JPH01187545A - Positive type photoresist material - Google Patents

Positive type photoresist material

Info

Publication number
JPH01187545A
JPH01187545A JP63010739A JP1073988A JPH01187545A JP H01187545 A JPH01187545 A JP H01187545A JP 63010739 A JP63010739 A JP 63010739A JP 1073988 A JP1073988 A JP 1073988A JP H01187545 A JPH01187545 A JP H01187545A
Authority
JP
Japan
Prior art keywords
group
resist
denotes
sensitivity
positive type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63010739A
Other languages
Japanese (ja)
Inventor
Koji Ban
弘司 伴
Haruyori Tanaka
啓順 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63010739A priority Critical patent/JPH01187545A/en
Publication of JPH01187545A publication Critical patent/JPH01187545A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • G03F7/0758Macromolecular compounds containing Si-O, Si-C or Si-N bonds with silicon- containing groups in the side chains

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To obtain a resist material for X-ray exposing which has high sensitivity and excellent dry etching resistance by using specific polysulfone. CONSTITUTION:The polysulfone expressed by the formula I is used as the positive type resist material. In the formula, R denotes hydrogen or alkyl group; R' denotes a t-butyl group or phenyl group; n denotes >=10 integer; m denotes 0 or <=5 integer. Since this material has a t-butyl dimethyl silyl group or dimethyl phenyl silyl group at the terminal of the side chain, the material has the high etching resistance to oxygen plasma. The positive type resist which has the high sensitivity to electron rays and X-rays and the high resistance to oxygen plasma etching is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野コ 本発明は、電子線やX線などの高エネルギー線に対し感
度を有する、微細加工技術に適したレジスト材料に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a resist material that is sensitive to high-energy rays such as electron beams and X-rays and is suitable for microfabrication technology.

[従来の技術〕 LSIの高集積化に伴い、より高度な微細加工技術が求
められている。サブミクロンオーダーのバタン寸法が実
用化しつつある現在、バタン転写における誤差を許容値
以内におさめるためKは、精度の高い微細加工技術が必
須である。
[Prior Art] As LSIs become more highly integrated, more advanced microfabrication techniques are required. Now that batten dimensions on the order of sub-microns are coming into practical use, highly accurate microfabrication technology is essential for K in order to keep errors in batten transfer within tolerance.

しかし、従来の汎用技術である光露光では光の波長に起
因する解像限界に近付いており、このような技術的要請
に応することが困難である。
However, optical exposure, which is a conventional general-purpose technique, is approaching the resolution limit due to the wavelength of light, making it difficult to meet such technical demands.

このような技術的背景において、波長による解像性の限
界が極めて小さいX線や電子線を用いた露光技術は今後
ますます重要となる。既に電子線露光技術はLSI製造
用マスクパタンの製造分野では実用化されてお)、完成
度の高い微細加工技術である。また少量多品目型生産と
なるカスタムL8工製造用加工技術としても用いられつ
つある。しかしパタンの微細化に伴ってヌル−プツトが
著しく低下するため、電子線露光技術をLSI製造にお
ける量産技術とじて用いるとと忙は問題がある。
Against this technical background, exposure technology using X-rays and electron beams, which have extremely small resolution limits depending on wavelength, will become increasingly important in the future. Electron beam exposure technology has already been put into practical use in the field of manufacturing mask patterns for LSI manufacturing) and is a highly complete microfabrication technology. It is also being used as a processing technology for manufacturing custom L8 machines that involve small-lot, multi-item production. However, as the pattern becomes finer, the nulput decreases significantly, so there is a problem when electron beam exposure technology is used as a mass production technology in LSI manufacturing.

そこで、高精度な加工が可能でなおかつ量産可能である
技術の確立を1指して、X線、シンクロトロン放射光(
80R)等を用いた露光技術の研究開発が盛んに行われ
ている。しかし、SOR技術は現在研究開発途上であシ
、X線露光技術は露光装置の完成度が高いものの、従来
の問題点であった低スループットはいまだ解決されてい
ない。
Therefore, we are aiming to establish a technology that enables high-precision machining and mass production.
Research and development of exposure technology using 80R) and the like is being actively conducted. However, the SOR technology is currently in the research and development stage, and although the exposure equipment for the X-ray exposure technology is highly complete, the conventional problem of low throughput has not yet been solved.

以上説明したように、電子線、X線を用いた露光技術に
おいて、低スループットが最も大きな問題点であシ、こ
れを解決するために、レジスト材料の高感度化が急務と
なっている。
As explained above, low throughput is the biggest problem in exposure technology using electron beams and X-rays, and in order to solve this problem, there is an urgent need to increase the sensitivity of resist materials.

また、数工程を経た基板は表面に段差状のバタンかでき
る。このような段差基板上では、単一のレジスト層では
膜厚が一定とならないために、パタンの微細化が難しい
。この問題を解消する方法として多層レジスト、特[2
層レジストが注目されている。下層に有機ポリマーを塗
布して平たん化し、上層にバタン形成能と下層レジスト
の加工のためのエツチング耐性、通常は酸素ドライエツ
チング耐性を付与したものを塗布し、上層にパタンを形
成後、ドライエツチングで下層にバタンを形成する方法
であるし例えば、モリタ(Morita)ほか、ジャパ
ニーズジャーナル オブ アプライド フイジクス(J
pn、J、 Appl、 Phys、 )、第22巻、
第L659頁(1983)]。このような22層レジス
ト材としては、金属原子、特にケイ素原子を含むレジス
トが高酸素ドライエツチング耐性の観点から注目されて
いる。
Furthermore, after several steps have been carried out, a step-like bump is formed on the surface of the substrate. On such a stepped substrate, it is difficult to miniaturize a pattern because the thickness of a single resist layer is not constant. As a way to solve this problem, multilayer resist, especially [2]
Layered resists are attracting attention. The lower layer is coated with an organic polymer and flattened, and the upper layer is coated with a material that has batten forming ability and etching resistance for processing the lower resist, usually oxygen dry etching resistance. After forming a pattern on the upper layer, it is dried. This is a method of forming a button in the lower layer by etching.For example, Morita et al., Japanese Journal of Applied Physics (J
pn, J, Appl, Phys, ), Volume 22,
No. L659 (1983)]. As such a 22-layer resist material, a resist containing metal atoms, particularly silicon atoms, is attracting attention from the viewpoint of high oxygen dry etching resistance.

従来、高感度の電子線・X線用のレジストとしてはこれ
までフッ素含有メタクリレート系がよく知られているし
例えば、カクチ(1(akuchi)ほか、ジャーナル
 オブ エレクトロケミカルソサイエテイ(J、 El
ectrochem、 Soc、)  第124巻、第
1648頁(1977)]が、ドライエツチング耐性が
低いという欠点があった。また、ポリ(オレフィン ス
ルホン)も高感度の電子線レジスト材料であるが、同様
にドライエツチング耐性が低い。Fリメチルシリル基を
側鎖に導入してドライエツチング耐性を高めたポリスル
ホンも報告されている〔ゴツズ(Gotzdz)ほか、
ポリマー エンジニアリング アンドサイエンス(Po
lymer Engineeringand 5cie
nce)、第26巻、第1123頁(1986)参照]
が、トリメチμシリル基の導入では十分な酸素プラズマ
エツチング耐性が得られない。一方、耐性の高いレジス
トとしては、φ−MAC[ハラダ(Harada)ほか
、工1!!KIn   )フンザクVヨンズエレクトc
iン  デバイセス(工I!!EK TranaFil
ec−tron Devices)、第KD−29巻、
第518頁(1982)参照1.OMB[イマムヲ(工
mamura)、ジャーナル オプ エレクトロケミカ
ル ソサイエテイ(J、Electrochem、Bo
a、)、第126巻、第1628頁(1979)参照]
等があるが、ポリスルホンなどと比較すると感度が低い
Conventionally, fluorine-containing methacrylate-based resists have been well known as resists for high-sensitivity electron beams and X-rays.
electrochem, Soc, Vol. 124, p. 1648 (1977)], but had the drawback of low dry etching resistance. Poly(olefin sulfone) is also a highly sensitive electron beam resist material, but similarly has low dry etching resistance. Polysulfones with increased dry etching resistance by introducing F-lymethylsilyl groups into their side chains have also been reported [Gotzdz et al.
Polymer Engineering and Science (Polymer Engineering and Science)
lymer Engineeringand 5cie
nce), Vol. 26, p. 1123 (1986)]
However, introduction of trimethyμsilyl group does not provide sufficient oxygen plasma etching resistance. On the other hand, as a highly resistant resist, φ-MAC [Harada et al., Engineering 1! ! KIn) Funzaku V Yonzu Elect c
in devices!! EK TranaFil
ec-tron Devices), Volume KD-29,
See page 518 (1982) 1. OMB [Imamura], Journal of Electrochemical Society (J, Electrochem, Bo
a), Vol. 126, p. 1628 (1979)]
etc., but the sensitivity is lower compared to polysulfone etc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これまで、高感度とドライエツチング耐性の両者を備え
たレジスト材料はまだ開発されていないのが現状であっ
た。
Until now, a resist material that has both high sensitivity and dry etching resistance has not yet been developed.

本発明の目的は、従来技術の欠点を克服し、高感度でド
ライエツチング耐性に優れたX線露光用のレジスト材料
を提供することにある。
An object of the present invention is to overcome the drawbacks of the prior art and to provide a resist material for X-ray exposure that has high sensitivity and excellent dry etching resistance.

[課題を解決するだめの手段] 本発明を概説すれば、本発明はポジ型レジスト材料に関
する発明であって、下記一般式I:(式中、Rは水素又
はアルキル基、R2は1−ブチル基又はフェニル基、n
は10以上の整数、mは0以上5以下の整数である)で
表されるポリスルホンであって、高エネルギー線に対し
て感度が高く、かつ酸素プラズマエツチングに対する耐
性が高いものであることを特徴とする。
[Means for Solving the Problem] To summarize the present invention, the present invention relates to a positive resist material, which has the following general formula I: (wherein R is hydrogen or an alkyl group, R2 is 1-butyl group or phenyl group, n
is an integer of 10 or more, m is an integer of 0 or more and 5 or less), and is characterized by being highly sensitive to high-energy rays and having high resistance to oxygen plasma etching. shall be.

本発明の材料は、側鎖の末端Kt−グチルジジメチンリ
ル基若しくはジメチルフェニルシリル基を有するために
、酸素プラズマに対するエツチング耐性が高い。この置
換基がトリメチルシリル基の場合では、酸素ドライエツ
チングの際にレジスト膜表面が荒れたり、耐性が低くて
下層レジストの加工ができなかったりする。ケイ素原子
にかさ高い置換基がつくと耐性は高くなるが、あまシ大
きな置換基ではジッパ−反応で主鎖が切断する露光時の
分解反応が抑制され、感度の低下を招く。そのために、
ケイ素原子につく置換基としては、2個のメチル基と、
1個のかさ高い、t−ブチル基若しくはフェニル基がよ
い。また、主鎖とケイ素原子の間のメチレンの長さは長
いほうが分解のG値が高くなるが、長すぎると現像時に
おける露光部と未露光部との溶解速度比が大きくとれな
いために、レジスト感度が低下する。また、ケイ素含有
量の重量分率が小さくなるために、酸素ドライエツチン
グ耐性が低下する。そのためメチレンの長さは0以上5
以下がよい。
The material of the present invention has high etching resistance against oxygen plasma because it has a terminal Kt-gtyldidimethinelyl group or dimethylphenylsilyl group in the side chain. If this substituent is a trimethylsilyl group, the surface of the resist film becomes rough during oxygen dry etching, and the resistance is so low that the underlying resist cannot be processed. When a bulky substituent is attached to a silicon atom, resistance increases, but if a substituent is too bulky, the decomposition reaction during exposure that causes the main chain to cleave due to a zipper reaction is suppressed, resulting in a decrease in sensitivity. for that,
As substituents attached to the silicon atom, there are two methyl groups,
One bulky t-butyl group or phenyl group is preferred. In addition, the longer the methylene length between the main chain and the silicon atom, the higher the G value for decomposition, but if it is too long, the dissolution rate ratio between the exposed and unexposed areas during development will not be large. Resist sensitivity decreases. Furthermore, since the weight fraction of silicon content becomes small, the resistance to oxygen dry etching is reduced. Therefore, the length of methylene is 0 or more and 5
The following is good.

本発明におけるケイ素含有ポリスルホンの分子構造は、
通常のポリ(オレフィン スルホン)が持つ自己現像性
を損ねない。露光後、減圧下にて60〜100℃に加熱
すると、露光部分のポリスルホンが揮発し、自己現像に
よシバタンか形成できる。自己現像によるバタン形成は
、現像工程を簡略化すると共K、現像溶媒を用いないた
めVC3J!境汚染の問題がなく、有利である。
The molecular structure of the silicon-containing polysulfone in the present invention is:
Does not impair the self-developability of ordinary poly(olefin sulfone). After exposure, when heated to 60 to 100° C. under reduced pressure, the polysulfone in the exposed area is volatilized and can be self-developed to form a black oxide. The baton formation by self-development not only simplifies the development process, but also eliminates the use of a developing solvent, making VC3J! There is no problem of environmental pollution, which is advantageous.

ポリスルホンを合成する方法は、熱重合、フリーラジカ
ル重合、紫外線照射による重合等、種々の方法が報告さ
れている。本発明では、合成方法は限定しないが、実施
例では、アゾイソブチロニトリルを用いた熱重合法とt
 −BuOOH(t−ブチルヒドロパーオキシド)を用
いたフリーフジカル重合法を用いた。
Various methods have been reported for synthesizing polysulfone, such as thermal polymerization, free radical polymerization, and polymerization by ultraviolet irradiation. In the present invention, the synthesis method is not limited, but in the examples, a thermal polymerization method using azoisobutyronitrile and a t
A free physical polymerization method using -BuOOH (t-butyl hydroperoxide) was used.

以下に本発明で使用するポリスルホンの合成例を示すが
、これらに限定されない。
Synthesis examples of polysulfone used in the present invention are shown below, but the invention is not limited thereto.

合成例1 ポリ(ジメチルフェニルシリルビニル スルホン) (一般式Iにおいて、m=0、R=H1R’=フェニル
基の場合) 重合管内をアルゴンガスで置換したのち、液体窒素で冷
却しつつ、ジメチルフェニルビニルシラン1f1アゾビ
スイソブチロニトリ/L/(ムよりN)30■を重合管
蹟入れた。更4Cso、ガスを導入し、約101Fの液
体So、をトラップした。凍結−説気一解凍の工程を2
度繰返したのち封管し、20℃で20時間反応させた。
Synthesis Example 1 Poly(dimethylphenylsilylvinyl sulfone) (In general formula I, m=0, R=H1R'=phenyl group) After replacing the inside of the polymerization tube with argon gas, while cooling with liquid nitrogen, dimethylphenyl 30 μ of vinylsilane 1f1 azobisisobutyronitrile/L/(mu-N) was introduced into the polymerization tube. Furthermore, 4Cso gas was introduced to trap liquid So at about 101F. Freezing - thawing process 2
After repeating the reaction several times, the tube was sealed and reacted at 20°C for 20 hours.

重合管を開封し、アセトンを入れてポリマーを溶解させ
たのち、ヘキサン中に注ぎ白色固体のポリマーを得た。
The polymerization tube was opened and acetone was added to dissolve the polymer, and then poured into hexane to obtain a white solid polymer.

合成例2 ポリ(t−ブチルジメチルシリルビニル スルホン) (一般式Iにおいて、m = 0、R=H%R’=t−
ブチル基の場合) 重合管内をアルゴンガスで置換したのち、液体窒素で冷
却しつつ、t−ブチルジメチルビニルシラン1t%Aよ
りN3019を重合管に入れた。更[SO2ガスを導入
し、約1012の液体SO。
Synthesis Example 2 Poly(t-butyldimethylsilylvinyl sulfone) (In general formula I, m = 0, R=H%R'=t-
In the case of butyl group) After replacing the inside of the polymerization tube with argon gas, N3019 from 1t% A of t-butyldimethylvinylsilane was introduced into the polymerization tube while cooling with liquid nitrogen. Further [SO2 gas was introduced, and about 1012 liquid SO2 was added.

をトラップした。凍結−説気一解凍の工程を2度繰返し
たのち封管し、30℃で20時間反応させた。重合管を
開封し、アセトンを入れてポリマーを溶解させたのち、
ヘキサン中に注ぎ白色固体のポリマーを得た。
was trapped. After repeating the freezing-inflation-thawing process twice, the tube was sealed and reacted at 30°C for 20 hours. After opening the polymerization tube and adding acetone to dissolve the polymer,
A white solid polymer was obtained by pouring into hexane.

合成例3 ポリ(2−メチル−ジメチルフェニルシリルビニル ス
ルホン) (一般式Iにおいて、m = 01R=OH3、R′=
フェニル基の場合) 重合管内をアルゴンガスで置換したのち、液体窒素で冷
却しつつ、イソプロベニルジメチルフェニルシラン1t
を重合管に入れた。更に、80、ガスを導入し、約1O
fの液体So、をトラップした。t −BuOOHを[
11−滴下し、エタノール−液体窒素の冷却剤で一70
℃に冷却した。20分間反応させたのち、アセトンを入
れてポリマーを溶解させたのち、ヘキサン中に注ぎ白色
固体のポリマーを得た。
Synthesis Example 3 Poly(2-methyl-dimethylphenylsilylvinyl sulfone) (In general formula I, m = 01R=OH3, R'=
In the case of phenyl group) After replacing the inside of the polymerization tube with argon gas, add 1 ton of isoprobenyldimethylphenylsilane while cooling with liquid nitrogen.
was placed in a polymerization tube. Furthermore, 80, gas was introduced, and about 1O
The liquid So of f was trapped. t-BuOOH [
11-Drop and cool with ethanol-liquid nitrogen
Cooled to ℃. After reacting for 20 minutes, acetone was added to dissolve the polymer, and then poured into hexane to obtain a white solid polymer.

合成例4 ポリ(2−メチル−t−ブチルジメチルシリルビニル 
スルホン) (一般式Iにおいて、m=o、R=(1!H3、R’=
t−ブチル基の場合) 重合管内をアルゴンガスで置換したのち、液体窒素で冷
却しつつ、t−プチルイソブロベニルジメチルシフン1
tを重合管に入れた。更に日0鵞ガスを導入し、約10
1Pの液体803をトフップした。t −BuOOHを
0.1−滴下し、エタノール−液体窒素の冷却剤で一7
0′cK冷却した。20分間反応させたのち、アセトン
を入れてポリマーを溶解させたのち、ヘキサン中に注ぎ
白色固体のポリマーを得た。
Synthesis Example 4 Poly(2-methyl-t-butyldimethylsilylvinyl
sulfone) (In general formula I, m=o, R=(1!H3, R'=
In the case of t-butyl group) After replacing the inside of the polymerization tube with argon gas, add t-butylisobrobenyldimethylsiphon 1 while cooling with liquid nitrogen.
t was placed in a polymerization tube. Furthermore, we introduced day 0 gas, and about 10
I poured 1P of liquid 803. Add 0.1 drop of t-BuOOH and cool with ethanol-liquid nitrogen coolant.
Cooled to 0'cK. After reacting for 20 minutes, acetone was added to dissolve the polymer, and then poured into hexane to obtain a white solid polymer.

合成例5〜12 合成例1〜40方法に従って、m = 2.15のポリ
マーを合成した。表1に合成したポリマーの(m % 
Rs R” )の組合せを示す。いずれも白色固体とし
て得られた。
Synthesis Examples 5-12 Polymers with m = 2.15 were synthesized according to the methods of Synthesis Examples 1-40. Table 1 shows (m %) of the synthesized polymers.
Rs R''). Both were obtained as white solids.

〔実施例〕〔Example〕

以下、本発明を実施例し1更忙具体的に説明するが、本
発明はこれら実施例に限定されない。
Hereinafter, the present invention will be specifically explained using examples, but the present invention is not limited to these examples.

実施例1 合成例1のポリスルホンをシリコン基板にスピンコード
し、80℃で10分間プリベークしたのち、電子線レジ
スト特性、X線レジスト感度、酸素プラズマエツチング
耐性を調べた。電子線レジスト感度は、エリオニクス社
製ESM−601を用い加速電圧= 20 KVで評価
した。
Example 1 The polysulfone of Synthesis Example 1 was spin-coded onto a silicon substrate, prebaked at 80° C. for 10 minutes, and then electron beam resist properties, X-ray resist sensitivity, and oxygen plasma etching resistance were examined. The electron beam resist sensitivity was evaluated using ESM-601 manufactured by Elionix Co., Ltd. at an accelerating voltage of 20 KV.

X線レジスト感度は、波長−5,4AのX線を用いて評
価した。現像は、酢酸n−アミルとイソプロピルアルコ
ールの50ニア0混合溶液を用い、25℃で1分間行っ
た。合成例1のポリスルホンは電子線露光に対して、ポ
ジ型のレジスト特性を示し、感度は29μOZiであっ
た。また、X線露光に対してもポジ型のレジスト特性を
示し、感度は250 m17cm”であった。酸素プラ
ズマエツチング耐性はアネルバ社製 DIM−451(
平行平板型)エツチング装置を用いて、出力=50W、
バイアス=α6 KV、流量=508CcM1、圧力=
 10 mTorrで評価した。エツチング速度は、1
5 nm/minであシ、AZ1450(シラプレー社
)の7倍の耐性があった。
X-ray resist sensitivity was evaluated using X-rays with a wavelength of -5.4A. Development was carried out at 25° C. for 1 minute using a 50N0 mixed solution of n-amyl acetate and isopropyl alcohol. The polysulfone of Synthesis Example 1 exhibited positive resist characteristics with respect to electron beam exposure, and the sensitivity was 29 μOZi. It also showed positive resist characteristics with respect to X-ray exposure, with a sensitivity of 250 m17 cm. Oxygen plasma etching resistance was measured using DIM-451 (manufactured by Anelva).
Using a parallel plate type) etching device, output = 50W,
Bias = α6 KV, flow rate = 508 CcM1, pressure =
Evaluation was made at 10 mTorr. The etching speed is 1
The resistance was 7 times that of AZ1450 (Silapray) at 5 nm/min.

実施例2〜12 表1に本発明によるポジ型レジスト材料の電子線(EB
)感度、X線感度、酸素プラズマに対するエツチング速
度をまとめた。評価方法は実施例1と同様な方法を用い
た。現像液はいずれの場合も酢酸n−アミルとイソプロ
ピルアルコールの混合溶液を用いた。
Examples 2 to 12 Table 1 shows electron beam (EB) results of positive resist materials according to the present invention.
) Sensitivity, X-ray sensitivity, and etching rate for oxygen plasma were summarized. The same evaluation method as in Example 1 was used. In all cases, a mixed solution of n-amyl acetate and isopropyl alcohol was used as the developer.

表   1 合成例  m   RR’    EB感度 X線感度
 エラチン残炭10水素 フ〉29  250  15
20水素t−悠 1223o11 3   0  メチル  フェ−z    20   
 250    154  0  メチ/L’t−ブ?
/9   10    210    1252水素 
7LA/318o17 62水素を一方ル  2  150  137  2 
メチル  フェニ’l’     3   190  
  158   2メfyvt−y9−yv     
2    160     f495水素 7:X:A
’   3180  17105水素t一方ル  2 
 150  1311   5 メチル  フェちIL
’     3    190    1512  5
  メチル t−ブチν    2    160  
  14〔発明の効果〕 以上説明したようk、本発明にょ夛、電子線、X線に対
して高感度であシ、がっ、酸素プフズマエッチングに対
する耐性も高いポジ型レジストが得られる。本発明aL
8工製造における微細加工技術に有用である。
Table 1 Synthesis example m RR' EB sensitivity X-ray sensitivity Elatin residual carbon 10 hydrogen F〉29 250 15
20 hydrogen t-yu 1223o11 3 0 methyl phase 20
250 154 0 Methi/L't-bu?
/9 10 210 1252 hydrogen
7LA/318o17 62 hydrogen on one hand 2 150 137 2
Methyl phenyl'l' 3 190
158 2me fyvt-y9-yv
2 160 f495 hydrogen 7:X:A
' 3180 17105 hydrogen t 2
150 1311 5 Methyl Fetish IL
' 3 190 1512 5
Methyl t-butyv 2 160
14 [Effects of the Invention] As explained above, the present invention provides a positive resist that is highly sensitive to electron beams and X-rays, and has high resistance to oxygen plasma etching. The present invention aL
It is useful for microfabrication technology in 8-stage manufacturing.

Claims (1)

【特許請求の範囲】 1、下記一般式I: ▲数式、化学式、表等があります▼・・・(I) (式中、Rは水素又はアルキル基、R’はt−ブチル基
又はフェニル基、nは10以上の整数、mは0以上5以
下の整数である)で表されるポリスルホンであつて、高
エネルギー線に対して感度が高く、かつ酸素プラズマエ
ッチングに対する耐性が高いものであることを特徴とす
るポジ型レジスト材料。
[Claims] 1. The following general formula I: ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) (In the formula, R is hydrogen or an alkyl group, and R' is a t-butyl group or a phenyl group. , n is an integer of 10 or more, and m is an integer of 0 or more and 5 or less), and has high sensitivity to high-energy rays and high resistance to oxygen plasma etching. A positive resist material characterized by:
JP63010739A 1988-01-22 1988-01-22 Positive type photoresist material Pending JPH01187545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63010739A JPH01187545A (en) 1988-01-22 1988-01-22 Positive type photoresist material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63010739A JPH01187545A (en) 1988-01-22 1988-01-22 Positive type photoresist material

Publications (1)

Publication Number Publication Date
JPH01187545A true JPH01187545A (en) 1989-07-26

Family

ID=11758664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63010739A Pending JPH01187545A (en) 1988-01-22 1988-01-22 Positive type photoresist material

Country Status (1)

Country Link
JP (1) JPH01187545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216477A (en) * 2013-04-25 2014-11-17 株式会社デンソー Organic semiconductor device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014216477A (en) * 2013-04-25 2014-11-17 株式会社デンソー Organic semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
EP1789849B1 (en) Use of methanofullerene derivatives as resist materials and method for forming a resist layer
JP2004530921A (en) High resolution resist for the next generation lithography
US4286049A (en) Method of forming a negative resist pattern
JPS5949536A (en) Formation of micropattern
US4262073A (en) Positive resist medium and method of employing same
EP0516427A1 (en) Resist compositions
EP0236914A2 (en) Fabrication of electronic devices utilizing lithographic techniques
JPH01187545A (en) Positive type photoresist material
US4262083A (en) Positive resist for electron beam and x-ray lithography and method of using same
JPS5953837A (en) Pattern forming material and pattern forming method
JPS5979247A (en) Ionizing radiation sensitive material
EP0488748A1 (en) Resist compositions
KR100504436B1 (en) Polymer for photoresist and prepartion thereof
JPS58105142A (en) Far ultraviolet ray sensitive resist and method of using it
US4330671A (en) Positive resist for electron beam and x-ray lithography and method of using same
Ho et al. Synthesis, characterization, and properties of a novel positive photoresist polyimide
JPS61295548A (en) Negative type resist composition
KR100219498B1 (en) Chemically amplified resist base resin and resist composition
Himics et al. The examination of poly (5‐hexene‐2‐one sulfone) as a positive‐working photoresist
JPH02127642A (en) Resist
JPS59192245A (en) Resist material
JPS63157145A (en) Photosensitive resin composition
KR20000014580A (en) New photoresist polymer and photoresist compound using the polymer
KR20210105556A (en) Resist compound, method of forming pattern using the same, and method of manufacturing semiconductor device using the same
TW457400B (en) Modified positive electron-beam resists