JP3740009B2 - Hot metal dephosphorization method - Google Patents

Hot metal dephosphorization method Download PDF

Info

Publication number
JP3740009B2
JP3740009B2 JP2000350040A JP2000350040A JP3740009B2 JP 3740009 B2 JP3740009 B2 JP 3740009B2 JP 2000350040 A JP2000350040 A JP 2000350040A JP 2000350040 A JP2000350040 A JP 2000350040A JP 3740009 B2 JP3740009 B2 JP 3740009B2
Authority
JP
Japan
Prior art keywords
hot metal
dephosphorization
slag
converter slag
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000350040A
Other languages
Japanese (ja)
Other versions
JP2001207206A (en
Inventor
徹二 床並
泰一 上山
康一郎 瀬村
郁生 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000350040A priority Critical patent/JP3740009B2/en
Publication of JP2001207206A publication Critical patent/JP2001207206A/en
Application granted granted Critical
Publication of JP3740009B2 publication Critical patent/JP3740009B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉で製造された溶銑中のP(りん)を、転炉装入前に予備処理によって効率よく除去することのできる溶銑脱りん法に関するものである。
【0002】
【従来の技術】
最近、転炉処理前の溶銑段階で[Si]と[P]を除去する溶銑予備処理が普及している。従来、溶銑中のPの除去については、転炉で多量の生石灰を添加して脱りんする方法が汎用されてきたが、転炉での精練は通常約1650℃の高温で行なわれるため、低温処理を好む脱りん処理にとって有利な方法とは言えない。これに対し溶銑予備処理は、約1300℃の低温で行なわれるため、脱りん効率の点ではより有効な方法といえる。また予備処理によって脱りんを行なう際には、前処理で予め脱珪処理してから脱りん処理を行なう場合と、高炉から出銑された溶銑にそのまま脱りん剤を添加して脱りんする場合がある。
【0003】
そして、脱りん処理を終えた溶銑を転炉で吹錬する際に、溶銑中の[P]量が製品規格以下まで低減している場合は最早脱りんは不要であるから、転炉吹錬では脱炭および昇温のみを行えばよい。しかしながら、全くスラグのない状態(スラグレス)で吹錬を行なうと、排ガスへのダストロスが著しく増大するため、通常は、吹錬中の溶銑のカバーを目的として少量の生石灰が添加される。
【0004】
一方、溶銑中の[P]が製品規格以下まで低下していない場合は、転炉吹錬工程でも多少の脱りんが必要となるので、溶銑中の[P]量に応じた生石灰の添加が行われる。つまり予め溶銑脱りんを行った場合でも、転炉吹錬工程では副原料の添加が不可欠であり、その結果として、脱りん処理されていない溶銑を使用した場合の2〜3割程度の転炉スラグが生成する。
【0005】
他方、転炉での精錬温度は約1650℃と高温であるため、前述の如くスラグの脱りん能は低く、従って精錬スラグ中のりん濃度は低くなる。特に溶銑予備処理で脱りんを行なった溶銑を用いて吹錬したときに生じる転炉スラグは、溶銑中の[P]が低いことから転炉スラグ中のりん濃度は非常に低く(0.2〜0.8質量%程度)、またこの転炉スラグは、通常約50質量%程度のCaO(生石灰)を含んでいる。従ってこの転炉スラグを、より低温で脱りん処理が行われる溶銑脱りん時の脱りん成分として利用すれば、再度脱りん能を発揮することが確認されている。
【0006】
溶銑脱りん後のスラグ中に含まれるりん濃度は通常2〜4質量%程度であるから、溶銑脱りん剤としてりん濃度の低い転炉スラグを使用すれば、スラグ中へりんを効果的に濃化することができ、脱りん剤として用いられる生石灰の使用量を大幅に削減できる。
【0007】
こうした転炉スラグを利用した溶銑脱りんプロセスを例示すると、図1のフロー図に示す通りである。即ち図中、1は高炉設備、2は混銑車、3は転炉を示しており、高炉設備1から出銑された溶銑は混銑車2で移送する過程で予備処理され、その後転炉3で吹錬処理される。ここで従来は、溶銑予備処理および転炉吹錬で生成した予備処理スラグや転炉スラグは施設外へ搬出され、セメント原料や路盤材などとして利用されていたが、上記転炉スラグを利用するプロセスでは、転炉3から生じる転炉スラグの全量を溶銑予備処理工程へ返還して溶銑脱りん剤として有効利用し、生成した予備処理スラグのみが施設外へ搬出される。このプロセスを採用する際の一般的な転炉スラグ組成(質量%)は次の通りである。
CaO:45〜53%、SiO2:12〜18%、MgO:6〜8%、
FeO:10〜20%、Fe23:5〜10%、MnO:3〜10%、
25:0.4〜2%
【0008】
溶銑脱りん処理が行なわれる反応容器としては、混銑車の他、取鍋や転炉型脱りん炉等が使用されるが、いずれにしても、吹錬工程で副生する転炉スラグを脱りん剤として利用することにより、生石灰の使用量は大幅に削減され多大なコスト低減が可能となる。
【0009】
【発明が解決しようとする課題】
転炉スラグには、スラグ中のP25を3CaO・P25や4CaO・P25として固定するのに必要なCaOが約50質量%程度含まれており、これが生石灰の代替として脱りんに有効に作用する。しかしながら転炉スラグは、反面で相当量のSiO2やFeOを含んでおり、しかも一旦転炉で溶融されたプリメルト品であることから、これを生石灰の代替として脱りん処理に使用すると、脱りん処理時の操業性に大きな変動を来たす。
【0010】
即ち、転炉スラグはプリメルト品であるため滓化速度が早く、またSiO2やFeOを含んでいるためそれ自体の融点も低い。従って転炉スラグを用いて脱りん処理を行なうと、スラグが滓化過剰となって、混銑車や転炉の炉口からスラグが溢れ出るスロッピング現象を誘発する。スラグが容器外へ溢れ出ると、周辺の軌道や設備がスラグで埋まったり焼損するといった重大な操業トラブルの原因となる。しかも転炉スラグは、高融点の鉱物である2CaO・SiO2を多量含んでいるので、これが低温の脱りん処理工程で十分に溶融せず、脱りん処理中にインジェクションランスや混銑車の内張り耐火物などの表面に付着して成長するため、ランスの寿命低下や内容積減少といった操業トラブルの原因にもなってくる。
【0011】
本発明は上記の様な事情に着目してなされたものであって、その目的は、脱りん剤として転炉スラグを利用する場合にみられる前述した障害、特にスロッピング現象を防止すると共に2CaO・SiO2などの付着・成長を抑制し、溶銑脱りん処理を安全に且つ効率よく遂行することのできる方法を確立しようとするものである。
【0012】
【課題を解決するための手段】
上記課題を解決することのできた本発明に係る溶銑脱りん法とは、転炉スラグを脱りん成分として利用して溶銑脱りんを行なうに当たり、酸化鉄源を除く脱りん成分として、
(1)転炉スラグ:50〜70質量%と蛍石:1〜8質量%を含む脱りん剤を使用し、あるいは、
(2)転炉スラグ:55質量%以上で実質的にCaF2を含まない脱りん剤を使用すると共に、下記式で定義される総酸素原単位を溶銑トン当たり8.0Nm3以上とする
総酸素原単位[Nm3/溶銑トン]=酸素ガス原単位+転炉スラグ中(FeO+Fe23)酸素分の[Nm3/溶銑トン]換算値+酸化鉄中(FeO+Fe23)酸素分の[Nm3/溶銑トン]換算値とする
ところに要旨を有している。
【0013】
なお本発明の溶銑脱りん法を実施する際に使用される脱りん剤としては、上記転炉スラグや蛍石の他、生石灰や酸化剤としてスケールなどの酸化鉄源が含まれるが、本発明では、これらのうち酸化鉄源を除いた脱りん成分の含有率として規定している。従って、上記転炉スラグと蛍石の含有率範囲を満たす限り、生石灰の配合量やスケールなどの酸化鉄源などの配合量は特に制限されない。また転炉スラグにも相当量の酸化鉄が含まれるが、該酸化鉄は転炉スラグの1成分として該転炉スラグとしての配合量に含めるものとする。
【0014】
上記(1)の溶銑脱りん法を実施するに当たっては、上記転炉スラグの配合量を(X)、蛍石の配合量を(Y)とした時、これらが下記式(I)の関係
Y≦24−0.32X……(I)
また上記(2)の脱りん法を実施するにあったっては、同じく上記転炉スラグの配合量を(X)、総酸素原単位を(Z)とした時、下記式(II)の関係
Z≦16.03−0.066X……(II)
を、それぞれ満たす様に調整すれば、転炉スラグ使用による前述した難点、即ちスロッピングの発生とスラグ付着の問題を一層確実に防止することができるので好ましい。
【0015】
また本発明にかかる脱りん法の特徴は、処理容器に対して溶銑の占める比率が多く空間容積が小さくなる混銑車や取鍋で脱りん処理を行なう際に特に効果的に活かされる。
【0016】
【発明の実施の形態】
転炉スラグを生石灰の代替として使用した場合、全脱りん剤中に占める転炉スラグの割合が高くなるほど、脱りんスラグが滓化過剰となって脱りん処理中にスロッピングを起こし易くなることは、先に説明した通りである。そこで、転炉スラグを利用した脱りん処理で指摘される上記問題の解消に焦点を絞って研究を進めてきた。
【0017】
その結果、まず第1の知見として、転炉スラグと共に適量の蛍石(弗化カルシウム主体の鉱石)を併用すれば、溶銑脱りん工程で生じるスロッピングの発生を防止できると共に、ランスや溶銑予備処理炉内壁への2CaO・SiO2の付着・成長も可及的に抑えられることを知り、上記第1の発明に想到した。
【0018】
生石灰を脱りん剤として使用する従来の溶銑脱りんでは、脱りん剤として用いる生石灰の滓化を促進するため、生石灰と共に適量の蛍石が併用されている。ところが転炉スラグを併用する前記プロセスでは、転炉スラグの使用による滓化過剰が操業上大きな問題となるため、滓化促進剤としての蛍石の使用はむしろ避けられてきた。
【0019】
しかしながら本発明者らが種々研究を進めた結果、転炉スラグの使用量に応じて蛍石の配合量を適正にコントロールすれば、脱りん剤全体としての滓化状態がより適正に制御されると共に、スロッピングやスラグ付着の問題も解消されることが確認された。
【0020】
図2は、転炉スラグを利用した脱りん処理時における脱りん剤組成とスロッピング発生率の関係をグラフ化して示したものであり、図2の横軸は、転炉スラグ原単位/(転炉スラグ原単位+生石灰原単位+蛍石原単位)で、スケールなどの酸化鉄源は計算から除外している。
【0021】
図2からも明らかな様に、転炉スラグの配合率を多くした場合でも、該転炉スラグの配合量に応じて蛍石の配合率を適正に調整すれば、スロッピング発生率を確実に制御できることが分かる。そして通常の溶銑脱りん操業では、経験上スロッピング発生率を30%以下に抑えれば、実操業上の障害にはならないことが確認されている。
【0022】
一方、転炉スラグを利用した溶銑脱りん工程では、前述の如く2CaO・SiO2を主体とするスラグの付着・成長の問題を生じるが、蛍石は2CaO・SiO2に対しても優れた溶解能を示すので、適量の蛍石を併用することによりこうしたスラグ付着の問題も解消できることが確認された。
【0023】
ちなみに図3は、脱りん剤中に占める転炉スラグおよび蛍石の配合量がランスへのスラグ付着量に及ぼす影響を調べた結果を示したグラフである。なお混銑車脱りんを行なう場合、その容器形状から個々の混銑車ごとに内張り耐火物への2CaO・SiO2の付着量を把握することは困難であるため、この実験ではインジェクションランスヘのスラグ付着発生率と蛍石配合量との関係として調査した。
【0024】
図3からも明らかな様に、転炉スラグの配合率を多くした場合でも、それに応じて蛍石の配合率を増加させてやれば、ランスヘのスラグ付着発生率を抑制できることが分かる。尚、ランスがスラグで肥大するとランス昇降不能などの大きな操業阻害を引き起こすが、ランスヘのスラグ付着発生率を10%以下に抑えてやれば、実操業上は支障なく溶銑脱りん操業を遂行できることを確認している。
【0025】
上記図2および図3の結果から、溶銑脱りん処理時に使用される転炉スラグの配合率と蛍石の配合率の関係において、スロッピング発生率を30%以下、およびランスヘのスラグ付着発生率を10%以下に抑えることのできるより好ましい組成を求めると、図4に示す通りとなる。
【0026】
上記図2,3より、脱りん剤として転炉スラグを多量に使用して脱りん剤原単位の低減効果を有効に享受するには、転炉スラグ配合率を50〜70質量%、蛍石配合率を1〜8質量%の範囲に設定することが必要となる。また図4より、過剰なスロッピングを発生させることなく、且つランスや耐火物壁へのスラグ付着をより効果的に抑制することのできる転炉スラグと蛍石の好適配合量の関係は、転炉スラグの配合量をX、蛍石の配合量をYとした時、「Y≦24−0.32X」の関係を満たす範囲となる。
【0027】
ちなみに、転炉スラグの配合量が50質量%未満では、副生物としての転炉スラグを有効利用するという本発明の目的を有意に活かすことができず、一方70質量%を超えて過度に転炉スラグ量を増大すると、蛍石の配合量を如何に調整してもスロッピングの問題が回避できなくなり、また蛍石の配合量が1質量%未満では、スラグ付着の問題が解消できなくなり、逆に8質量%を超えて過度に蛍石を配合すると、スロッピングの問題が回避できなくなる。転炉スラグのより好ましい配合量は60〜70質量%、蛍石のより好ましい配合量は1〜5質量%、更に好ましくは1〜3質量%の範囲である。
【0028】
他方溶銑脱りん処理では、溶銑中のりんを酸化するための酸素源として鉄鉱石などの酸化鉄と酸素ガスが使用される。酸化鉄は反応容器の上方から塊状のものを溶銑上へ添加する場合と、溶銑中に浸漬した耐火物製のランスを通して粉体状のものをキャリアガスと共に溶銑中へ吹き込む場合がある。また、酸素ガスはランスを通して溶銑の上方から溶銑へ吹付ける場合と、耐火物製のランスを通して脱りん剤と共に溶銑中へ吹込む場合がある。
【0029】
酸化鉄を用いる脱りん処理では溶銑の温度は低下し、酸素ガスを用いる脱りん処理では溶銑の温度は上昇する。従って、一般的には脱りん処理後の温度を所定値に調整するため酸化鉄と酸素ガスを併用し、それぞれの原単位を調整しながら脱りん処理する方法が採用されている。
【0030】
脱りん時に酸化剤として使用された酸化鉄や酸素ガスは、脱りんスラグ中のT.Fe(全酸素)濃度を上昇させる。酸化鉄や酸素ガスは、溶銑中のりんや炭素の酸化に消費されるが、酸化鉄の一部は未反応のままスラグへ移行し、また酸素ガスの一部は鉄の酸化に消費される。従って、例えば図5に示す如くこれら酸化剤の原単位の上昇と共に脱りんスラグ中のT.Fe濃度は上昇する。ここでT.Feとは、FeOおよびFe23中のFe分のみの濃度を意味し、また、図中の総酸素原単位は次式で定義するものであり、酸素ガス原単位および脱りん剤中のFeO+Fe23中酸素分のNm3/溶銑トン換算値を合計したものである。
総酸素原単位[Nm3/溶銑トン]=酸素ガス原単位
+転炉スラグ中(FeO+Fe23)酸素分の[Nm3/溶銑トン]換算値
+酸化鉄中(FeO+Fe23)酸素分の[Nm3/溶銑トン]換算値
FeOやFe23は酸化物の溶解度が大きく、FeOやFe23の存在によりスラグ中の2CaO・SiO2の溶解が促進されることが知られている。
【0031】
そこで本発明の第2の構成として、蛍石に代えてスラグ中のT・Feの制御により、脱りん剤として転炉スラグを使用した時の2CaO・SiO2の耐火物への付着を防止することを考えた。
【0032】
図6には、蛍石を使用しなかった場合のスロッピング発生率に及ぼす転炉スラグの配合率と総酸素原単位の影響を示しており、この図からも明らかな様に、蛍石添加の場合と同様に、転炉スラグの配合率を多くした場合でも、総酸素原単位の適正化によりスロッピング発生率を制御できることが確認された。
【0033】
また図7は、蛍石を使用しなかった場合のランスへのスラグ付着発生率に及ぼす転炉スラグの配合率と総酸素原単位の影響を示しており、この図からは、転炉スラグの配合率を多くした場合でも、総酸素原単位の適正化によりランスへのスラグ付着を制御できる。
【0034】
図6,7の結果から、溶銑脱りん処理時に使用される転炉スラグの配合率と総酸素原単位の関係において、スロッピング発生率を30%以下に、またランスへのスラグ付着発生率を10%以下に抑えることのできるより好ましい組成を求めると、図8に示す通りとなる。図8より、脱りん剤として蛍石を使用せずに、過剰なスロッピングを発生させることなく、且つランスや耐火物壁へのスラグ付着を抑制することのできる転炉スラグと総酸素原単位のより好ましい配合量の関係は、総酸素原単位が8Nm3/溶銑トン以上で且つ転炉スラグの配合量をX、総酸素原単位をZとしたとき、「Z≦16.03−0.066X」の関係を満たす範囲となる。
【0035】
なお本発明で使用する脱りん剤には、上記転炉スラグなどの他、溶銑中のりん含有量に応じて適量の生石灰を配合し、更には酸化剤としてスケール(酸化鉄)などが配合されるが、それらの配合量は特に制限されない。
【0036】
そして、上記条件を満たす範囲で可能な限り生石灰を転炉スラグに置き換えることにより、スロッピングの発生やランスヘのスラグ付着の発生を可及的に防止しつつ、溶銑脱りんを効率よく実施し得ることになった。尚、上記脱りん剤の添加方法は特に制限されないが、たとえば、溶銑内に浸漬配置した浸漬ランスから、窒素ガスなどのキャリアガスを用いて吹込む方法等が例示される。
【0037】
なお溶銑脱りんを行なう容器としては、混銑車、取鍋あるいは転炉等が使用されるが、転炉では容器内容積のうち溶銑の占める比率は約20%程度であるのに対し、混銑車や取鍋では容器の内容積のうち60〜80%程度を溶銑が占めており、上部の空間容積が非常に小さい。すなわち、混銑車や取鍋はスロッピングが発生し易い容器であるため、特にスロッピングを引き起こさないような配慮を必要とする。従って本発明は、溶銑脱りん処理容器として混銑車や取鍋を使用する場合に特に効果的に活かされる。
【0038】
【実施例】
以下、実験例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実験例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することは、何れも本発明の技術的範囲に包含される。
【0039】
実施例1
高炉鋳床上で脱珪処理を行い、脱珪された該溶銑310トンを混銑車に受銑した。該溶銑上の脱珪スラグをスラグドラッガーで除去した後、転炉スラグ粉20.3kg/トン、生石灰粉10.1kg/トン、蛍石粉1.2kg/トンおよび鉄鉱石粉25.5kg/トンの混合物を、溶銑中に浸漬したランスから窒素ガスと共に吹き込み、溶銑脱りん処理を行った。また該脱りん処理中には、水冷式のランスから溶銑上に酸素ガスを2.0Nm3/トンで吹き付けた。
【0040】
上記溶銑脱りん処理において「転炉スラグ粉+生石灰粉+蛍石粉」中に占める転炉スラグ配合率は64質量%、蛍石配合率は4質量%であり、脱りん処理中にスロッピングは見られず、また脱りん処理後のランスにスラグの付着も認められなかった。
【0041】
実施例2
高炉鋳床上で脱珪処理を行い、脱珪された該溶銑293トンを混銑車に受銑した。該溶銑上の脱珪スラグをスラグドラッガーで除去した後、転炉スラグ粉(酸素含量:5.2質量%)25.8kg/溶銑トン、生石灰粉6.2kg/溶銑トン、鉄鉱石粉(酸素含量:28.1質量%)27.0kg/溶銑トンの混合物を、溶銑中に浸漬したランスから窒素ガスと共に吹き込み、溶銑脱りん処理を行った。また該脱りん処理中には、水冷式のランスから溶銑上に向けて酸素ガスを2.9Nm3/溶銑トンで吹き付けた。
【0042】
上記溶銑脱りん処理において「転炉スラグ粉+生石灰粉」に対して、転炉スラグ配合率は81質量%、総酸素原単位は9.2Nm3/溶銑トン(計算式は下記の通り)であり、蛍石は添加しなかったが脱りん処理中にスロッピングの発生は起こらず、また脱りん処理後のランスにスラグの付着も認められなかった。
総酸素原単位=1000×0.052×1/32×0.0224×25.8
+1000×0.281×1/32×0.0224×27.0+2.9=9.2(Nm3/溶銑トン)
【0043】
【発明の効果】
本発明は以上の様に構成されており、溶銑脱りん処理用の脱りん剤として転炉スラグを有効利用する際に、該転炉スラグと共に適量の蛍石と生石灰を併用し、あるいは蛍石を使用することなく総酸素原単位を適正に制御することによって、転炉スラグ使用によって生じる実操業上の問題として指摘されるスロッピングの問題およびスラグ付着・堆積の問題を生じることなく、安い脱りん剤コストで効率よく溶銑脱りんを遂行し得ることになった。
【図面の簡単な説明】
【図1】本発明で採用される転炉スラグ利用の脱りん剤リサイクルと従来法を示す概略フロー図である。
【図2】溶銑脱りん処理時におけるて転炉スラグおよび蛍石の使用量とスロッピング発生率の関係を調べた実験データを示すグラフである。
【図3】溶銑脱りん処理時におけるて転炉スラグおよび蛍石の使用量とランスへのスラグ付着量の関係を調べた実験データを示すグラフである。
【図4】転炉スラグと蛍石を併用して溶銑脱りんを行なう際に、転炉スラグ配合量と蛍石配合量のより適切な範囲を示すグラフである。
【図5】脱りん処理時の総酸素原単位と脱りん処理後のスラグ中のT・Fe量との関係を示すグラフである。
【図6】転炉スラグ配合率と脱りん処理時のスロッピング発生率の関係を示すグラフである。
【図7】転炉スラグの配合率とランスへのスラグ付着比率の関係を示すグラフである。
【図8】転炉スラグ配合率および蛍石配合率のより適正な関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot metal dephosphorization method capable of efficiently removing P (phosphorus) in hot metal produced in a blast furnace by pretreatment before charging the converter.
[0002]
[Prior art]
Recently, hot metal pretreatment for removing [Si] and [P] in the hot metal stage before the converter process has become widespread. Conventionally, for removing P in hot metal, a method of adding a large amount of quicklime in a converter and dephosphorizing has been widely used. However, scouring in a converter is usually performed at a high temperature of about 1650 ° C. It is not an advantageous method for the dephosphorization treatment that favors the treatment. On the other hand, since the hot metal preliminary treatment is performed at a low temperature of about 1300 ° C., it can be said that it is a more effective method in terms of dephosphorization efficiency. In addition, when dephosphorization is performed by pretreatment, dephosphorization treatment is performed in advance in the pretreatment, or dephosphorization is performed by adding a dephosphorizing agent directly to the molten iron discharged from the blast furnace. There is.
[0003]
When the hot metal after dephosphorization is blown in the converter, if the amount of [P] in the hot metal is reduced below the product standard, dephosphorization is no longer necessary. Then, only decarburization and temperature increase need be performed. However, if blowing is performed without any slag (slagless), dust loss to the exhaust gas increases remarkably, and therefore a small amount of quick lime is usually added for the purpose of covering hot metal during blowing.
[0004]
On the other hand, if the [P] in the hot metal is not reduced below the product specification, some dephosphorization is required even in the converter blowing process, so the addition of quick lime according to the amount of [P] in the hot metal is necessary. Done. In other words, even if hot metal dephosphorization has been performed in advance, addition of auxiliary materials is indispensable in the converter blowing process. As a result, about 20-30% of the converter when using hot metal that has not been dephosphorized is used. Slag is generated.
[0005]
On the other hand, since the refining temperature in the converter is as high as about 1650 ° C., the dephosphorization ability of the slag is low as described above, and therefore the phosphorus concentration in the refining slag is low. In particular, the converter slag produced when blown using hot metal that has been dephosphorized in the hot metal pretreatment has a very low phosphorus concentration in the converter slag because [P] in the hot metal is low (0.2%). The converter slag usually contains about 50% by mass of CaO (quick lime). Therefore, it has been confirmed that if this converter slag is used as a dephosphorization component during hot metal dephosphorization in which dephosphorization is performed at a lower temperature, the dephosphorization ability is exhibited again.
[0006]
Since the phosphorus concentration in the slag after hot metal dephosphorization is usually about 2 to 4% by mass, if converter slag with a low phosphorus concentration is used as the hot metal dephosphorization agent, phosphorus is effectively concentrated in the slag. The amount of quicklime used as a dephosphorizing agent can be greatly reduced.
[0007]
An example of the hot metal dephosphorization process using such converter slag is as shown in the flowchart of FIG. That is, in the figure, 1 is a blast furnace facility, 2 is a kneading wheel, 3 is a converter, and the hot metal discharged from the blast furnace facility 1 is preliminarily processed in the process of being transferred by the kneading wheel 2, and then in the converter 3 It is blown. Here, conventionally, the pretreatment slag and converter slag generated by hot metal pretreatment and converter blowing are carried out of the facility and used as cement raw materials, roadbed materials, etc., but the above converter slag is used. In the process, the entire amount of converter slag generated from the converter 3 is returned to the hot metal pretreatment process and effectively used as a hot metal dephosphorization agent, and only the generated pretreatment slag is carried out of the facility. The general converter slag composition (mass%) when this process is adopted is as follows.
CaO: 45 to 53%, SiO 2 : 12 to 18%, MgO: 6 to 8%,
FeO: 10~20%, Fe 2 O 3: 5~10%, MnO: 3~10%,
P 2 O 5 : 0.4-2%
[0008]
As a reaction vessel for hot metal dephosphorization, a ladle or a converter type dephosphorization furnace is used in addition to a kneading car, but in any case, converter slag produced as a by-product in the blowing process is removed. By using it as a phosphorus agent, the amount of quicklime used is greatly reduced, and a great cost reduction is possible.
[0009]
[Problems to be solved by the invention]
The converter slag, contains CaO is about 50 wt% required for fixing the P 2 O 5 in the slag as 3CaO · P 2 O 5 and 4CaO · P 2 O 5, which are alternative quicklime It acts effectively on dephosphorization. However, converter slag, on the other hand, contains a considerable amount of SiO 2 and FeO, and is a pre-melt product once melted in the converter. The operability during processing will change greatly.
[0010]
That is, since the converter slag is a premelt product, the hatching speed is high, and since it contains SiO 2 and FeO, its melting point is low. Therefore, when the phosphorus removal treatment is performed using the converter slag, the slag becomes excessively hatched, and a slopping phenomenon in which the slag overflows from the kiln or the furnace port of the converter is induced. If slag overflows outside the container, it will cause serious operational troubles such as the surrounding track and equipment being filled with slag or burning. Moreover, the converter slag contains a large amount of 2CaO · SiO 2 , which is a high-melting-point mineral, so that it does not melt sufficiently in the low-temperature dephosphorization process. Since it grows while adhering to the surface of an object, it also causes operational troubles such as a decrease in the life of the lance and a decrease in the internal volume.
[0011]
The present invention has been made by paying attention to the above-mentioned circumstances, and the object thereof is to prevent the above-mentioned obstacles, particularly the slopping phenomenon, seen when using converter slag as a dephosphorizing agent, and 2CaO. -It is intended to establish a method capable of suppressing the adhesion / growth of SiO 2 and the like and performing hot metal dephosphorization processing safely and efficiently.
[0012]
[Means for Solving the Problems]
The hot metal dephosphorization method according to the present invention, which was able to solve the above-mentioned problems, is to use hot metal dephosphorization using converter slag as a dephosphorization component.
(1) Use a dephosphorizing agent containing converter slag: 50 to 70% by mass and fluorite: 1 to 8% by mass, or
(2) Converter slag: A dephosphorization agent that is 55 mass% or more and substantially free of CaF 2 is used, and the total oxygen intensity defined by the following formula is 8.0 Nm 3 or more per ton of hot metal. Oxygen basic unit [Nm 3 / tonel of molten metal] = oxygen gas basic unit + converter slag (FeO + Fe 2 O 3 ) oxygen content [Nm 3 / molten iron ton] converted value + iron oxide (FeO + Fe 2 O 3 ) oxygen content [Nm 3 / tonel of molten iron] in terms of conversion value.
[0013]
The dephosphorizing agent used when carrying out the hot metal dephosphorization method of the present invention includes iron oxide sources such as scale as quick lime and oxidizing agent in addition to the above converter slag and fluorite. Stipulates the content of the dephosphorization component excluding the iron oxide source. Therefore, as long as the content range of the converter slag and fluorite is satisfied, the amount of quick lime and the amount of iron oxide such as scale are not particularly limited. The converter slag also contains a considerable amount of iron oxide, and this iron oxide is included in the blending amount of the converter slag as one component of the converter slag.
[0014]
In carrying out the hot metal dephosphorization method of (1) above, when the blending amount of the converter slag is (X) and the blending amount of fluorite is (Y), these are the relationship Y of the following formula (I) ≦ 24−0.32X …… (I)
Also, in carrying out the dephosphorization method of (2) above, when the blending amount of the converter slag is (X) and the total oxygen intensity is (Z), the relationship Z of the following formula (II) ≦ 16.03-0.066X …… (II)
Is preferably adjusted so as to satisfy each of the above, because the above-mentioned difficulties due to the use of converter slag, that is, the problem of slopping and slag adhesion can be prevented more reliably.
[0015]
Further, the feature of the dephosphorization method according to the present invention is particularly effectively utilized when the dephosphorization process is performed in a kneading wheel or ladle in which the ratio of the molten iron to the processing container is large and the space volume is small.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
When converter slag is used as a substitute for quicklime, the higher the ratio of converter slag to the total dephosphorization agent, the more the dephosphorization slag will hatch and the more likely it will be slopping during the dephosphorization process. Is as described above. Therefore, research has been focused on solving the above-mentioned problems pointed out in the dephosphorization process using converter slag.
[0017]
As a result, as a first finding, if an appropriate amount of fluorite (ore mainly composed of calcium fluoride) is used in combination with converter slag, it is possible to prevent the occurrence of slopping that occurs in the hot metal dephosphorization process, as well as the lance and hot metal reserve. Knowing that adhesion and growth of 2CaO.SiO 2 on the inner wall of the processing furnace can be suppressed as much as possible, the inventors have conceived the first invention.
[0018]
In conventional hot metal dephosphorization using quicklime as a dephosphorization agent, an appropriate amount of fluorite is used together with quicklime in order to promote hatching of quicklime used as a dephosphorization agent. However, in the above process using converter slag in combination, excessive hatching due to the use of converter slag has become a major operational problem, so the use of fluorite as a hatching accelerator has been avoided.
[0019]
However, as a result of various studies conducted by the present inventors, if the blending amount of fluorite is appropriately controlled according to the amount of converter slag used, the hatching state of the entire dephosphorizing agent can be controlled more appropriately. At the same time, it was confirmed that the problems of slopping and slag adhesion were also eliminated.
[0020]
FIG. 2 is a graph showing the relationship between the dephosphorization composition and the slopping rate during the dephosphorization process using converter slag. The horizontal axis in FIG. 2 indicates the basic unit of converter slag / ( Converter slag basic unit + quicklime basic unit + fluorite basic unit), and iron oxide sources such as scale are excluded from the calculation.
[0021]
As is clear from FIG. 2, even when the converter slag compounding ratio is increased, if the fluorite compounding ratio is appropriately adjusted in accordance with the converter slag compounding amount, the slopping occurrence rate is ensured. It can be seen that it can be controlled. In normal hot metal dephosphorization operation, it has been confirmed from experience that if the rate of slopping is suppressed to 30% or less, there will be no obstacle to actual operation.
[0022]
On the other hand, in the hot metal dephosphorization process using converter slag, as mentioned above, the problem of slag adhesion and growth mainly composed of 2CaO · SiO 2 occurs, but fluorite dissolves well in 2CaO · SiO 2 . It was confirmed that the problem of slag adhesion can be solved by using an appropriate amount of fluorite together.
[0023]
Incidentally, FIG. 3 is a graph showing the results of examining the influence of the blending amount of converter slag and fluorite in the dephosphorizing agent on the amount of slag adhering to the lance. In addition, it is difficult to grasp the amount of 2CaO · SiO 2 adhering to the lining refractory for each individual chaotic vehicle from the container shape when removing the chaotic vehicle dephosphorization, so in this experiment slag adhesion to the injection lance The relationship between incidence and fluorite content was investigated.
[0024]
As is apparent from FIG. 3, even when the converter slag compounding ratio is increased, the slag adhesion occurrence rate on the lance can be suppressed by increasing the fluorite compounding ratio accordingly. In addition, if the lance is enlarged by slag, it will cause a large operational hindrance such as the inability to lift the lance. I have confirmed.
[0025]
From the results of FIGS. 2 and 3 above, in the relationship between the blending ratio of the converter slag and the blending ratio of the fluorite used in the hot metal dephosphorization treatment, the slopping rate is 30% or less, and the slag adhesion rate is on the lance. When a more preferable composition capable of keeping the content of 10% or less is obtained, it is as shown in FIG.
[0026]
2 and 3 above, in order to effectively use the converter slag as a dephosphorizer and to effectively reduce the dephosphorizer basic unit, the converter slag compounding ratio is 50 to 70 mass%, and fluorite. It is necessary to set the blending ratio in the range of 1 to 8% by mass. Further, from FIG. 4, the relationship between the preferred blending amount of converter slag and fluorite that can suppress slag adhesion to the lance and refractory wall more effectively without causing excessive slopping is as follows. When the blending amount of the furnace slag is X and the blending amount of fluorite is Y, the range satisfies the relationship of “Y ≦ 24−0.32X”.
[0027]
Incidentally, if the blending amount of the converter slag is less than 50% by mass, the object of the present invention of effectively using the converter slag as a by-product cannot be utilized significantly, while the converter slag exceeds 70% by mass and is excessively converted. If the furnace slag amount is increased, the slopping problem cannot be avoided no matter how the fluorite blending amount is adjusted, and if the fluorite blending amount is less than 1% by mass, the slag adhesion problem cannot be solved. On the other hand, if the amount of fluorite exceeds 8% by mass, the problem of slopping cannot be avoided. The more preferable amount of the converter slag is 60 to 70% by mass, the more preferable amount of fluorite is 1 to 5% by mass, and further preferably 1 to 3% by mass.
[0028]
On the other hand, in hot metal dephosphorization treatment, iron oxide such as iron ore and oxygen gas are used as an oxygen source for oxidizing phosphorus in hot metal. There are cases where iron oxide is added in a lump form on the hot metal from above the reaction vessel and powdered form is blown into the hot metal together with a carrier gas through a refractory lance immersed in the hot metal. In addition, oxygen gas may be blown into the hot metal through the lance from above the hot metal or into the hot metal together with the dephosphorizing agent through a refractory lance.
[0029]
In the dephosphorization process using iron oxide, the temperature of the hot metal decreases, and in the dephosphorization process using oxygen gas, the temperature of the hot metal increases. Therefore, generally, in order to adjust the temperature after the dephosphorization treatment to a predetermined value, a method is employed in which iron oxide and oxygen gas are used in combination, and the dephosphorization treatment is performed while adjusting each basic unit.
[0030]
The iron oxide and oxygen gas used as the oxidizing agent at the time of dephosphorization are the T.O. Increase Fe (total oxygen) concentration. Iron oxide and oxygen gas are consumed for the oxidation of phosphorus and carbon in the hot metal, but part of the iron oxide moves to slag without being reacted, and part of the oxygen gas is consumed for oxidation of iron. . Therefore, for example, as shown in FIG. The Fe concentration increases. T. Fe means the concentration of only the Fe content in FeO and Fe 2 O 3 , and the total oxygen unit in the figure is defined by the following formula, and the oxygen gas unit and dephosphorizing agent This is the sum of Nm 3 / tonel equivalent value of oxygen content in FeO + Fe 2 O 3 .
Total oxygen basic unit [Nm 3 / tonel of molten iron] = oxygen gas basic unit + converter slag (FeO + Fe 2 O 3 ) oxygen content [Nm 3 / tona of molten metal] converted value + iron oxide (FeO + Fe 2 O 3 ) oxygen [Nm 3 / tonel of molten iron] converted value per minute FeO and Fe 2 O 3 have high oxide solubility, and it is known that the dissolution of 2CaO · SiO 2 in slag is promoted by the presence of FeO and Fe 2 O 3. It has been.
[0031]
Therefore, as a second configuration of the present invention, by controlling T · Fe in slag instead of fluorite, adhesion of 2CaO · SiO 2 to refractories when converter slag is used as a dephosphorizing agent is prevented. I thought.
[0032]
Fig. 6 shows the effect of converter slag content and total oxygen intensity on the slopping rate when no fluorite is used. As is clear from this figure, the addition of fluorite As in the case of, it was confirmed that the slopping rate can be controlled by optimizing the total oxygen intensity even when the converter slag content is increased.
[0033]
Fig. 7 shows the influence of the blending ratio of converter slag and the total oxygen intensity on the slag deposition rate when fluorite is not used. Even when the blending ratio is increased, the slag adhesion to the lance can be controlled by optimizing the total oxygen intensity.
[0034]
From the results shown in FIGS. 6 and 7, in the relationship between the ratio of the converter slag used during hot metal dephosphorization and the total oxygen intensity, the slopping rate is 30% or less, and the slag adhesion rate to the lance is The more preferable composition that can be suppressed to 10% or less is as shown in FIG. From FIG. 8, the converter slag and total oxygen intensity can be controlled without using fluorite as a dephosphorization agent, without causing excessive slopping, and suppressing slag adhesion to the lance or refractory wall. More preferably, when the total oxygen basic unit is 8 Nm 3 / molten iron ton or more, the converter slag compounding amount is X, and the total oxygen basic unit is Z, “Z ≦ 16.03-0. 066X ".
[0035]
In addition to the converter slag, etc., the dephosphorization agent used in the present invention is blended with an appropriate amount of quick lime according to the phosphorus content in the hot metal, and further scale (iron oxide) is blended as an oxidizing agent. However, the blending amount thereof is not particularly limited.
[0036]
And by replacing quick lime with converter slag as much as possible within the range that satisfies the above conditions, hot metal dephosphorization can be carried out efficiently while preventing the occurrence of slopping and slag adhesion to the lance as much as possible. is what happened. The method of adding the dephosphorizing agent is not particularly limited, and examples thereof include a method of blowing from a dipping lance immersed in hot metal using a carrier gas such as nitrogen gas.
[0037]
As a container for hot metal dephosphorization, a kneading wheel, a ladle or a converter is used. In the converter, the ratio of the hot metal to the inner volume of the container is about 20%, whereas the kneading wheel is used. In the ladle, the hot metal occupies about 60 to 80% of the inner volume of the container, and the upper space volume is very small. In other words, the kneading car and the ladle are containers that are prone to slopping, and therefore need special consideration not to cause slopping. Therefore, the present invention is particularly effectively used when a kneading wheel or a ladle is used as the hot metal dephosphorization processing container.
[0038]
【Example】
Hereinafter, the present invention will be described more specifically with reference to experimental examples.However, the present invention is not limited by the following experimental examples, but may be appropriately modified within a range that can meet the purpose described above and below. Any implementation is within the scope of the present invention.
[0039]
Example 1
Desiliconization treatment was performed on the blast furnace casting floor, and 310 tons of the desiliconized hot metal was received by a kneading car. After removing the desiliconized slag on the hot metal with a slag dragger, a mixture of converter slag powder 20.3 kg / ton, quick lime powder 10.1 kg / ton, fluorite powder 1.2 kg / ton and iron ore powder 25.5 kg / ton Was blown together with nitrogen gas from a lance immersed in hot metal to perform hot metal dephosphorization. During the dephosphorization treatment, oxygen gas was blown onto the hot metal from a water-cooled lance at 2.0 Nm 3 / ton.
[0040]
In the above hot metal dephosphorization process, the converter slag content in the “converter slag powder + quicklime powder + fluorite powder” is 64% by mass, and the fluorite content is 4% by mass. No slag was observed on the lance after dephosphorization.
[0041]
Example 2
Desiliconization treatment was performed on the blast furnace casting floor, and 293 tons of the desiliconized hot metal was received by a kneading car. After removing the desiliconized slag on the hot metal with a slag dragger, converter slag powder (oxygen content: 5.2% by mass) 25.8 kg / ton hot metal, 6.2 kg hot metal lime powder / ton hot iron, iron ore powder (oxygen content) : 28.1% by mass) A mixture of 27.0 kg / ton of hot metal was blown together with nitrogen gas from a lance immersed in the hot metal to perform hot metal dephosphorization. During the dephosphorization treatment, oxygen gas was blown from the water-cooled lance onto the hot metal at 2.9 Nm 3 / ton of hot metal.
[0042]
In the above hot metal dephosphorization process, the converter slag content is 81% by mass and the total oxygen intensity is 9.2 Nm 3 / ton of hot metal (calculation formula is as follows) with respect to “converter slag powder + quicklime powder”. Although fluorite was not added, no slopping occurred during the dephosphorization process, and no slag adhered to the lance after the dephosphorization process.
Total oxygen intensity = 1000 x 0.052 x 1/32 x 0.0224 x 25.8
+ 1000 × 0.281 × 1/32 × 0.0224 × 27.0 + 2.9 = 9.2 (Nm 3 / ton of hot metal)
[0043]
【The invention's effect】
The present invention is configured as described above. When converter slag is effectively used as a dephosphorizing agent for hot metal dephosphorization, an appropriate amount of fluorite and quicklime are used in combination with the converter slag, or fluorite. By properly controlling the total oxygen consumption without using slag, it is possible to reduce the cost without causing slopping problems and slag adhesion / deposition problems that are pointed out as actual operational problems caused by the use of converter slag. It became possible to perform hot metal dephosphorization efficiently at a phosphorus agent cost.
[Brief description of the drawings]
FIG. 1 is a schematic flow diagram showing dephosphorization agent recycling using a converter slag employed in the present invention and a conventional method.
FIG. 2 is a graph showing experimental data examining the relationship between the amount of converter slag and fluorite used and the rate of slopping during hot metal dephosphorization treatment.
FIG. 3 is a graph showing experimental data for examining the relationship between the amount of converter slag and fluorite used and the amount of slag adhering to the lance during hot metal dephosphorization treatment.
FIG. 4 is a graph showing a more appropriate range of the converter slag blending amount and the fluorite blending amount when performing hot metal dephosphorization using the converter slag and fluorite together.
FIG. 5 is a graph showing the relationship between total oxygen intensity during dephosphorization and the amount of T · Fe in the slag after dephosphorization.
FIG. 6 is a graph showing the relationship between the converter slag compounding rate and the rate of slopping during the dephosphorization treatment.
FIG. 7 is a graph showing the relationship between the blending ratio of converter slag and the ratio of slag adhesion to the lance.
FIG. 8 is a graph showing a more appropriate relationship between the converter slag blending ratio and the fluorite blending ratio.

Claims (1)

転炉スラグを脱りん成分として利用して混銑車又は取鍋で溶銑脱りんを行なうに当たり、
酸化鉄源を除く脱りん成分として、転炉スラグ:55質量%以上でありかつCaF2を含まない脱りん剤を使用すると共に、
下記式(1)で定義される総酸素原単位を溶銑トン当たり8.0Nm3以上とし、
さらに上記転炉スラグの配合量を(X)、前記総酸素原単位を(Z)とした時、これらが下記式(2)の関係を満たす様に調整することを特徴とする溶銑脱りん法。
総酸素原単位[Nm3/溶銑トン]=酸素ガス原単位+転炉スラグ中(FeO+Fe23)酸素分の[Nm3/溶銑トン]換算値+酸化鉄中(FeO+Fe23)酸素分の[Nm3/溶銑トン]換算値 …(1)
Z≦16.03−0.066X …(2)
When using the converter slag as a dephosphorization component , hot metal dephosphorization in a kneading car or ladle ,
As a dephosphorization component excluding the iron oxide source, a converter slag: 55% by mass or more and a dephosphorization agent not containing CaF 2 is used.
The total oxygen intensity defined by the following formula (1) is set to 8.0 Nm 3 or more per ton of hot metal ,
Furthermore, when the blending amount of the converter slag is (X) and the total oxygen intensity is (Z) , the hot metal dephosphorization method is adjusted so as to satisfy the relationship of the following formula (2) .
Total oxygen basic unit [Nm 3 / tonel of molten iron] = oxygen gas basic unit + converter slag (FeO + Fe 2 O 3 ) oxygen content [Nm 3 / tona of molten metal] converted value + iron oxide (FeO + Fe 2 O 3 ) oxygen [Nm 3 / ton of hot metal] converted value for minutes ... (1)
Z ≦ 16.03-0.066X (2)
JP2000350040A 1999-11-19 2000-11-16 Hot metal dephosphorization method Expired - Lifetime JP3740009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000350040A JP3740009B2 (en) 1999-11-19 2000-11-16 Hot metal dephosphorization method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-330394 1999-11-19
JP33039499 1999-11-19
JP2000350040A JP3740009B2 (en) 1999-11-19 2000-11-16 Hot metal dephosphorization method

Publications (2)

Publication Number Publication Date
JP2001207206A JP2001207206A (en) 2001-07-31
JP3740009B2 true JP3740009B2 (en) 2006-01-25

Family

ID=26573513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000350040A Expired - Lifetime JP3740009B2 (en) 1999-11-19 2000-11-16 Hot metal dephosphorization method

Country Status (1)

Country Link
JP (1) JP3740009B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5655345B2 (en) * 2010-03-31 2015-01-21 Jfeスチール株式会社 Hot phosphorus dephosphorization method
CN103266196B (en) * 2013-05-15 2014-10-08 武汉钢铁(集团)公司 Method for producing carbon steel by using low-temperature low-silicon molten iron in 90-ton converter
US10318351B2 (en) 2017-04-27 2019-06-11 International Business Machines Corporation Resource provisioning with automatic approval or denial of a request for allocation of a resource
KR102156718B1 (en) * 2018-11-05 2020-09-16 주식회사 포스코 Refining agent and method for refining molten iron

Also Published As

Publication number Publication date
JP2001207206A (en) 2001-07-31

Similar Documents

Publication Publication Date Title
JP2006274349A (en) Method for refining steel
JP4848757B2 (en) Hot metal dephosphorization method
JP6693536B2 (en) Converter steelmaking method
JP4977870B2 (en) Steel making method
JP3740009B2 (en) Hot metal dephosphorization method
JPH0959709A (en) Method for dephosphorizing molten iron
JP5061545B2 (en) Hot metal dephosphorization method
JP4581751B2 (en) Prevention of dust from hot metal transport container
JPH10237526A (en) Dephosphorization of hot metal
JPH0437136B2 (en)
JP3158912B2 (en) Stainless steel refining method
JP4422318B2 (en) Hot metal dephosphorization method with little refractory damage
JP4904858B2 (en) Hot metal dephosphorization method
JP4882171B2 (en) Hot phosphorus dephosphorization method
JP3684953B2 (en) Pre-silicidation / phosphorization method of hot metal
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
JPS5916921A (en) Method for removing adhered slag
JP4598220B2 (en) Hot metal processing method using decarburized iron
JP4305127B2 (en) Hot metal dephosphorization method
JP3733010B2 (en) Hot metal dephosphorization method
JP2002285219A (en) Method for dephosphorizing molten iron
JP3823623B2 (en) Hot metal refining method
JP2004307941A (en) Method for dephosphorizing molten iron using converter-type vessel
JPH10317035A (en) Desulphurization method of ferrous molten alloy, and desulphurizing agent
JPS5811485B2 (en) Dephosphorization and desulfurization method for low-silicon hot metal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Ref document number: 3740009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111111

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121111

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131111

Year of fee payment: 8

EXPY Cancellation because of completion of term