JPS58216459A - Photoelectric converter and manufacture thereof - Google Patents

Photoelectric converter and manufacture thereof

Info

Publication number
JPS58216459A
JPS58216459A JP57099666A JP9966682A JPS58216459A JP S58216459 A JPS58216459 A JP S58216459A JP 57099666 A JP57099666 A JP 57099666A JP 9966682 A JP9966682 A JP 9966682A JP S58216459 A JPS58216459 A JP S58216459A
Authority
JP
Japan
Prior art keywords
film
photoconductive film
photoelectric conversion
conversion device
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57099666A
Other languages
Japanese (ja)
Other versions
JPH0228903B2 (en
Inventor
Noboru Yoshigami
由上 登
Takahiro Nishikura
西倉 孝弘
Shoichi Fukai
正一 深井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57099666A priority Critical patent/JPS58216459A/en
Publication of JPS58216459A publication Critical patent/JPS58216459A/en
Publication of JPH0228903B2 publication Critical patent/JPH0228903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a photoelectric converter in which a defect such as scratch, dirt or stepwise disconnection of a photoconductive film is not produced but good characteristics are provided by depositing the photoconductive film with a metal mask, heat treating it for activation without isolating the film, employing a resist film such as photovarnish which is used at the etching time to protect each process and the etching step as a final step. CONSTITUTION:Photoconductive films 22, 22' are deposited in a strip shape on a glass substrate 21 in a main scanning direction with a metal mask 23, the substrate 21, on which the film 22 is formed, is removed from a depositing device, and an activating step is immediately performed in a clean state. A positive resist is coated on the entire surface, only a part to be attached with an electrode is exposed, and the resist is removed. Subsequently, an electrode NiCr, Au are entirely deposited, and dipped in an acetone. The NiCr, Au on the part, on which the resist remains, are isolated from the substrate due to the solution of the resist, thereby forming common electrode 24 and individual electrodes 24' which have desired electrode pattern. Eventually, the part 25 between the photoreceptor and the electrode 24' and the part 26 between the blocks of the electrode 24 are dry etched with the photoresist as a mask so as to isolate the strip film 22 into each bit.

Description

【発明の詳細な説明】 本発明は、ファクシミリの送信側に用いる、原稿と1=
1に対応する大きさの光電変換装置およびその製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an original document and a
The present invention relates to a photoelectric conversion device of a size corresponding to No. 1 and a method of manufacturing the same.

ファクシミリの送信側における、原稿を読取る装置とし
て光電変換特性を有する光センサアレイ等の光電変換装
置が用いられている。従来における、この種の光電変換
装置の構造とその製造方法について第1図(IL)〜(
d)および第2図に示す。第1図(IL)〜(d)r/
′i副走査方向の部分拡大図、第2図は上面拡大図であ
る。第1図および第2図において、ガラス基板1等の全
面に、まず0dd−Cd’s等の光導電膜2を被着しく
第1図(a) ) 、次に例えば8ymmの場合には幅
85μ、長さ350μの矩形状の、主走査方向に一列に
並ぶレジストパターン3を形成した後、臭素等のエツチ
ング液でエッチ“ジグし、前記レジストパターンに沿っ
た島状の光導電膜群を形成する(第1図(b))。この
時各光導電膜2の上部にはレジストパターン3が残った
ま\であるから、ガラス基板全体をリムーバ等・に浸漬
してレジストを除去する(第1図(C))。この様にし
てできた、主走査方向に一列に並ぶ、島状の光導電膜群
が形成されたガラス基板を、Cdのハロゲン化物(例え
ば小量のcac7B 粉末)の一種以上の蒸気を含む雰
囲気中で、cas−casと・・ロゲン化物との共晶温
度以上の温度、例えば500〜6oO°Cの温度で熱処
理し、増感作用を持たせる。次に増感作用を持った前記
島状の光導電膜群に対応させて、一定単位数ごとに共通
に接続された共通電極群4と、一定単位数ごとにグルー
プ化された個別電極群4′をリフトオフ法により形成す
る(第1図(d))。さらに、フィルムリード5.6ケ
接続部7において前記個別電極群4′にポンディジグす
ることにより、マトリックス結線して個別電極側取出し
端子とする。
2. Description of the Related Art A photoelectric conversion device such as an optical sensor array having photoelectric conversion characteristics is used as a document reading device on the sending side of a facsimile. The structure and manufacturing method of a conventional photoelectric conversion device of this type are shown in Figures 1 (IL) to (
d) and shown in FIG. Figure 1 (IL) ~ (d) r/
'i is a partially enlarged view in the sub-scanning direction, and FIG. 2 is an enlarged top view. In Figures 1 and 2, a photoconductive film 2 such as 0dd-Cd's is first deposited on the entire surface of a glass substrate 1, etc. (Figure 1(a)), and then, for example, in the case of 8 mm, the width is After forming a rectangular resist pattern 3 of 85 μm and 350 μm length aligned in a line in the main scanning direction, etching is performed using an etching solution such as bromine to form island-shaped photoconductive film groups along the resist pattern. (Fig. 1(b)). At this time, the resist pattern 3 remains on the top of each photoconductive film 2, so the entire glass substrate is immersed in a remover or the like to remove the resist (Fig. 1(b)). (Figure 1 (C)).The glass substrate, on which island-shaped photoconductive films arranged in a line in the main scanning direction are formed, is coated with Cd halide (for example, a small amount of cac7B powder). In an atmosphere containing one or more types of vapor, heat treatment is performed at a temperature higher than the eutectic temperature of cas-cas and halogenide, for example, at a temperature of 500 to 6oO°C, to impart a sensitizing effect.Next, sensitization is performed. Corresponding to the island-shaped photoconductive film group having an effect, a common electrode group 4 connected in common in a certain number of units and an individual electrode group 4' grouped in a certain number of units are formed by a lift-off method. (FIG. 1(d)).Furthermore, 5.6 film leads are bonded to the individual electrode group 4' at the connecting portion 7 to form a matrix connection to form an individual electrode side extraction terminal.

次に第3図に示すように、上記の方法で得られた光電変
換装置8と、照明光源9.セルフォックレンズアレー1
0.送信原稿11を図のように配置し、照明光源9で照
明された送信原稿11から。ワ、。ヤrLy 7 k 
lヶ、2□、ア、−4゜ヤ、    ゛て光電変換装置
8上に結像して、電気信号として取出している。
Next, as shown in FIG. 3, a photoelectric conversion device 8 obtained by the above method and an illumination light source 9. selfoc lens array 1
0. From the transmission original 11 arranged as shown in the figure and illuminated by the illumination light source 9. Wow. Ya rLy 7k
An image is formed on the photoelectric conversion device 8 at 1, 2□, a, -4°, and extracted as an electrical signal.

ところが、前述のような光電変換装置の構造及び製造方
法では、下記の理由から出力特性にバラツキが生じ易い
という問題点を有している。
However, the structure and manufacturing method of the photoelectric conversion device as described above has the problem that variations in output characteristics tend to occur for the following reasons.

まず第一に、第1図(b)から第1図(C)に行く工程
ニオイて、光導電膜2の上部のレジストパターン3の除
去が、完壁には行なわれ難いということである。例えば
A4版の原稿の読み出し用であって、解像度8本/am
の場合、この様な光導電膜2の島が1728ビツト主走
査方向に一列に並ぶことになる。総ビット数が多いとい
うこと隼問題ではあるが、−列に並んでいるということ
が難しさを一層助長しており、光導電膜2上、或いはそ
の周辺部に、極く微小ではあるが、確率的にレジストパ
ターン3の残有物が観察される。1ビツトでもその様な
ものが存在すると、後の活性化プロセスで高温処理にさ
らされて特性に影響が現れ、不良となる確率が非常に高
い。第1図(IL)および第1図(b)において、光導
電膜2をエツチングする方法としてはウェット方式又は
ドライ方式或いは両者の併用等があり、光導電膜2がG
a5−Cd’sの場合、ウェットではエツチング液とし
て臭素を用いるが、臭素にふれたレジスト3の表面は変
質して、レジスト除去液リムーバに溶解し難くなり、前
述のレジストの残有物として残り易くなる。ドライエッ
チの場合もN2と02のイオンでレジスト3の表面をた
たくと七になり、リムーバに溶解し得くなるという点で
同じである。また、リムーバ等のウェット式レジスト除
去の代りに02プラズマ等のドライエッチ方式を採用し
ても、大面積である関係上、程度の差はあれ、確率的に
残有物が観察され、特性に影響を及ぼし、不良になる確
率が非常に高くなる。
First of all, in the process from FIG. 1(b) to FIG. 1(C), it is difficult to completely remove the resist pattern 3 on the top of the photoconductive film 2. For example, for reading A4 size manuscripts, with a resolution of 8 lines/am.
In this case, such islands of the photoconductive film 2 are arranged in a line in the main scanning direction of 1728 bits. The fact that the total number of bits is large is a real problem, but the fact that they are lined up in rows makes it even more difficult. Remains of resist pattern 3 are observed with probability. If even one bit of such a thing exists, it will be exposed to high temperature treatment in the subsequent activation process, which will affect the characteristics, and there is a very high probability that it will become defective. In FIG. 1 (IL) and FIG. 1(b), the photoconductive film 2 is etched by a wet method, a dry method, or a combination of both.
In the case of a5-Cd's, bromine is used as an etching solution in wet etching, but the surface of the resist 3 that comes into contact with bromine changes in quality, becomes difficult to dissolve in the resist removal solution remover, and remains as the aforementioned resist residue. It becomes easier. In the case of dry etching, the same is true in that when the surface of the resist 3 is hit with N2 and 02 ions, it becomes 7 and can be dissolved in the remover. Furthermore, even if a dry etching method such as 02 plasma is used instead of a wet resist removal method such as a resist remover, due to the large area, residual materials will be observed to varying degrees, which may affect the characteristics. The probability of it becoming defective is very high.

第二に、光導電膜2の厚みによる電極の段切れという問
題がある。すなわち第1図(d)に示す電極群4,4′
の形成の工程において、第4図に示すように12 、1
2’部分で段切れが生ずる。光導電膜2の厚みは一般に
3000〜10000A程度であるのに対して、電極は
歪等の関係で、薄くすることが望ましく、1000に以
下の場合が多いので、光導電膜2の端部12 、12’
に電極が付き錐く、段切れが起り易くなる。これは第1
図体)、第1図(b)から明らかなように光導電膜2の
副走査方向の端部12 、12’はエツチングで形成さ
れるため、順テーパにならず、垂直になるからである。
Second, there is a problem that the electrodes are broken due to the thickness of the photoconductive film 2. That is, the electrode group 4, 4' shown in FIG. 1(d)
In the process of forming 12 and 1 as shown in FIG.
A break occurs at the 2' portion. The thickness of the photoconductive film 2 is generally about 3,000 to 10,000 A, whereas it is desirable to make the electrode thinner due to strain etc., and the thickness is often less than 1,000 A. , 12'
If the electrode is attached to the surface, breakage will occur more easily. This is the first
This is because, as is clear from FIG. 1(b), the ends 12, 12' of the photoconductive film 2 in the sub-scanning direction are formed by etching and are not tapered forward but vertical.

第3は、第1図(0)のように、島状に光導電膜2を分
離してから、6r)0’c〜600°Cの活性化処理を
行うと、ガラス基板1(例えばダクコーニング了o59
)の収縮が起り、島状の光導電膜2の主走査方向のピッ
チが小さくなり、次の電極パターンのピンチと合わなく
なるという問題である。
Thirdly, as shown in FIG. 1(0), after separating the photoconductive film 2 into island shapes, if an activation treatment is performed at 6r) 0'C to 600°C, the glass substrate 1 (e.g. corning finished o59
) shrinkage occurs, and the pitch of the island-shaped photoconductive film 2 in the main scanning direction becomes smaller, causing a problem in which it no longer matches the pinch of the next electrode pattern.

従って現在は、光導電膜2を付ける前に、ガラス基板1
のみをeoo°C以上の温度で熱処理し、前もって収縮
させておくという方法をとっている。
Therefore, at present, before attaching the photoconductive film 2, the glass substrate 1
A method is used in which the material is heat-treated at a temperature of eoo°C or higher and shrunk in advance.

ところが実際にはこの様に前もって熱処理しておいても
、活性化工程において更に収縮が起り、ピッチずれが皆
無とはならない。その上、熱処理というプロセスが増え
るので、ガラス基板表面が汚れるという確率の増加につ
ながる。
However, in reality, even if such heat treatment is performed in advance, further shrinkage occurs during the activation process, and pitch deviations cannot be completely eliminated. Furthermore, since the heat treatment process is increased, the probability that the surface of the glass substrate becomes contaminated increases.

第4は、一般に光導電体膜2とガラス基板1との密着性
が悪いという問題である。従って第1図(b)、第1図
(C)に示すような、島状にエツチングし、上部のレジ
ストをリムーバで除去するプロセスにおいて、島状の光
導電膜2が剥離して、流れてしまう確率が非常に高い。
The fourth problem is that the adhesion between the photoconductor film 2 and the glass substrate 1 is generally poor. Therefore, in the process of etching into islands and removing the upper resist with a remover as shown in FIG. 1(b) and FIG. 1(C), the island-shaped photoconductive film 2 peels off and flows. There is a very high chance that it will get lost.

従って現実には、エツチング用のレジストを塗布する前
に、即ち光電体膜2を付けた直後、密着性を良くするた
め400°C以上のアニーリングを行っている。この様
な方法も、工程が増えるだけでなく、汚れるという確率
が増える。この様な問題は本願の様な、大型のラインセ
ンサとしての光導電装置の場合には歩留り低下に大きく
影響を及ぼす。
Therefore, in reality, before applying the etching resist, that is, immediately after applying the photoelectric film 2, annealing is performed at 400° C. or higher to improve adhesion. Such a method not only increases the number of steps but also increases the probability of contamination. In the case of a photoconductive device used as a large line sensor as in the present application, such a problem greatly affects the yield reduction.

第5は、前述のようなリフトオフ法により電極を形成し
、すぐにフィルムリードをボンディングするのでなく、
実際にはその間にアニーリング。
Fifth, instead of forming the electrode by the lift-off method described above and immediately bonding the film lead,
Actually annealing during that time.

観察、測定、補修、パシベーション等のプロセスが入る
。即ちパシベーションを行うまでに、各種プロセス、取
扱いがあるので、極く軽く、極く微      1小部
分ではあるが、光導電膜の受光面をこすったすしてしま
う場合がある。0(18−8e薄膜は機械的に弱く、表
面は非常にキズ付き易い。顕微鏡観察によっても判別し
離い様な極くわずかなキズでも、出力低下をもたらし、
ビノトグウン(bitdown)になる事を高い確率で
経験している。
Processes such as observation, measurement, repair, and passivation are included. That is, since various processes and handling are required before passivation is performed, there is a possibility that the light-receiving surface of the photoconductive film may be scraped and smeared, even though it is extremely light and extremely small. 0 (18-8e) The thin film is mechanically weak and the surface is very easily scratched.Even the slightest scratches, which can be seen even by microscopic observation, cause a decrease in output.
There is a high probability of experiencing becoming bitdown.

本発明は従来における上記のような問題点を解決せんと
するものであり、ファクシミリの送信側に用いる、原稿
と1:1に対応する大きさの光電変換装置の最大の問題
である歩留り低下即ち出力特性のバラツキ要因をなくす
るための構造およびその製造方法を提供することを目的
とするものである。
The present invention is intended to solve the above-mentioned conventional problems, and the biggest problem with photoelectric conversion devices used on the sending side of facsimile machines, whose size corresponds 1:1 to the original document, is the reduction in yield. It is an object of the present invention to provide a structure and a manufacturing method thereof for eliminating factors that cause variations in output characteristics.

以下に、本発明の光電変換装置およびその製造方法の実
施例について詳細に説明する。
Examples of the photoelectric conversion device and its manufacturing method of the present invention will be described in detail below.

マス、大きさ230″IrIL×60r′″−、厚+1
.2mmのコーニング7059ガラス基板をよく洗滌、
乾燥する。その後、従来のようにピッチずれを防ぐだめ
の6oO0C以上の亨ニーリング処理を経ることなく、
すぐに光導電膜、例えばCd5−Ca5eの固溶体を真
空蒸着又はスパッタリング法により、前記ガラス基板上
に被着する。この場合、全面に蒸着するのではなく、メ
タルマスクを用いて、第6図に示すようにガラス基板2
1の上に光導電膜22.2’2’を主走査方向に帯状に
蒸着する。第5図において光導電膜22.22’がガラ
ス基板21の両面に形成されているのは、一枚のガラス
基板21から2本のセンサを得るためであり、最後の工
程で中心部から半分に割る様にしている。第6図は第5
図の副走査方向の断面部分拡大図で、メタルマスク23
を用いてCd5−(jdse光導電膜22を蒸着する時
の様子を示す。第6図から明らかなように、斜めからと
んできた蒸発粒子24uメタルマスク23の影になり、
メタルマスク23に隣接した箇所には被着し離い。従っ
て蒸着された光導電膜22の副走査方向の端部は点線で
示す様に厚みが薄く順テーパとなる。
Mass, size 230″IrIL×60r′″-, thickness +1
.. Thoroughly wash the 2mm Corning 7059 glass substrate.
dry. After that, without going through the high kneeling process of 6oO0C or more to prevent pitch deviation as in the past,
Immediately a photoconductive film, for example a Cd5-Ca5e solid solution, is deposited on the glass substrate by vacuum evaporation or sputtering. In this case, instead of depositing on the entire surface, a metal mask is used to deposit the glass substrate 2 as shown in FIG.
1, a photoconductive film 22.2'2' is deposited in a strip shape in the main scanning direction. The reason why the photoconductive films 22 and 22' are formed on both sides of the glass substrate 21 in FIG. 5 is to obtain two sensors from one glass substrate 21, and in the last step, half of the I try to divide it into Figure 6 is the 5th
This is a partially enlarged cross-sectional view in the sub-scanning direction of the figure, showing the metal mask 23.
This shows how a Cd5-(jdse photoconductive film 22 is evaporated using a Cd5-(jdse). As is clear from FIG.
It adheres to areas adjacent to the metal mask 23 and separates. Therefore, the end portion of the deposited photoconductive film 22 in the sub-scanning direction is thin and tapered as shown by the dotted line.

次に従来の様にレジストを使ってエツチング。Next, use resist to etch as before.

レジスト除去等の工程を経ることなしに、蒸着装置から
光導電膜22を形成したガラス基板21を取り出して直
ちに、クリーンな状態で活性化工程に入る。活性化とは
CdC112雰囲気中で600〜600°Cの熱処理を
行う事である。この処理によリ゛光導電嘆22が感度を
持つ様になり、かつガラス基板21と光導電膜22との
密着性も良くなる。
The glass substrate 21 on which the photoconductive film 22 is formed is taken out from the vapor deposition apparatus without going through a process such as resist removal, and immediately enters the activation process in a clean state. Activation means heat treatment at 600 to 600°C in a CdC112 atmosphere. This treatment makes the photoconductive film 22 more sensitive and also improves the adhesion between the glass substrate 21 and the photoconductive film 22.

その後、リフトオフ法で電極を形成するために、例えば
ポジレジストを全面に塗布し、電極を付けるべき部分の
み露光し、レジストを除去しておく。
Thereafter, in order to form electrodes by a lift-off method, for example, a positive resist is applied to the entire surface, only the portion where the electrodes are to be attached is exposed, and the resist is removed.

次に電極)iicr、Auを全面に蒸着し、続いてアセ
トンに浸漬する。レジストの残っている部分のNiCr
、Auはレジストの溶解により、ガラス基板から遊離し
、第7図に示すような所望の電極パターンを有する共通
電極241個別電極24′が形成される。第7図におい
て22は光導電膜である。
Next, electrode (iicr) and Au are deposited on the entire surface, and then immersed in acetone. NiCr on the remaining part of the resist
, Au is released from the glass substrate by dissolving the resist, and a common electrode 241 and individual electrodes 24' having a desired electrode pattern as shown in FIG. 7 are formed. In FIG. 7, 22 is a photoconductive film.

最後に帯状の光導電膜22を第8図の様に、各ビットに
分離するため、受光部及び個別電極24′の間の部分2
6及び共通電極24のブロック間の部分26をフォトレ
ジストをマスクとして、ドライ又はウェットエツチング
する。ドライエツチングを採用した場合にはマスクとし
て用いるフォトレジストは、エツチング後、除去する必
要はなく、い。その場合、フォトレジストとしてポリイ
ミド系樹脂のホトニース(東洋レーヨン製)を用いると
、より優れたパシベーション効果を示すことがa!認さ
れている。フォトレジストを除去する必要がない点に関
し、例えば第1図に基づいて説明すると、光の入射は、
基板1の第2主面即ち裏面から行うので、第1主面即ち
表面の光導電膜2や電極4.4′の上にのせるパシベー
ション材料は透明である必要はない。したがって本発明
の場合、レジストを除去する必要もないし、そのレジス
トを保護用として利用出来るので、従来例のようにエツ
チング後のレジスト除去の不完全性によるピットゲクン
(bit down)等の心配がなくなる。
Finally, in order to separate the strip-shaped photoconductive film 22 into each bit as shown in FIG.
6 and the portion 26 between the blocks of the common electrode 24 are dry or wet etched using a photoresist as a mask. When dry etching is employed, the photoresist used as a mask does not need to be removed after etching. In that case, if a polyimide resin Photonyce (manufactured by Toyo Rayon) is used as the photoresist, it will show a better passivation effect. It has been certified. Regarding the point that there is no need to remove the photoresist, for example, referring to FIG. 1, the incidence of light is as follows.
Since the passivation material is applied from the second main surface, that is, the back surface, of the substrate 1, the passivation material placed on the photoconductive film 2 and the electrodes 4,4' on the first main surface, that is, the front surface, does not need to be transparent. Therefore, in the case of the present invention, there is no need to remove the resist, and the resist can be used for protection, so there is no need to worry about bit down caused by incomplete removal of the resist after etching as in the prior art.

もちろん、前述の保護用レジストは表面に付いているだ
けで、側面には付いていないので、最終的には、ホトニ
ース等のパシベーション剤を更にその上全面に塗布する
必要がある事は当然である。
Of course, the above-mentioned protective resist is only attached to the surface, not the sides, so it is natural that in the end it will be necessary to apply a passivation agent such as photonis over the entire surface. .

これに対し、ウェットエツチングを行うことも    
   □出来るが、この場合にはエツチング液として臭
素を用いることになるので、エツチング後のレジスト等
は臭素を含有しており、必ず除去する必要がある。除去
しないと、残存臭素が光導電膜22に悪影響を及はし、
信頼性が悪くなる。したがって、ウェットエツチングの
場合には、エソチンク後レジスト除去のプロセスが必要
となる。
On the other hand, wet etching can also be performed.
□ Yes, but in this case, bromine will be used as the etching solution, so the resist etc. after etching will contain bromine, which must be removed. If not removed, residual bromine will adversely affect the photoconductive film 22,
Reliability deteriorates. Therefore, in the case of wet etching, a resist removal process is required after etching.

これで−芯先導電膜と共通電極9個別電極が出来たわけ
であるが、特性安定化のため更に熱処理する場合が多い
This completes the -core leading conductive film, the common electrode 9, and the individual electrodes, but it is often necessary to perform further heat treatment to stabilize the characteristics.

次に従来例と同様であるが、第2図に示す様にポリイミ
ドフィルム6上に銅箔配線6が形成されたフィルムリー
ドを用いて、第2図の部分7で下層配線4とボンディン
グすることにより、マトリックス結線して個別電極側取
出し端子とする。
Next, as in the conventional example, as shown in FIG. 2, using a film lead in which a copper foil wiring 6 is formed on a polyimide film 6, bonding is performed with the lower layer wiring 4 at a portion 7 in FIG. Connect the wires in a matrix and use them as individual electrode side extraction terminals.

前述の工程で、06B−Caseを蒸着した後すぐに活
性化工程に入る場合もあるが、ガラス基板とCd5−C
a5eの密着性のためではなく、cas−OdSeの結
晶性を良くするために、活性化前に400〜600°C
でアニーリングすることが好ましい。
In the above process, the activation process may be started immediately after evaporating 06B-Case, but the glass substrate and Cd5-C
400-600 °C before activation, not for the adhesion of a5e, but to improve the crystallinity of cas-OdSe.
It is preferable to perform annealing at

24、個別電極24′を形成するためのエツチング液程
において、第9図に示す様に共通電極部の一部26′を
切り込んでも良い。実際にはマスク合せ精度等の関係で
、種々な形状があシ得るが、実効的には第8図の様に切
り込めば良い。
24. In the etching process for forming the individual electrodes 24', a portion 26' of the common electrode portion may be cut as shown in FIG. In reality, various shapes may be used depending on mask alignment accuracy, etc., but in practice, it is sufficient to cut as shown in FIG. 8.

大型のラインセンサの最大の問題は、全ビットの出力特
性をそろえる事が非常に錐しいため歩留りの向上をはか
ることが困難な点にある。本発明の実施例による光電変
換装置の構造及びその製造方法は前述のとおりであり、
このことにより以下の観点から出力特性をそろえて歩留
りを向上させることができる。すなわち、本発明の実施
例による光電変換装置の製造方法によれば光導電膜を蒸
着直後すぐに活性化工程に入るので、活性化前のよごれ
が殆んどなく、出力パラツキの最大の要因が取除かれる
The biggest problem with large line sensors is that it is extremely difficult to match the output characteristics of all bits, making it difficult to improve yield. The structure of the photoelectric conversion device and the manufacturing method thereof according to the embodiment of the present invention are as described above,
This makes it possible to improve the yield by making the output characteristics uniform from the following viewpoints. That is, according to the method for manufacturing a photoelectric conversion device according to the embodiment of the present invention, the activation step is started immediately after the photoconductive film is deposited, so there is almost no contamination before activation, and the biggest cause of output variation is eliminated. removed.

また、例えば第6図に示す様に、メタルマスクを用いて
蒸着することにより副走査方向の断面形Mが順テーパに
なり、第4図に示す様な電極の段さらに本発明において
は光導電膜を分離せずに活性化のための熱処理を行なう
ため、熱処理の結果起る基板の収縮に起因する島状の光
導電膜群と電極パターンのピンチずれの心配がないので
、ガラス基板の予備熱処理及び予備熱処理後の等2回目
の洗滌が不要となり、第1回目の洗滌後すぐに光導電膜
の蒸着を行う事が出来る。したがって、工程が減りガラ
ス基板表面の汚れる確率が減ることになり、出力バラツ
キ減少1歩留向上、コスト低減になる。加わりるに熱処
理しても、なお起るピッチずれが皆無になり、ピッチず
れによる出力バラツキも無くなる。
Further, as shown in FIG. 6, for example, by vapor deposition using a metal mask, the cross-sectional shape M in the sub-scanning direction becomes a forward taper, and the electrode stages as shown in FIG. Since the heat treatment for activation is performed without separating the film, there is no need to worry about pinch misalignment between the island-shaped photoconductive film group and the electrode pattern due to shrinkage of the substrate as a result of heat treatment. There is no need for a second cleaning after heat treatment and preheat treatment, and the photoconductive film can be deposited immediately after the first cleaning. Therefore, the number of steps is reduced, the probability of contamination of the glass substrate surface is reduced, output variation is reduced, yield is improved, and costs are reduced. In addition, even after heat treatment, there is no pitch deviation that still occurs, and output variations due to pitch deviation are also eliminated.

また1本発明によれば従来の様に、ガラス基板と光導電
膜との密着性を必要とするエソチング工程に入る前に、
密着性を増す活性化工程に入るので、密着性を増すため
の熱処理工程を必要としない。これは工程を減らすだけ
でなく、基板表面の汚れを減らすことになり、歩留り向
上につながる。
In addition, according to the present invention, before starting the ethoching process that requires adhesion between the glass substrate and the photoconductive film, unlike the conventional method,
Since the activation process is performed to increase adhesion, there is no need for a heat treatment process to increase adhesion. This not only reduces the number of steps but also reduces contamination on the substrate surface, leading to improved yields.

ただ場合によっては、密着性のためではなく、結尾性を
良くするために、活性化工程の前に、従来のようにアニ
ーリングする場合もあるが、アニーリング処理だけでは
完全な密着性が得られない場合が多く、本発明の場合に
はCd5−Cd5eのエツチングの前に活性化という工
程が入るので、密着性という問題は全く無くなる。
However, in some cases, conventional annealing may be performed before the activation process, not to improve adhesion, but to improve binding, but complete adhesion cannot be achieved with annealing alone. In many cases, in the case of the present invention, an activation step is performed before etching Cd5-Cd5e, so the problem of adhesion is completely eliminated.

さらにまた、リフトオフによる電極形成後、パシベーシ
ョンを行うまでのアニーリング、観察。
Furthermore, after electrode formation by lift-off, annealing and observation before passivation.

測定、補修等の各プロセスにおいて、その取扱い上の極
くわずかなキズによるビットダウン(bitdown)
の発生の心配は、本発明の場合、エツチング時使用した
ホトニース等のレジスト膜をそのま\保護用として用い
るので、全くなくなる。
In each process such as measurement and repair, bit down due to extremely slight scratches during handling.
In the case of the present invention, there is no need to worry about the occurrence of this problem because the resist film, such as photo-neath, used during etching is used as it is for protection.

さらに、ドライエツチング後のレジストを保護膜として
用いるという事により、レジスト除去の譬しさを避ける
ことができ、レジスト・除去の不完全性に起因する多数
のビットダウン(bitdown)の問題を解決するこ
とができる。すなわち、Cd5−      1゜Cd
’sのエツチングを最後の工程にもって来たので、レジ
スト除去の必要性がなくなり、ビットダウン(bit 
down)発生原因を激減させる車になる。
Furthermore, by using the resist after dry etching as a protective film, it is possible to avoid the errors of resist removal, and solve the problem of numerous bitdowns caused by incompleteness of resist/removal. I can do it. That is, Cd5-1°Cd
's etching is brought to the final step, eliminating the need for resist removal and reducing bit down (bit down).
down) It will be a car that drastically reduces the causes of occurrence.

また、Cd5−(idseのドライエツチング時に電極
も同時に切断するという)j法をとっているため、シコ
ートによる不良を低減することができるという特徴も有
している。
Furthermore, since it uses the Cd5-j method (in which the electrodes are cut at the same time during the dry etching of idse), it also has the feature that defects due to thin coating can be reduced.

以上説明したように本発明の光電変換装置の製造方法は
、光導電膜の段切れ等の欠陥が生じず、寸だ得られた光
電変換装置は良好な特性を示すもので工業上の利用価値
が高い。
As explained above, the method for manufacturing a photoelectric conversion device of the present invention does not cause defects such as step breaks in the photoconductive film, and the photoelectric conversion device obtained exhibits good characteristics and has industrial utility value. is high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(2L)〜(C1’lは従来の光電変換装置の製
造方法の各工程における断面図、第2図は第1図に示す
光電変換装置の上面部分拡大図、第3図は光電変換装置
を原稿読み取りセンサとして用いる場合の概略配置図、
第4図は従来の光電変換装置における電極の段切れの様
子を示す図、第6図は本発明の実施例の、光電変換装置
の製造方法においてガラス基板に光導電膜を蒸着した様
子を示す上面部分拡大図、第6図は本発明の実施例の光
電変換装置4製造方法においてメタルマスクを用いて、
光導電膜を蒸着する場合の副走査方向部分拡大図、第7
図は本発明の実施例の光電変換装置の製造方法において
光導電膜に電極を形成した様子を示す上面部分拡大図、
第8図は本発明の実施例の光電変換装置の製造方法にお
いて受光部及び個別電極の間と共通電極間の部分の光導
電膜を除去した様子を示す上面部分拡大図、第9図は受
光部及び個別電極の間と共通電極間の部分の光導電膜を
除去する本発明の他の実施例における光電変換装置の上
面部分拡大図である。 1.21・・・・・・ガラス基板、2.22・・・・・
・光導電膜、4,24・・・・・・共通電極、4′・・
・・・・個別電極。 代理人の氏名 弁理士 中 尾 畝 男 ほか1名第1
図 ? 第2図 第3図 1 第4図 第5図 2 第7図 第8図
Figures 1 (2L) to (C1'l) are cross-sectional views at each step of the conventional method for manufacturing a photoelectric conversion device, Figure 2 is a partially enlarged top view of the photoelectric conversion device shown in Figure 1, and Figure 3 is a photoelectric conversion device. A schematic layout diagram when using the conversion device as a document reading sensor,
FIG. 4 is a diagram showing how electrodes are separated in a conventional photoelectric conversion device, and FIG. 6 is a diagram showing how a photoconductive film is deposited on a glass substrate in the method for manufacturing a photoelectric conversion device according to an embodiment of the present invention. FIG. 6 is a partial enlarged view of the top surface, in which a metal mask is used in the method for manufacturing the photoelectric conversion device 4 according to the embodiment of the present invention.
Partial enlarged view in the sub-scanning direction when depositing a photoconductive film, No. 7
The figure is a partially enlarged top view showing how electrodes are formed on a photoconductive film in the method for manufacturing a photoelectric conversion device according to an embodiment of the present invention;
FIG. 8 is a partially enlarged top view showing the removal of the photoconductive film in the light-receiving section and the areas between the individual electrodes and between the common electrodes in the manufacturing method of the photoelectric conversion device according to the embodiment of the present invention, and FIG. 9 is the light-receiving part. FIG. 6 is a partially enlarged top view of a photoelectric conversion device according to another embodiment of the present invention in which the photoconductive film is removed between the individual electrodes and between the common electrodes. 1.21...Glass substrate, 2.22...
・Photoconductive film, 4, 24... Common electrode, 4'...
...Individual electrode. Name of agent: Patent attorney Uneo Nakao and 1 other person No. 1
figure? Figure 2 Figure 3 Figure 1 Figure 4 Figure 5 Figure 2 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】 (1)透光性絶縁基板と、副走査方向端部の断面形状が
テーバを有しかつ主走査方向に一列に並ぶ島状の光導電
膜群と、前記光導電膜群を一定単位数ごとにグループ化
し、各グループ毎に前記光導電膜の一方の端子を共通接
続した共通電極群と、前記光導電膜の他端に接続された
個別電極群とよりなることを特徴とする光電変換装置。 (2)光導電膜上に、ホトレジスト膜が表面保護膜とし
て設けられていることを特徴とする特許請求の範囲第1
項に記載の光電変換装置。 (3)  ホトレジスト膜はポリイミド系感光性樹脂で
あることを特徴とする特許請求の範囲第2項に記載の光
電変換装置。 (4)透明絶縁性基板上に、マスクを用いて真空蒸着法
又はスパッタ法で光導電膜を主走査方向に帯状に形成す
る工程と、前記光導電膜を活性化するための熱処理工程
と、主走査方向に一列に配列された複数個の個別電極群
と一定単位数ごとにグループ化し、各グループ毎に前記
個別電極に対向した共通電極を形成する工程と、前記光
導電膜を前記電極群の位相に合せて個々に分離する工程
とよりなることを特徴とする光電変換装置の製造方法。 (6)光導電膜が■−■化合物であり、かつ熱処理工程
がcdのハロゲン化物の一種以上の蒸気を含む雰囲気中
で前記■−■族と前記Cdハロゲン化物との共晶温度以
上の温度で行なわれることを特徴とする特許請求の範囲
第4看に記載の光電変換装置の製造方法。 (6)光導電膜を分離する工程が、ホトレジストパター
ンを用いて電極群の位相に合せて、ドライエツチングし
て個々に分離する工程であることを特徴とする特許請求
の範囲第4項に記載の光電変換装置の製造方法。
[Scope of Claims] (1) A light-transmitting insulating substrate, a group of island-shaped photoconductive films having a tapered cross-sectional shape at the end in the sub-scanning direction and arranged in a line in the main-scanning direction, and the photoconductive film The groups are grouped into a certain number of units, and each group consists of a common electrode group in which one terminal of the photoconductive film is connected in common, and an individual electrode group connected to the other end of the photoconductive film. Features of photoelectric conversion device. (2) Claim 1, characterized in that a photoresist film is provided as a surface protective film on the photoconductive film.
The photoelectric conversion device described in . (3) The photoelectric conversion device according to claim 2, wherein the photoresist film is a polyimide photosensitive resin. (4) forming a photoconductive film in a strip shape in the main scanning direction on a transparent insulating substrate by vacuum evaporation or sputtering using a mask; and a heat treatment process for activating the photoconductive film; a step of grouping a plurality of individual electrode groups arranged in a line in the main scanning direction into a certain number of units, forming a common electrode facing the individual electrodes for each group, and applying the photoconductive film to the electrode group. 1. A method for manufacturing a photoelectric conversion device, comprising the step of separating each one according to the phase of the photoelectric conversion device. (6) The photoconductive film is a ■-■ compound, and the heat treatment step is carried out at a temperature equal to or higher than the eutectic temperature of the ■-■ group and the Cd halide in an atmosphere containing vapor of one or more types of CD halides. A method for manufacturing a photoelectric conversion device according to claim 4, characterized in that the method is carried out by: (6) The step of separating the photoconductive film is a step of individually separating the photoconductive film by dry etching in accordance with the phase of the electrode group using a photoresist pattern. A method for manufacturing a photoelectric conversion device.
JP57099666A 1982-06-09 1982-06-09 Photoelectric converter and manufacture thereof Granted JPS58216459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57099666A JPS58216459A (en) 1982-06-09 1982-06-09 Photoelectric converter and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57099666A JPS58216459A (en) 1982-06-09 1982-06-09 Photoelectric converter and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58216459A true JPS58216459A (en) 1983-12-16
JPH0228903B2 JPH0228903B2 (en) 1990-06-27

Family

ID=14253355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57099666A Granted JPS58216459A (en) 1982-06-09 1982-06-09 Photoelectric converter and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58216459A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135982A (en) * 1980-03-28 1981-10-23 Canon Inc Array of photoelectric conversion element
JPS56153783A (en) * 1980-04-30 1981-11-27 Nippon Telegr & Teleph Corp <Ntt> Photoelectric converting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135982A (en) * 1980-03-28 1981-10-23 Canon Inc Array of photoelectric conversion element
JPS56153783A (en) * 1980-04-30 1981-11-27 Nippon Telegr & Teleph Corp <Ntt> Photoelectric converting element

Also Published As

Publication number Publication date
JPH0228903B2 (en) 1990-06-27

Similar Documents

Publication Publication Date Title
JPH09252104A (en) Repairing method of address line of thin film image pickup device
JPS58216459A (en) Photoelectric converter and manufacture thereof
JP2000114531A (en) Manufacture of semiconductor device
JP2755707B2 (en) Method for manufacturing photovoltaic device
JP3393470B2 (en) Liquid crystal display device and manufacturing method thereof
JPS59125656A (en) Photoconductive element array
JPS598369A (en) Fabrication of photo-electric converting apparatus
JPH0251264B2 (en)
JPS60171767A (en) Photoelectric conversion device
JPS6151968A (en) Manufacture of semiconductor device
JPS6041874B2 (en) Manufacturing method of solid-state image sensor
JPH02130551A (en) Thin film pattern and production thereof as well as matrix circuit board formed by using this pattern and image display device
JPH0763087B2 (en) Method of manufacturing image sensor
JPH0566411A (en) Transparent conductive film and production of transparent conductive film
JPS5923523A (en) Semiconductor device
JPS63299270A (en) Manufacture of image sensor
JPH0724302B2 (en) Contact image sensor manufacturing method
JPS63199458A (en) Light-receiving device and one-dimensional image sensor using this device and manufacture of said device
JPS6053474B2 (en) Manufacturing method of solid-state imaging device
JPS6182467A (en) Manufacture of image sensor
JPS5940567A (en) Photoelectric transducer
JPS62203366A (en) Image sensor and manufacture thereof
JPH0638511B2 (en) Method of manufacturing infrared detection element
JPH02280385A (en) Contact sensor and manufacture thereof
JPS62298165A (en) Photoelectric conversion device and manufacture thereof