効果は溶銑1トン当り1即程度以上の添
加で有効に発揮される。しかしながら多すぎるとその分
解による溶銑の温度降下が着しくなると共にCや−の酸
化損失が著しくなるので、溶銑1トン当り30即捏度以
下に止めるのがよい。酸化鉄としてはミルスケールや鉄
鉱石等が用いられる。
Next, iron oxide is an essential component that lowers the melting point of the flux to promote the flux-metal reaction, and also increases the oxygen potential of the flux to promote the dephosphorization reaction. It is effective when added at a level of 1 or more per portion. However, if the amount is too high, the temperature of the hot metal will be lowered due to its decomposition, and the oxidation loss of C and - will become significant, so it is preferable to limit the degree of instant kneading to 30 or less per ton of hot metal. Mill scale, iron ore, etc. are used as iron oxide.

媒溶剤としてはCmFt或いはこれを主成分として含む
螢石等が使用され、フラックスの融点を降下させて溶銑
との反応性を高めると共に、脱燐反応そのものを促進さ
せ1作用がある。これらの効果は溶銑1トン当り1−程
度以上の添加で有効に発揮されるが、多すぎると耐火物
の溶損が着しくなり混銑車の短命化を招くので、1O−
1i度以下に止めるのがよい。尚媒溶剤の添加量は全脱
燐生成スラグ量を基準にして定めるのが最も実際的と考
えられるが、実験の結果では、CaO添加量を基準にし
てその1/6〜1/3の範囲に設定したときに最も優れ
た効果を発揮することが確認された。
As a solvent, CmFt or fluorite containing CmFt as a main component is used, which has one effect of lowering the melting point of the flux and increasing its reactivity with hot metal, as well as promoting the dephosphorization reaction itself. These effects can be effectively exhibited by adding about 1O- or more per ton of hot metal, but if it is too much, the refractory will be more prone to melting and damage, leading to a shortened lifespan of the mixed pig iron car.
It is best to keep it below 1i degrees. Although it is considered most practical to determine the amount of solvent added based on the total amount of dephosphorization generated slag, experimental results show that it is in the range of 1/6 to 1/3 of the amount of CaO added. It was confirmed that the best effect was achieved when the setting was set to .

この他反応促進剤は本発明で必須のものではないが、脱
燐反応を促進するのに有効な成分であり、溶銑1トン当
り1〜10即、CaO添加量の174〜1/2の範囲で
添加することによって処理効率を高めることがで會る。
In addition, the reaction accelerator is not essential in the present invention, but is an effective component for promoting the dephosphorization reaction, and is in the range of 1 to 10% per ton of hot metal, or 174 to 1/2 of the amount of CaO added. It is possible to increase the processing efficiency by adding it.

しかし多すぎると脱燐用フラックスの原料費が増大する
と共に、混銑車の内面耐火壁の溶損が著しくなる。反応
促進剤として最も一般的なのは炭酸ナトリウム、ホウ酸
ナトリウム、氷晶石等のアルカリ金属化合物である。
However, if the amount is too high, the raw material cost of the dephosphorizing flux will increase, and the internal refractory wall of the pig iron mixer car will suffer significant erosion. The most common reaction accelerators are alkali metal compounds such as sodium carbonate, sodium borate, and cryolite.

上記成分を含゛扛脱燐用フラックスは、空気や窒素等の
キャリヤガスと共に脱硫溶銑内に吹き込まれ、溶銑内を
キャリヤガスと共に浮上する過程で酸化鉄の酸化作用に
よって脱燐反応が進行する。
The dephosphorization flux containing the above components is blown into the desulfurized hot metal together with a carrier gas such as air or nitrogen, and the dephosphorization reaction progresses due to the oxidizing action of iron oxide while floating in the hot metal together with the carrier gas.

しかしながらCaO系フラックスの吹き込みによる脱燐
反応は酸素ガスの存在に負うところが極めて大きく、目
標の脱燐率を得る為には同時に酸素ガスの上吹きを行な
う必要がある。この場合、脱燐用フラックス及びキャリ
ヤガスが溶銑表面に浮上してくる位置をねらう様に酸素
ガスの上吹きを行なえば、湯面に浮上した直後の脱燐用
フラックスに酸素ガスが集中的に供給されるから、この
部分で脱燐反応が効率良く進行する。しかも脱硫スラグ
は酸素の上吹き流によって混銑車の壁面方向へ押しやら
れ、浮上直後の脱燐用フラックスとの接触が抑制される
から、復硫を抑えるという利点もある。尚酸素ガスの上
吹き量は溶銑lトン当り2〜118m/分の範囲が好ま
しく、2NII//分未満では十分な脱燐率が得られ難
く、一方11Nd1分を越えるとCJpMn等の酸化損
失が着しくなるのみで脱燐率はそれ以上改善されない。
However, the dephosphorization reaction caused by the injection of CaO-based flux is extremely dependent on the presence of oxygen gas, and in order to obtain the target dephosphorization rate, it is necessary to top-blow oxygen gas at the same time. In this case, if the top blowing of oxygen gas is aimed at the position where the dephosphorization flux and carrier gas rise to the surface of the hot metal, the oxygen gas will concentrate on the dephosphorization flux immediately after it rises to the surface of the hot metal. Since this is supplied, the dephosphorization reaction proceeds efficiently in this part. Moreover, the desulfurization slag is pushed toward the wall of the pig iron mixer by the upward flow of oxygen, and contact with the dephosphorization flux immediately after floating is suppressed, which has the advantage of suppressing resulfurization. The top blowing rate of oxygen gas is preferably in the range of 2 to 118 m/min per ton of hot metal; if it is less than 2 NII/min, it is difficult to obtain a sufficient dephosphorization rate, while if it exceeds 11 Nd/min, oxidation losses such as CJpMn will occur. The dephosphorization rate will not be improved any further.

第1図は本発明の実施例を示す概略工程説明図で、混銑
車1に投入され予備脱珪処理を終えた溶銑Aは脱硫46
11部まで搬送される。脱硫麩理部には脱硫用フラック
ス吹き込みランス2が昇降自在に設置されており、Ca
Cs (又はCa0)ホッパ−3、定量ロータリーフィ
ーダ4、計量タンク5及び可変ロータリーフィーダ6を
経て送られる脱硫用フラックスを不活性ガスBと共に溶
銑A内に収金込み、脱硫処理が行なわれる。所定の脱硫
処理を終了した後は、脱硫スラグを中間排滓することな
く脱燐処理部へ搬送する。脱燐処理部には脱燐用フラッ
クス吹き込みランス7及び酸素ガス上収金ランス8が夫
々昇降自在に設置されており、ランス7には、脱燐用フ
ラックス原料供給ホッパー91.9b、定量ロータリー
フィーダ10m、10b。
FIG. 1 is a schematic process explanatory diagram showing an embodiment of the present invention, in which hot metal A that has been charged into the pig iron mixer 1 and has undergone preliminary desiliconization treatment is desulfurized
Up to 11 copies are transported. A flux injection lance 2 for desulfurization is installed in the desulfurization processing section so that it can be moved up and down.
The desulfurization flux sent through the Cs (or Ca0) hopper 3, quantitative rotary feeder 4, metering tank 5, and variable rotary feeder 6 is collected into hot metal A together with inert gas B, and desulfurization treatment is performed. After completing the predetermined desulfurization treatment, the desulfurization slag is transported to the dephosphorization treatment section without being intermediately discharged. In the dephosphorization processing section, a dephosphorization flux injection lance 7 and an oxygen gas upper collecting lance 8 are installed so as to be able to move up and down, respectively, and the lance 7 includes a dephosphorization flux raw material supply hopper 91.9b and a quantitative rotary feeder. 10m, 10b.

計量タンク11.llb及び可変ロータリーフィー11
2m、12b等よりなる脱燐用フラックス供給ラインと
、キャリヤガスC送給管が接続されており、図示した如
くランス7を脱硫溶銑内に突込んで脱燐用フラックスを
吹き込みつつ酸素ガスの上吹きを行なって脱燐l&理す
る。この一連の工程で溶銑内の3及びPは効率良く除去
される。
Metering tank 11. llb and variable rotary fee 11
A dephosphorization flux supply line consisting of 2m, 12b, etc. is connected to a carrier gas C feed pipe, and as shown in the figure, a lance 7 is inserted into the desulfurization hot metal to blow oxygen gas upward while blowing in dephosphorization flux. Dephosphorization is carried out by Through this series of steps, 3 and P in the hot metal are efficiently removed.

前述の説明からも明らかな様に本発明では、最初に脱硫
を行ない次いで脱燐を行なう手順を採用えで軽視するこ
とのできない手順である。即ち後記実験例ても明らか番
こする如く、脱燐を行なった後脱硫を行なう手順を採用
すると、特に脱硫率を十分に高めることができず、本発
明の目的を達成することができない。これは、通常の溶
銑ではPの含有率レベルが3のそれに比べて相当高い為
に脱燐用フラックスの使用量を多くする必要があり、多
量に生成した脱燐スラグが脱硫反応を阻害する為と考え
られる。しかも脱硫剤としてCaCsを使用した場合は
Cが脱燐スラグ中に捕捉されたPzOiを還元して復燐
を起こし、脱燐率も低下させることがある。これに対し
脱硫後脱燐會る手順を採用すると、脱硫スラグの生成量
が少ない為に脱燐反応を阻害することがなく、且つCa
Csに起因する炭素源は高融点の脱硫スラグとして溶銑
表面に分離されているから、その後の脱燐工程で生じる
復硫現象も最小限に抑えることができる。
As is clear from the above description, the present invention employs a procedure in which desulfurization is first performed and then dephosphorization is performed, which is a procedure that cannot be taken lightly. That is, as is clear from the experimental examples described later, if a procedure of dephosphorization followed by desulfurization is adopted, the desulfurization rate cannot be sufficiently increased, and the object of the present invention cannot be achieved. This is because the P content level of normal hot metal is considerably higher than that of 3, so it is necessary to use a larger amount of dephosphorization flux, and the large amount of dephosphorization slag that is generated inhibits the desulfurization reaction. it is conceivable that. Moreover, when CaCs is used as a desulfurization agent, C reduces PzOi captured in the dephosphorization slag to cause rephosphorization, which may also reduce the dephosphorization rate. On the other hand, if the procedure of desulfurization followed by dephosphorization is adopted, the amount of desulfurization slag produced is small, so the dephosphorization reaction is not inhibited, and Ca
Since the carbon source originating from Cs is separated on the surface of the hot metal as high melting point desulfurization slag, the resulfurization phenomenon that occurs in the subsequent dephosphorization process can also be minimized.

本発明は概略以上の様化構成されており、その効果を要
約すれば下記の通りである。
The present invention has a general structure as described above, and its effects can be summarized as follows.

■中間排滓を省略して連続的に脱硫及び脱燐処理を行な
うことができるから、処理工程が簡略化され生産性が向
上する。しかも中間排滓による地金の流出損失及び熱ロ
スもなくなり、且つ混銑車の運行管理も簡略になる。
(2) Desulfurization and dephosphorization can be performed continuously without intermediate waste removal, which simplifies the treatment process and improves productivity. In addition, the outflow loss and heat loss of metal due to intermediate slag are eliminated, and operation management of the pig iron mixing vehicle is also simplified.

■混銑車による搬送過程で脱硫・脱燐を行なう方法にお
いては脱硫・脱燐の為の予備旭理炉が省略てき、全島適
時間が短縮されると共に、移し代え等に伴なう溶銑のロ
スもなくなる。
■In the method of desulfurization and dephosphorization during the transport process using a mixed pig iron truck, the preparatory furnace for desulfurization and dephosphorization is omitted, which shortens the time needed to complete the entire island, as well as the loss of hot metal due to transfer, etc. It also disappears.

次に対照例及び実験例を示す。Next, control examples and experimental examples will be shown.

対照例 溶銑の脱硫及び脱燐処理を夫々個別に行なったと壷の脱
硫及び脱燐率の実験データを以下に示す。
Control Example Experimental data on the desulfurization and dephosphorization rates of hot metal pots in which desulfurization and dephosphorization treatments were carried out separately are shown below.

〔脱硫処理〕[Desulfurization treatment]

脱硫用フラックス・・・C@C! :Cl0=5 : 
1(重量%)1.84/溶銑1トン キャリヤガス・・・N!、0.4〜0.5Nd/溶銑1
トン・分 成分変化・・・第1表に示す 第1表 (重量4) 第1表からも明らかな様に脱硫用フラックスのみを用い
艶処理では、当然ながら脱燐は全く進行しない。
Flux for desulfurization...C@C! :Cl0=5 :
1 (weight%) 1.84/1 ton of hot metal carrier gas...N! , 0.4-0.5Nd/hot metal 1
Change in ton/min component...Table 1 (Weight 4) As is clear from Table 1, dephosphorization does not proceed at all in the polishing treatment using only desulfurization flux.

〔脱燐処理〕[Dephosphorization treatment]

脱燐用フラックス^・・・C@O:Calす:Fe0=
43%:14*:43%(重量)、 30即/溶銑lトン 脱燐用フラックス向・・・CaO:CaF* :F・0
:NmtCO畠=39*:11%:39%=11%(重
量)、17−/溶銑lトン 上吹き酸素・・・6Nd/溶銑lトン・分成分変化 ・
・・第2表に示す。
Flux for dephosphorization ^...C@O:Cal:Fe0=
43%: 14*: 43% (weight), 30 instant/1 ton hot metal dephosphorization flux...CaO: CaF*: F・0
:NmtCO field = 39*: 11%: 39% = 11% (weight), 17-/1 ton of hot metal Top-blown oxygen...6Nd/1 ton of hot metal/Change in composition ・
... Shown in Table 2.

11I2表 (fi量%) 第2表からも明らかな様に、脱燐用フラックスを使用す
れば脱燐と共に脱珪及び脱硫も起こるが、脱硫効率は不
十分であり、別に脱硫処理を行なう必要がある。
Table 11I2 (Fi amount %) As is clear from Table 2, if a dephosphorizing flux is used, desiliconization and desulfurization will occur along with dephosphorization, but the desulfurization efficiency is insufficient and a separate desulfurization treatment is required. There is.

実験例 第3表に示す脱硫用又は脱燐用フラックスを使用し、第
1図に示した方法(或は脱硫と脱燐の手順を逆にした方
法)k準じて、中間排滓を行なうことなく脱硫・脱燐連
続処理を行なった。そのと会の溶銑の成分変化及び最終
の脱硫・脱燐率を第4表に示す。
Experimental Example Using the desulfurization or dephosphorization flux shown in Table 3, perform intermediate slag according to the method shown in Figure 1 (or a method in which the desulfurization and dephosphorization procedures are reversed)k. Continuous desulfurization and dephosphorization treatment was performed without any problems. Table 4 shows the changes in the composition of the hot metal and the final desulfurization and dephosphorization rates.

第4表からも明らかな様に、先ず脱燐を行なった後脱硫
を行なったもの(実験也1及び2:比較例)では、脱燐
スラグによって脱硫反応が阻害されて高い脱硫率を得る
ことができず、しかも脱硫工程で復燐が起こり最終脱燐
率も低下する。
As is clear from Table 4, in the case where dephosphorization was first performed and then desulfurization was performed (Experiments 1 and 2: Comparative Examples), the desulfurization reaction was inhibited by the dephosphorization slag and a high desulfurization rate was obtained. Furthermore, rephosphorization occurs during the desulfurization process and the final dephosphorization rate also decreases.

これに対し本発明法を採用したもの(実験ぬ3及び4)
では、脱硫後の脱燐工程で脱燐反応が効率良く進行する
と共に脱硫反応も更番こ進行し、最終的な脱硫・脱燐率
は共に高い値を得ている。
On the other hand, those that adopted the method of the present invention (Experiments 3 and 4)
In the dephosphorization step after desulfurization, the dephosphorization reaction progresses efficiently and the desulfurization reaction also progresses further, resulting in high values for both the final desulfurization and dephosphorization rates.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す概略工程説明図である。 1・・・混銑車、2・・・脱硫用フラックス吹き込みラ
ンス、7・・・脱燐用フラックス捩き込みランス、8・
・・酸素ガス上吹きランス 出願人  株式会社神戸製鋼所
FIG. 1 is a schematic process diagram showing an embodiment of the present invention. 1... Pig mixing car, 2... Flux injection lance for desulfurization, 7... Flux injection lance for dephosphorization, 8.
...Oxygen gas top-blown lance Applicant: Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)混銑車内において、S1含有率の低い溶銑にCm
Cs又はCaOを主成分とする脱硫用フラックスを不活
性ガスと共に溶銑内へ吹き込み、次いで生成スラグを除
去することなく、該溶銑内にCl01酸化鉄及び媒溶剤
或いはこれらと反応促進剤よりなる脱燐用フラックスを
キャリヤガスと共に吹き込むと共に、酸素ガスを上吹き
することを特徴とする溶銑の脱硫・脱燐方法。
(1) In the pig iron mixing car, Cm is added to hot metal with low S1 content.
A desulfurization flux containing Cs or CaO as a main component is blown into the hot metal together with an inert gas, and then, without removing the generated slag, a dephosphorization process consisting of Cl01 iron oxide and a solvent or a reaction accelerator with these is added to the hot metal without removing the generated slag. A method for desulfurizing and dephosphorizing hot metal, which is characterized by blowing in flux together with a carrier gas and top-blowing oxygen gas.
JP12364081A 1981-08-06 1981-08-06 Desulfurizing and dephosphorizing method for molten iron Pending JPS5825412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12364081A JPS5825412A (en) 1981-08-06 1981-08-06 Desulfurizing and dephosphorizing method for molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12364081A JPS5825412A (en) 1981-08-06 1981-08-06 Desulfurizing and dephosphorizing method for molten iron

Publications (1)

Publication Number Publication Date
JPS5825412A true JPS5825412A (en) 1983-02-15

Family

ID=14865587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12364081A Pending JPS5825412A (en) 1981-08-06 1981-08-06 Desulfurizing and dephosphorizing method for molten iron

Country Status (1)

Country Link
JP (1) JPS5825412A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594415A (en) * 1979-01-13 1980-07-17 Nippon Steel Corp Steel making method of less slag producing amount

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5594415A (en) * 1979-01-13 1980-07-17 Nippon Steel Corp Steel making method of less slag producing amount

Similar Documents

Publication Publication Date Title
JP5983492B2 (en) Hot metal pretreatment method
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP2008063645A (en) Steelmaking method
JPH09157732A (en) Method for desulfurizing and dehydrogenating molten steel with little erosion of refractory
JP2006265623A (en) Method for pre-treating molten iron
JP2002256320A (en) Method for desiliconizing and dephosphorizing molten iron
JP3740009B2 (en) Hot metal dephosphorization method
JPH0141681B2 (en)
JP2833736B2 (en) Hot metal pretreatment method
JPS5825412A (en) Desulfurizing and dephosphorizing method for molten iron
JP4406142B2 (en) Hot phosphorus dephosphorization method
JP2016079462A (en) Method for refining hot pig iron
JP2002256325A (en) Method for pretreating molten iron having little amount of slag by using converter type vessel
JP2001107124A (en) Method for dephosphorizing molten iron
JP2011058046A (en) Method for dephosphorizing molten iron
JP4254412B2 (en) Hot metal desulfurization method
JP4759832B2 (en) Hot phosphorus dephosphorization method
JP6848780B2 (en) How to operate the converter
JP3684953B2 (en) Pre-silicidation / phosphorization method of hot metal
JP3742543B2 (en) Hot metal desulfurization method
JP3697960B2 (en) Hot metal pretreatment method
JP3793390B2 (en) Hot metal desiliconization and desulfurization methods
JP4205818B2 (en) Dephosphorization method for hot metal using decarburized slag
JP2004307940A (en) Method for dephosphorizing molten iron using alumina with torpedo car
JPS6154081B2 (en)