JPS58219736A - Manufacture of relief structure - Google Patents

Manufacture of relief structure

Info

Publication number
JPS58219736A
JPS58219736A JP57102019A JP10201982A JPS58219736A JP S58219736 A JPS58219736 A JP S58219736A JP 57102019 A JP57102019 A JP 57102019A JP 10201982 A JP10201982 A JP 10201982A JP S58219736 A JPS58219736 A JP S58219736A
Authority
JP
Japan
Prior art keywords
radiation
thin film
polymer
resist
aldehyde
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57102019A
Other languages
Japanese (ja)
Other versions
JPH0380300B2 (en
Inventor
Koichi Hatada
畑田 耕一
Hiraaki Yuuki
結城 平明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57102019A priority Critical patent/JPS58219736A/en
Priority to EP83105867A priority patent/EP0096895A3/en
Publication of JPS58219736A publication Critical patent/JPS58219736A/en
Publication of JPH0380300B2 publication Critical patent/JPH0380300B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a relief structure without performing development by a method wherein a thin film composed of a radiation decaying polymer material is formed on a substrate, and then a desired part of this thin film is irradiated with radiation beams. CONSTITUTION:The thin film composed of an aldehyde polymer wherein two kinds or more of fatty aldehyde mixtures are put in copolymerization with each other is formed on the substrate. The thin film has properties of decay and scatter by the irradiation of radiation beams. Therefore, pattern formation can be performed without using a special development process by irradiating a desire part of the substrate of forming the above mentioned thin film with radiation beams.

Description

【発明の詳細な説明】 本発明は浮き彫り構造体の製造方法に関し、とくに半導
体素子、磁気バブルメモリ素子、集積回路等に適用され
る微細パターン乞形成する改良した方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a relief structure, and more particularly to an improved method for forming fine patterns applied to semiconductor devices, magnetic bubble memory devices, integrated circuits, etc.

従来、半導体素子、磁気バブルメモリ素子、集積回路等
の電子部品を製造するだめのパターン形成法としては、
紫外線または可視光線に感応するフォトレジストを利用
する方法が幅広く実用化されているが、近年、半導体素
子等の高密度化、高集積化を計る目的で、1 am以下
の幅のパターンを形成する方法が要求されている。
Conventionally, pattern forming methods used to manufacture electronic components such as semiconductor devices, magnetic bubble memory devices, and integrated circuits include:
Methods using photoresists that are sensitive to ultraviolet or visible light have been widely put into practical use, but in recent years, with the aim of increasing the density and integration of semiconductor devices, patterns with a width of 1 am or less have been formed. A method is required.

しかし、上記の光を使用する方法では、その光の固有な
性質である回折、散乱および干渉等により1 pm以下
の幅のパターンを精度よく形成することは極めて困難で
あり、同時に歩留りの低下も著しく、上記の光を用いる
方法は1ym以下の幅のパターンを形成する方法として
は不適であった。
However, with the above-mentioned methods that use light, it is extremely difficult to accurately form patterns with a width of 1 pm or less due to the unique properties of the light, such as diffraction, scattering, and interference, and at the same time, the yield may also decrease. Remarkably, the above method using light is not suitable for forming a pattern with a width of 1 ym or less.

これに対処して、最近、紫外線または可視光線を使用し
て微細加工を施す写真食刻技術に代って、たとえば電子
線、X線、イオンビーム等の高エネルギーの放射線を用
いるリンクラフィ技術が開発、研究され、これに伴って
上記放射線に対して感応性を示す材料が種々検討されて
いる。なかでも放射線の照射によって高分子鎖の切断反
応を誘起して、その被照射部分が現像液に可溶性となり
パターン形成するポジ形放射線感応性有機高分子材料、
たとえばポリ(メタクリル酸メチル)、ポリ−(1−ブ
テンスルホン)等は放射線の照射によって架橋反応ケ誘
起して、その被照射部分が現像液に不溶性となりパター
ン形成するネガ形放射線&一応性有機高分子材料に比し
て、高解像度のパターン′?:住成せしめ、微細加工用
レジスト材料としては極めて好都合である。しかし、前
記の材料をはじめとして、ポジ形レジスト材料はネガ形
材料に比して、その放射線感度が1/10〜1 /10
00と低く、その結果パターン形成に要する放射線照射
時間が長くなり、実用性に乏しいものであった。
In response to this, recently, photolithographic techniques that use ultraviolet or visible light to perform microfabrication have been replaced by linkography techniques that use high-energy radiation such as electron beams, X-rays, and ion beams. As a result of this development and research, various materials that are sensitive to the above-mentioned radiation are being studied. Among these, positive radiation-sensitive organic polymer materials that induce a scission reaction in polymer chains by irradiation with radiation, and the irradiated portion becomes soluble in a developer to form a pattern;
For example, poly(methyl methacrylate), poly-(1-butenesulfone), etc. induce a crosslinking reaction when irradiated with radiation, and the irradiated area becomes insoluble in the developer and forms a pattern. High-resolution patterns compared to molecular materials? : Extremely convenient as a resist material for microfabrication. However, the radiation sensitivity of positive resist materials, including the above-mentioned materials, is 1/10 to 1/10 that of negative resist materials.
00, and as a result, the radiation irradiation time required for pattern formation became long, making it impractical.

なお、前記したポリ(メタクリル酸メチル)をはじめと
するポジ形レジスト材料は放射線照射により高分子鎖の
主鎖切断反応を誘起して、その分子量が低下し、その結
果、被照射部分が有機現像液に溶解しゃ丁くなり、これ
を利用してパターン形成を行うものである。しかし1分
子量の差を利用して溶解性の差を出量ためには、多くの
放射゛線照射量を必゛要とし、これがポジ形レジスト材
料を低感度ならしめる一因であった。
It should be noted that when positive resist materials such as poly(methyl methacrylate) mentioned above are irradiated with radiation, the main chain cleavage reaction of the polymer chain is induced and the molecular weight decreases, and as a result, the irradiated area is exposed to organic development. It dissolves in a liquid and becomes blocked, and this is used to form a pattern. However, in order to exploit the difference in solubility by utilizing the difference in molecular weight, a large amount of radiation is required, which is one reason why the sensitivity of positive resist materials is low.

また、半導体素子等の製造を考えてみると、数回にわた
るレジスト工程が使用される。各レジスト工程において
は、レジストの塗布、乾燥、光あるいは放射線の照射、
および現像な必要とし、一般的な湿式処理の現像では数
10分を9jる。レジストの現像後、次の処理工程にウ
ェハな移動する時間を含めると、一層の時間がかかり、
半導体工業においては迅速な現像処理および湿式溶剤を
ほとんど使用しない処理方法に対する強い要望があった
Furthermore, when considering the manufacture of semiconductor devices and the like, several resist steps are used. In each resist process, resist is applied, dried, irradiated with light or radiation,
A typical wet process takes several tens of minutes for development. After developing the resist, the next processing step takes even more time, including the time required to move the wafer.
There has been a strong desire in the semiconductor industry for rapid processing and processing methods that use little wet solvents.

本発明は上記したような従来技術の欠点をな(し、少な
い放射線照射量で、かつ特別に現像工程を用いたいで、
高精度の浮き彫り構造体を製造する方法を提供しようと
するものである。
The present invention overcomes the above-mentioned drawbacks of the prior art (but does not require a small amount of radiation exposure and a special development process).
It is an object of the present invention to provide a method for manufacturing high-precision relief structures.

上記の目的を達成するために、本発明者は放射線感応性
を有すると思われる有機高分子材料および現像方法を種
々検討の結果、211以上の脂肪族アルデヒド混合物を
相互に共重合させたアルデヒド系重合体からなる薄膜を
基板上に形成し、この高分子薄膜の所望部分に放射線を
照射量れば、特別に現像工程を用いることなしに浮き彫
り構造体を製造できる方法を見い出した。
In order to achieve the above object, the present inventor conducted various studies on organic polymer materials and development methods that are thought to have radiation sensitivity. We have discovered a method by which a relief structure can be manufactured without using a special development step by forming a thin polymer film on a substrate and irradiating desired portions of the polymer thin film with radiation.

丁なわち、本発明の方法では、放射線照射量より被照射
部分が連鎖的に崩壊し、飛散することから、特別に現像
工程を用いることなしにパターン形成ができろわけであ
る。
In other words, in the method of the present invention, the irradiated portion disintegrates and scatters due to the amount of radiation irradiated, making it possible to form a pattern without using a special developing step.

本発明で使用される放射線感応性高分子材料としては、
ポリエーテル型構造ン有するアルデヒド系1合体が良い
、 一般に、脂肪族アルデヒドの単独重合体は、結晶性が高
いために、多くの有機溶剤に対して難溶性であり、レジ
スト材料として使用できない。
The radiation-sensitive polymer materials used in the present invention include:
An aldehyde monopolymer having a polyether type structure is preferable. In general, homopolymers of aliphatic aldehydes have high crystallinity and are poorly soluble in many organic solvents, so they cannot be used as resist materials.

本発明者はアルデヒド重合体の溶解性を改善することに
よって、レジスト材料として使用できる重合体を得るべ
く鋭意研究を行った結果、以下のようにして本発明を得
るに至った。
The present inventor conducted intensive research in order to obtain a polymer that can be used as a resist material by improving the solubility of an aldehyde polymer, and as a result, the present invention was obtained as follows.

丁なわち、脂肪族アルデヒド類の2′s以上の混合物を
アニオン重合させることにより溶解性の改良されたアル
デヒド共重合体を生iすることができ(例えば、田中他
、高化、20 、694(1963))、これを放射線
感応性有機高分子材料として使用して、浮き彫り構造体
ヲ#!造丁れば良いことが見い出された・。
In other words, an aldehyde copolymer with improved solubility can be produced by anionically polymerizing a mixture of aliphatic aldehydes of 2's or more (for example, Tanaka et al., Kouka, 20, 694). (1963)), using this as a radiation-sensitive organic polymer material to create a relief structure! I discovered that it would be better if I made a knife.

本発明で使用される脂肪族アルデヒド単量体71し るいは・・ロゲンイシテルキル基である様な脂肪族アル
デヒド類より選ばれた2程以上のアルデヒド単量体混合
物であり、上記のアルキル基としては好ましくは炭素数
1乃至8のものが良い。
Aliphatic aldehyde monomer 71 used in the present invention is a mixture of two or more aldehyde monomers selected from aliphatic aldehydes such as rogen isitelkyl group, and the above alkyl group Preferably, those having 1 to 8 carbon atoms are preferred.

その混合物割合をポリマー組成で規制すると。If the mixture ratio is regulated by the polymer composition.

共重合体中に含有される最大の成分が99モルチを越え
ない組成範囲より選定される。しかし、特に溶解性の高
い共重合体を得るためには、共重合体中に含有される最
大の成分が80モルチな越えないことが望ましい。
The composition is selected from a range in which the largest component contained in the copolymer does not exceed 99 mol. However, in order to obtain a copolymer with particularly high solubility, it is desirable that the largest component contained in the copolymer does not exceed 80 mol.

本発明の重合体をアニオン重合により得る際に用いられ
る重合触媒としては、ジメチルアルミニウム(ジフェニ
ル)アミド(C)4 )t At−N(Co Hs )
いジエチルアルミニウム(ジフェニル)アミド(Ct 
Hs )z Al−N (Ca )ls )t、エチル
アルミニウムビス(ジフェニル)アミド(Ct Hs 
)At−CN(Cs Hs )z )t、エチル亜鉛(
ジフェニル)アミドC,H,ZnN (C5Hs )t
 −エチルマグネシウム(ジフェニル)アミドC7にM
gN (C5Hs )y等が挙げられるが、これらに限
定されるものではない。なお、触媒量には限定はないが
、アルデヒド単量体混合物に対し、0.1〜5モル−0
割合で加えるのが適当である。
The polymerization catalyst used when obtaining the polymer of the present invention by anionic polymerization includes dimethylaluminum(diphenyl)amide (C)4)tAt-N(CoHs).
Diethylaluminum(diphenyl)amide (Ct
Hs )z Al-N (Ca )ls )t, ethylaluminum bis(diphenyl)amide (Ct Hs
) At-CN(Cs Hs )z )t, ethylzinc (
diphenyl)amide C,H,ZnN (C5Hs)t
-M to ethylmagnesium(diphenyl)amide C7
Examples include, but are not limited to, gN (C5Hs)y. The amount of catalyst is not limited, but it is 0.1 to 5 mol-0 based on the aldehyde monomer mixture.
It is appropriate to add it in proportion.

なお、アニオン重合を行うに当っては、重合媒体は必ず
しも用いる必要がないが、必要とする場合は、トルエン
などの炭化水素系あるいはエチルエーテル系の溶剤を使
用するのがよい。
In carrying out anionic polymerization, it is not necessary to use a polymerization medium, but if necessary, it is preferable to use a hydrocarbon-based solvent such as toluene or an ethyl ether-based solvent.

また、重合は0℃乃至−100℃の範囲の温度で行うこ
とが出来るが、通常は一50℃乃至−80℃の温度が好
適である。さらに重合の雰囲気としては、窒素の如き不
活性ガスで充分器内の空気を置換して行うのが良い。
Further, the polymerization can be carried out at a temperature in the range of 0°C to -100°C, but a temperature of 150°C to -80°C is usually suitable. Furthermore, the atmosphere for polymerization is preferably one in which the air in the vessel is sufficiently replaced with an inert gas such as nitrogen.

なお1本発明においては、重合の技術的方法それ自身に
は制限がな(、不活性な有機溶剤中に溶解させた触媒上
にアルデヒド混合物を減圧蒸溜下で仕込む方法、アルデ
ヒド自身もしくはその溶液に触媒自身又はその溶液を加
える方法等のいずれの方法を採用しても伺ら差しつかえ
ない。
In addition, in the present invention, there are no limitations on the technical method of polymerization itself (such as a method in which an aldehyde mixture is prepared under reduced pressure distillation on a catalyst dissolved in an inert organic solvent, a method in which the aldehyde itself or a solution thereof is Any method may be used, such as adding the catalyst itself or a solution thereof.

本発明の放射線感応性有機高分子材料を半導体素子等の
パターンを形成するために使用する場合には、例えば、
トルエン、キシレン等の汎用の有機溶媒に溶解させたも
のが使用され、通常はスピン塗布法、浸漬珍布法によっ
て素子基板に被覆される。塗布後、適当な温度条件でプ
リベークしたのち、所望のパターンに放射線を照射する
と、被照射部分が連鎖的に崩壊して、飛散し、ポジ形の
レジストパターンが現像工程なほどこ丁ことなしに得る
ことができる。なお、必要とする場合は、トルエン−イ
ソプロピルアルコール系有機溶媒を用いて湿式現像して
も差しつかえない、 本発明のアルデヒド系重合体よりなる放射線感応性有機
高分子材料は、以上述べたように、単独で用いれば、放
射線照射によって現像処理なほどこ丁ことなく、レジス
トパターンを形成できるが、必要に応じて、ノボラック
樹脂、ポリアクリル酸エステル系ポリマー、ポリイソプ
レン樹脂、ポリスチレンなどと混合して使用しても差し
つかえない。この場合、混合したポリマに応じて現偉液
が選定され、たとえば、#Jドライエツチング性などの
特性を種々変えることができる。
When using the radiation-sensitive organic polymer material of the present invention to form a pattern of a semiconductor element, etc., for example,
A solution dissolved in a general-purpose organic solvent such as toluene or xylene is used, and it is usually coated on an element substrate by a spin coating method or a dip coating method. After coating, pre-baking under appropriate temperature conditions, and then irradiating the desired pattern with radiation, the irradiated area collapses and scatters in a chain, resulting in a positive resist pattern being obtained without any development process. be able to. In addition, if necessary, wet development using a toluene-isopropyl alcohol-based organic solvent may be used. When used alone, it is possible to form a resist pattern by radiation irradiation without the need for development processing, but if necessary, it can be used in combination with novolak resin, polyacrylic acid ester polymer, polyisoprene resin, polystyrene, etc. I can't help it. In this case, the drying solution is selected depending on the mixed polymer, and the properties such as #J dry etching properties can be varied.

また、本発明のアルデヒド系重合体は放射線に対して高
い感応性を示すが、光に対しても感応性を有しており、
感光性材料としても使用できる。
In addition, the aldehyde polymer of the present invention exhibits high sensitivity to radiation, but is also sensitive to light.
It can also be used as a photosensitive material.

以下に本発明を合成例および実施例につき、具体的に説
明する。
The present invention will be specifically explained below with reference to synthesis examples and examples.

合成例1 ジエチルアルミニウムジフェニルアミド。Synthesis example 1 Diethylaluminium diphenylamide.

(C!’4 )?! At N (C5Hs )tの合
成は次のようにして行った。丁なわち、攪拌器1滴下ロ
ート、三方コックお裏・び温度計を付した200mAの
四つロフラスコの内部を充分窒素で置換したのち、これ
にトルエ:/ 55 mAと(CH,CHt)!At1
4.s y (0,127mol−)を窒素気流下、三
方コックな通して注射器を用いて導入する。しばらく攪
拌して均一な溶液とした後、水冷下、ジフェニルアミン
2t4t (0,127mol )をトルエン40mt
に溶かした溶液を徐々に滴下する。滴下終了後1反応物
の温度を60℃に上げ、そのまま2時間ゆるやかに攪拌
して反応を完結させた。生成した(C!Hs)tAz−
N (c6)(、)、はトルエン溶液のまま三方コック
付容器に、窒素気流下にて貯蔵した。
(C!'4)? ! At N (C5Hs)t was synthesized as follows. After thoroughly purging the inside of a 200 mA four-hole flask with a stirrer, one dropping funnel, a three-way cock, and a thermometer, add toluene: / 55 mA and (CH, CHt)! At1
4. sy (0,127 mol-) was introduced using a syringe through a three-way stopcock under a nitrogen stream. After stirring for a while to make a homogeneous solution, 2t4t (0,127mol) of diphenylamine was added to 40mt of toluene under water cooling.
Gradually add the solution dissolved in After the dropwise addition was completed, the temperature of one reactant was raised to 60°C, and the mixture was gently stirred for 2 hours to complete the reaction. The generated (C!Hs)tAz-
N (c6) (,) was stored as a toluene solution in a container with a three-way cock under a nitrogen stream.

合成例2〜8 重合は三方コック付重合管を用いて行った。Synthesis examples 2 to 8 Polymerization was carried out using a polymerization tube with a three-way cock.

すなわち、約100 mAの容量のシリンダー状重合容
器に窒素気流下で、所定量のアルデヒドモノマーおよび
溶媒(通常はトルエンを使用した)を三方コックを通し
て注射器な用いて導入する。
That is, a predetermined amount of aldehyde monomer and a solvent (usually toluene was used) are introduced into a cylindrical polymerization vessel having a capacity of about 100 mA under a nitrogen stream through a three-way cock using a syringe.

七ツマー溶液の入った上記容器を氷−水浴で0℃に冷却
し、容器を激しく動かしながら、これに合成例1で得た
触媒溶液を所定量徐々に滴下する。触媒を加えた後、容
器馨ドライアイスーアセトン浴で一78℃に冷却し、静
置して所定時間重合させる。重合後、1含湿合物はアン
モニア性メタノールで処理して触媒を分解した後、メタ
ノール中に1日間浸漬してからb別し一メタノールで数
回洗浄して真空乾燥した。なお、場合によっては、モノ
マー溶液を触媒溶液に加えて重合を行った。
The container containing the 7mer solution is cooled to 0° C. in an ice-water bath, and a predetermined amount of the catalyst solution obtained in Synthesis Example 1 is gradually dropped into the container while vigorously moving the container. After adding the catalyst, the container was cooled to -78° C. in a dry ice-acetone bath, and left to stand for polymerization for a predetermined period of time. After polymerization, the wet product 1 was treated with ammoniacal methanol to decompose the catalyst, and then immersed in methanol for 1 day, separated, washed several times with 1 methanol, and vacuum-dried. In addition, in some cases, the monomer solution was added to the catalyst solution to perform polymerization.

分析あるいは熱分析により生成するガスの組成分析によ
り求めた。
It was determined by analyzing the composition of gas produced by analysis or thermal analysis.

(Y語l匍 □ 第  1  表 重合時間:24時間、全モノマー量: 100mm0L
、溶媒:トルエン1反応混合物の全量:27m1、開始
剤CC*Hs)tん” (C5Hs )1 m 0.1
8 m mobモノマーの略号 AA:アセトアルデヒド BAニブチルアルデヒド PAニブロバナール PhPA : 5−フェニ1ルプロパナールH人=ヘプ
タナール IBA:インブチルアルデヒド 実施例1 合成例2で得たアセトアルデヒドとブチルアルデヒドと
の共重合体をキシレンに溶解させ、02重量%のレジス
ト溶液を作成した。つづいて上記レジスト溶液をシリコ
ンウェハ上に塗布し、80℃、20分間プリベークして
、15βm厚の高分子被膜を形成させた。これを電子線
照射装置内に入れて、真空中加速電圧20 KVの電子
線によって、場所的に照射量の異なる照射を行った。
(Table 1) Polymerization time: 24 hours, total monomer amount: 100mm0L
, Solvent: Toluene 1 Total volume of reaction mixture: 27 ml, Initiator CC*Hs) t'' (C5Hs) 1 m 0.1
8 m mob monomer abbreviations AA: acetaldehyde BA nibutyraldehyde PA nibrobanal PhPA: 5-phenylpropanal H human=heptanal IBA: inbutyraldehyde Example 1 The copolymer of acetaldehyde and butyraldehyde obtained in Synthesis Example 2 was It was dissolved in xylene to prepare a 0.2% by weight resist solution. Subsequently, the above resist solution was applied onto a silicon wafer and prebaked at 80° C. for 20 minutes to form a polymer film with a thickness of 15 βm. This was placed in an electron beam irradiation device, and irradiation was performed in vacuum with an electron beam at an acceleration voltage of 20 KV, with different irradiation doses depending on the location.

その結果、被照射部分が現像処理をほどこ丁ことなしに
膜ベリし、種々の異なる照射量で照射した箇所について
、薄膜段差計を用いて残存高分子被膜の膜厚を測定し、
残存膜厚(規格化)を電子線照射量(クーロン/cd)
に対してプロットし、感電子線特性な表わj第1図を得
た。
As a result, the film of the irradiated area was removed without any development treatment, and the thickness of the remaining polymer film was measured using a thin film level difference meter at the areas irradiated with various different doses.
The remaining film thickness (normalized) is calculated as the electron beam irradiation amount (coulombs/cd)
Figure 1 was obtained by plotting the electron beam sensitive characteristics.

これより残膜率が零となる最小照射量を求めた所2.8
X10−’クーロン/cdであり、極めて高感度なポジ
形レジストであることが確認された。
From this, the minimum irradiation dose at which the residual film rate becomes zero was found: 2.8
X10-' coulombs/cd, and it was confirmed that the resist was an extremely sensitive positive resist.

たとえば、代表的なポジ形レジストであるポリメタクリ
ル酸メチルの電子線感度はlX10−’り一ロン/dで
あり1本発明のポジ形レジスト材料を用いれば現像処理
をほどこすことなしに少ない照射量で浮き彫、り構造体
が形成できた。
For example, the electron beam sensitivity of polymethyl methacrylate, which is a typical positive resist, is 1 x 10 -' 1/d. A embossed structure could be formed with the amount.

実施例2 合成例2で得たアセトアルデヒドとブチルアルデヒドと
の共重合体をトルエンに溶解させ、0.3重量%のレジ
スト溶液を作成した。つづいて、上記レジスト溶液をシ
リコンウェハ上に塗布し、80℃、20分間プリベーク
して、2.0am厚の高分子被膜を形成させた。これを
軟X線発生装置内に入れて、真空中1oKWの回転水冷
式銀ターゲットから発生する波長4.2人の軟X線を照
射し、残存膜厚(規格化)と軟X線照射量(rrJ /
ad )との関係を求めた。その結果を第2図に示した
が、膜厚が零となる最小照射量を求めた所、19m1/
−であり、極めて高感度なポジ形レジストであることが
確認された。たとえば。
Example 2 The copolymer of acetaldehyde and butyraldehyde obtained in Synthesis Example 2 was dissolved in toluene to prepare a 0.3% by weight resist solution. Subsequently, the above resist solution was applied onto a silicon wafer and prebaked at 80° C. for 20 minutes to form a 2.0 am thick polymer film. This was placed in a soft X-ray generator and irradiated with soft X-rays with a wavelength of 4.2 mm generated from a 10KW rotating water-cooled silver target in vacuum, and the residual film thickness (normalized) and soft X-ray irradiation amount were measured. (rrJ /
ad). The results are shown in Figure 2, and the minimum irradiation dose at which the film thickness becomes zero was determined to be 19m1/
-, and it was confirmed that it was an extremely sensitive positive resist. for example.

代表的なポジ形レジストであるポリメタクリル酸メチル
の軟X線感度は約2000mT/′−であり、本発明の
ポジ形レジスト材料はポリメタクリル酸メチルに比し、
2桁以上の高い軟X線感応性を有することが確認された
The soft X-ray sensitivity of polymethyl methacrylate, which is a typical positive resist, is approximately 2000 mT/'-, and the positive resist material of the present invention has a
It was confirmed that the material had high soft X-ray sensitivity of more than two orders of magnitude.

実施例6〜:8 合成例3〜.(i3で得たアルテヒド共貞合体をキシレ
ンに溶解させ、約0.2重量%のレジスト溶液を作成し
た。つづいて、上記レジスト溶液tシリコンウェハ上に
塗布し、80℃、20分間プリベークして約1.5am
厚の高分子被膜を形成させた。
Examples 6 to 8 Synthesis examples 3 to 8. (The altehyde copolymer obtained in i3 was dissolved in xylene to create a resist solution of about 0.2% by weight.Next, the above resist solution was applied onto a silicon wafer and prebaked at 80°C for 20 minutes. Approximately 1.5am
A thick polymer film was formed.

果をまとめて第2表に示すが、いずれも放射線に対する
感応性が高く、高感度ポジ形レジストであることが確認
された。
The results are summarized in Table 2, and it was confirmed that all of the resists had high sensitivity to radiation and were highly sensitive positive resists.

比較例 実施例と同、様に、アセトアルデヒド単独重合体、ある
いはブチルアルデヒド単独重合体について、レジスト材
料としての評価を試みたが、いずれも汎用有機溶媒に溶
解するものは得られず、!用に惧し得るものは得られな
かった。
Comparative Example Similar to the example, we attempted to evaluate acetaldehyde homopolymer or butyraldehyde homopolymer as resist materials, but we were unable to obtain any that were soluble in general-purpose organic solvents! Nothing of any use was obtained.

第  2  表 り 0内の数値は共重合体中のモル比を表わ丁。Table 2 The numbers within 0 represent the molar ratio in the copolymer.

モノマーの略号 八人:アセトアルデヒド BAインブチルアルデヒ ドAニゲロバナール PhPA : 5−フェニルグロパナールHA:ヘプタ
ナール IBA:インブチルアルデヒド 以上の説明に明らかなように、本発明によれば、少ない
放射線照射量で、かつ現像処理をほどこすことなしに、
浮き彫り構造体を製造することができ、半導体等の製造
に顕著な効果な示す・
Abbreviations of eight monomers: acetaldehyde BA inbutyraldehyde A nigerobanal PhPA: 5-phenylgropanal HA: heptanal IBA: inbutyraldehyde As is clear from the above explanation, according to the present invention, a small amount of radiation irradiation and without any development processing,
It is possible to manufacture embossed structures, and has a remarkable effect on the manufacture of semiconductors, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の放射線感応性高分子材料の感電子線特
性な示す図、第2図は本発明の放射線感応性高分子材料
の感軟X@特性ン示す図である。 2 1  図 児 廿 移 ル 月 石 1
FIG. 1 is a diagram showing the electron beam sensitive characteristics of the radiation-sensitive polymer material of the present invention, and FIG. 2 is a diagram showing the soft X@ characteristics of the radiation-sensitive polymer material of the present invention. 2 1 Moon Stone 1

Claims (1)

【特許請求の範囲】 1、 基板上に、放射線崩壊性高分子材料からなる薄膜
を形成し、この高分子薄膜の所望部分に放射線を照射す
ることにより、現像処理なほどこ丁ことなしに浮き彫り
構造体を製造する方法。 2 放射線崩壊性高分子材料がアルデヒド系重合体から
なることを特徴とする特許請求の範囲第1項記載の浮き
彫り構造体を製造する方法。
[Claims] 1. By forming a thin film made of a radiation-degradable polymer material on a substrate and irradiating a desired portion of this polymer thin film with radiation, an embossed structure can be formed without any development process. How to manufacture the body. 2. A method for producing a relief structure according to claim 1, wherein the radiation-degradable polymer material is made of an aldehyde-based polymer.
JP57102019A 1982-06-16 1982-06-16 Manufacture of relief structure Granted JPS58219736A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57102019A JPS58219736A (en) 1982-06-16 1982-06-16 Manufacture of relief structure
EP83105867A EP0096895A3 (en) 1982-06-16 1983-06-15 Positive type radiation-sensitive organic highpolymer material and method of forming fine pattern by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57102019A JPS58219736A (en) 1982-06-16 1982-06-16 Manufacture of relief structure

Publications (2)

Publication Number Publication Date
JPS58219736A true JPS58219736A (en) 1983-12-21
JPH0380300B2 JPH0380300B2 (en) 1991-12-24

Family

ID=14316033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57102019A Granted JPS58219736A (en) 1982-06-16 1982-06-16 Manufacture of relief structure

Country Status (1)

Country Link
JP (1) JPS58219736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219547A (en) * 1982-06-16 1983-12-21 Hitachi Ltd Positive type radiation-sensitive organic high polymer material
JPS6010250A (en) * 1983-06-30 1985-01-19 Fujitsu Ltd Formation of pattern
JPS6311932A (en) * 1986-04-11 1988-01-19 ジエイムズ・シ−・ダブリユ・チエン Self-developing radiation resist

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387720A (en) * 1977-01-13 1978-08-02 Toshiba Corp Positive type radiation sensitive material
JPS53117096A (en) * 1977-03-24 1978-10-13 Nippon Telegr & Teleph Corp <Ntt> Formation of high polymer film materials and their patterns
JPS53133429A (en) * 1977-04-25 1978-11-21 Hoechst Ag Radiation sensitive copying conposite and method of forming relief

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387720A (en) * 1977-01-13 1978-08-02 Toshiba Corp Positive type radiation sensitive material
JPS53117096A (en) * 1977-03-24 1978-10-13 Nippon Telegr & Teleph Corp <Ntt> Formation of high polymer film materials and their patterns
JPS53133429A (en) * 1977-04-25 1978-11-21 Hoechst Ag Radiation sensitive copying conposite and method of forming relief

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58219547A (en) * 1982-06-16 1983-12-21 Hitachi Ltd Positive type radiation-sensitive organic high polymer material
JPS6010250A (en) * 1983-06-30 1985-01-19 Fujitsu Ltd Formation of pattern
JPS6311932A (en) * 1986-04-11 1988-01-19 ジエイムズ・シ−・ダブリユ・チエン Self-developing radiation resist

Also Published As

Publication number Publication date
JPH0380300B2 (en) 1991-12-24

Similar Documents

Publication Publication Date Title
JPH11349637A (en) Photoresist polymer, its production, photoresist composition, formation of photoresist pattern, and semiconductor element
JP7215005B2 (en) Polymer and method for producing same, positive resist composition, and method for forming resist pattern
US4315067A (en) Method for making electron sensitive negative resist
JPS58219736A (en) Manufacture of relief structure
EP0236914A2 (en) Fabrication of electronic devices utilizing lithographic techniques
JPS5988737A (en) Radiation sensitive organic high polymer material
EP0096895A2 (en) Positive type radiation-sensitive organic highpolymer material and method of forming fine pattern by using the same
JPS58219547A (en) Positive type radiation-sensitive organic high polymer material
JPS5975244A (en) Radiation sensitive organic polymer material
JPS63271253A (en) Positive type radiation sensitive resist having high resolution
JPS59198448A (en) Radiation-sensitive organic high polymer material
JPH0629323B2 (en) Multi-component copolymer composed of sulfur dioxide and vinyl compound
JPS6017444A (en) Radiation sensitive resin composition
JP2593310B2 (en) Resist material
JPS6234908A (en) Alpha-methylstyrene polymer containing silicon and vinyl group, composition containing same and use thereof
JPH01101311A (en) Silicon atom-containing ethylenic polymer, composition containing said polymer and method for use thereof
JPS6374049A (en) Radiation sensitive resist material and formation of pattern
JPH0237580B2 (en)
JPS60119548A (en) Radiation sensitive organic polymer
JPS62108244A (en) Photosensitive composition for two-layered positive and process for forming pattern
Nate et al. Highly sensitive self‐developing soft X‐ray resists of silicon‐containing aldehyde copolymers and sensitive novolac‐based composite resists containing aldehyde copolymer
JPS61221745A (en) Radiation sensitive composition and method for using it
JPS62280839A (en) Resist material and pattern forming method
JPS62254142A (en) Radiation sensitive organic high molecular material
JPH01187545A (en) Positive type photoresist material