JPH0228903B2 - - Google Patents

Info

Publication number
JPH0228903B2
JPH0228903B2 JP57099666A JP9966682A JPH0228903B2 JP H0228903 B2 JPH0228903 B2 JP H0228903B2 JP 57099666 A JP57099666 A JP 57099666A JP 9966682 A JP9966682 A JP 9966682A JP H0228903 B2 JPH0228903 B2 JP H0228903B2
Authority
JP
Japan
Prior art keywords
photoconductive film
photoelectric conversion
conversion device
resist
photoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57099666A
Other languages
Japanese (ja)
Other versions
JPS58216459A (en
Inventor
Noboru Yoshigami
Takahiro Nishikura
Shoichi Fukai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57099666A priority Critical patent/JPS58216459A/en
Publication of JPS58216459A publication Critical patent/JPS58216459A/en
Publication of JPH0228903B2 publication Critical patent/JPH0228903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Facsimile Heads (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は、フアクシミリの送信側に用いる、原
稿と1:1に対応する大きさの光電変換装置の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a photoelectric conversion device used on the sending side of a facsimile, the size of which corresponds 1:1 to a document.

フアクシミリの送信側における、原稿を読取る
装置として光電変換特性を有する光センサアレイ
等の光電変換装置が用いられている。従来におけ
る、この種の光電変換装置の構造とその製造方法
について第1図a〜dおよび第2図に示す。第1
図a〜dは副走査方向の部分拡大図、第2図は上
面拡大図である。第1図および第2図において、、
ガラス基板1等の全面に、まずCdS−CdSe等の
光導電膜2を被着し(第1図a)、次に例えば8
本/mmの場合には幅85μ、長さ350μの矩形状の、
主走査方向に一列に並ぶレジストパターン3を形
成した後、臭素等のエツチング液でエツチング
し、前記レジストパターンに沿つた島状の光導電
膜群を形成する(第1図b)。この時各光導電膜
2の上部にはレジストパターン3が残つたまゝで
あるから、ガラス基板全体をリムーバ等に浸漬し
てレジストを除去する(第1図c)。この様にし
てできた、主走査方向に一列に並ぶ、島状の光導
電膜群が形成されたガラス基板を、Cdのハロゲ
ン化物(例えば小量とCdCl2粉末)の一種以上の
蒸気を含む雰囲気中で、CdS−CdSeとハロゲン
化物との共晶温度以上の温度、例えば500〜600℃
の温度で熱処理し、増感作用を持たせる。次に増
感作用を持つた前記島状の光導電膜群に対応させ
て、一定単位数ごとに共通に接続され共通電極群
4′と、一定単位数ごとグループ化された個別電
極群4をリフトオフ法により形成する(第1図
d)。さらに、フイルムリード5,6を接続部7
において前記個別電極群4にボンデイングするこ
とにより、マトリツクス結線して個別電極側取出
し端子とする。
2. Description of the Related Art A photoelectric conversion device such as an optical sensor array having photoelectric conversion characteristics is used as a device for reading a document on the sending side of a facsimile. The structure of a conventional photoelectric conversion device of this type and its manufacturing method are shown in FIGS. 1A to 1D and FIG. 2. 1st
Figures a to d are partially enlarged views in the sub-scanning direction, and Figure 2 is an enlarged top view. In Figures 1 and 2,
First, a photoconductive film 2 such as CdS-CdSe is deposited on the entire surface of a glass substrate 1 etc. (Fig. 1a), and then, for example, 8
In the case of books/mm, a rectangular shape with a width of 85μ and a length of 350μ is used.
After forming resist patterns 3 aligned in a line in the main scanning direction, etching is performed with an etching solution such as bromine to form island-shaped photoconductive film groups along the resist patterns (FIG. 1b). At this time, since the resist pattern 3 remains on the top of each photoconductive film 2, the entire glass substrate is immersed in a remover or the like to remove the resist (FIG. 1c). The glass substrate formed in this way, on which island-shaped photoconductive film groups are formed, arranged in a line in the main scanning direction, is coated with vapor of one or more types of Cd halide (for example, a small amount and CdCl 2 powder). In the atmosphere, the temperature is higher than the eutectic temperature of CdS-CdSe and the halide, e.g. 500 to 600℃.
It is heat-treated at a temperature of Next, in correspondence with the island-shaped photoconductive film group having a sensitizing effect, a common electrode group 4' connected in common in a fixed number of units, and an individual electrode group 4 grouped in a fixed number of units are connected. It is formed by the lift-off method (Fig. 1d). Furthermore, connect the film leads 5 and 6 to the connection part 7.
By bonding to the individual electrode group 4, the wires are connected in a matrix to form individual electrode side lead-out terminals.

次に第3図に示すように、上記の方法で得られ
た光電変換装置8と、照明光源9、セルフオツク
レンズアレー10、送信原稿11を図のように配
置し、照明光源9で照明された送信原稿11から
の反射光をセルフオツクレンズアレー10を通し
て光電変換装置8に結像して、電気信号として取
出している。
Next, as shown in FIG. 3, the photoelectric conversion device 8 obtained by the above method, an illumination light source 9, a self-cleaning lens array 10, and a transmission document 11 are arranged as shown in the figure, and the illumination light source 9 is used to illuminate the original. The reflected light from the transmitted original 11 is focused on a photoelectric conversion device 8 through a self-occurring lens array 10, and is extracted as an electrical signal.

ところが、前述のような光電変換装置の構造及
び製造方法では、下記の理由から出力特性にバラ
ツキが生じ易いという問題点を有している。
However, the structure and manufacturing method of the photoelectric conversion device as described above has the problem that variations in output characteristics tend to occur for the following reasons.

まず第一に、第1図bから第1図cに行く工程
において、光導電膜2の上部のレジストパターン
3の除去が、完壁には行なわれ難いということで
ある。例えばA4版の原稿の読み出し用であつて、
解像度8本/mmの場合、この様な光導電膜2の島
が1728ビツト主走査方向に一列に並ぶことにな
る。総ビツト数が多いということも問題ではある
が、一列に並んでいるということが難しさを一層
助長しており、光導電膜2上、或いはその周辺部
に、極く微小ではあるが、確率的にレジストパタ
ーン3の残査物が観察される。1ビツトでもその
様なものが存在すると、後の活性化プロセスで高
温処理にさらされて特性に影響が現れ、不良とな
る確率が非常に高い。第1図aおよび第1図bに
おいて、光導電膜2をエツチングする方法として
はウエツト方式又はドライ方式或いは両者の併用
等があり、光導電膜2がCdS−CdSeの場合、ウ
エツトではエツチング液として臭素を用いるが、
臭素にふれたレジスト3の表面は変質して、レジ
スト除去液リムーバに溶解し難くなり、前述のレ
ジストの残査物として残り易くなる。ドライエツ
チングの場合もN2とO2のイオンでレジスト3の
表面をたたくことになり、リムーバに溶解し得く
なるという点で同じである。また、リムーバ等の
ウエツト式レジスト除去の代りにO2プラズマ等
のドライエツチング方式を採用して、大面積であ
る関係上、程度の差はあれ、確率的に残査物が観
察され、特性に影響を及ぼし、不良になる確率が
非常に高くなる。
First of all, in the process from FIG. 1b to FIG. 1c, it is difficult to completely remove the resist pattern 3 on the photoconductive film 2. For example, for reading A4 size manuscripts,
In the case of a resolution of 8 lines/mm, 1728 bits of islands of the photoconductive film 2 are arranged in a line in the main scanning direction. The fact that the total number of bits is large is also a problem, but the fact that they are lined up in a row makes it even more difficult. Residues of resist pattern 3 are observed. If even one bit of such a thing exists, it will be exposed to high temperature treatment in the subsequent activation process, which will affect the characteristics, and there is a very high probability that it will become defective. In FIGS. 1a and 1b, the photoconductive film 2 can be etched using a wet method, a dry method, or a combination of the two. When the photoconductive film 2 is made of CdS-CdSe, wet etching can be used as an etching solution. Bromine is used, but
The surface of the resist 3 exposed to bromine changes in quality, becomes difficult to dissolve in the resist removal liquid remover, and tends to remain as the aforementioned resist residue. Dry etching is the same in that the surface of the resist 3 is hit with N 2 and O 2 ions, which can be dissolved in the remover. In addition, instead of using a wet resist removal method such as a resist remover, a dry etching method such as O 2 plasma is used, and due to the large area, residual materials are observed with varying degrees of probability, which may affect the characteristics. The probability of it becoming defective is very high.

第二に、光導電膜2の厚みによる電極の段切れ
という問題がある。すなわち第1図dに示す電極
群4,4′の形成の工程において、第4図に示す
ように12,12′部分で段切れが生ずる。光導
電膜2の厚みは一般に3000〜10000Å程度である
のに対して、電極は歪等の関係で、薄くすること
が望ましく、1000Å以下の場合が多いので、光導
電膜2の端部12,12′に電極が付き難く、段
切れが起り易くなる。これは第1図a、第1図b
から明らかなように光導電膜2の副走査方法の端
部12,12′はエツチングで形成されるため、
順テーパにならず、垂直になるからである。
Second, there is a problem that the electrodes are broken due to the thickness of the photoconductive film 2. That is, in the step of forming the electrode groups 4, 4' shown in FIG. 1d, a break occurs at the portions 12, 12' as shown in FIG. The thickness of the photoconductive film 2 is generally about 3,000 to 10,000 Å, whereas it is desirable to make the electrode thinner due to strain etc., and the thickness is often less than 1,000 Å. It is difficult to attach the electrode to 12', and breakage is likely to occur. This is Figure 1a and Figure 1b
As is clear from the figure, since the ends 12 and 12' of the photoconductive film 2 in the sub-scanning method are formed by etching,
This is because it is not forward tapered but vertical.

第3は、第1図cのように、島状に光導電膜2
を分離してから、500℃〜600℃の活性化処理を行
うと、ガラス基板1(例えばダウコーニング
7059)の収縮が起り、島状の光導電膜2の主走査
方向のピツチが小さくなり、次の電極パターンの
ピツチと合わなくなるという問題である。従つて
現在は、光導電膜2を付ける前に、ガラス基板1
のみを600℃以上の温度で熱処理し、前もつて収
縮させておくという方法をとつている。ところが
実際にはこの様に前もつて熱処理しておいても、
活性化工程において更に収縮が起り、ピツチずれ
が皆無とはならない。その上、熱処理というプロ
セスが増えるので、ガラス基板表面が汚れるとい
う確率の増加につながる。
Third, as shown in FIG. 1c, the photoconductive film 2 is formed in an island shape
When the glass substrate 1 (e.g. Dow Corning
7059) occurs, the pitch of the island-shaped photoconductive film 2 in the main scanning direction becomes smaller, and the pitch does not match the pitch of the next electrode pattern. Therefore, at present, the glass substrate 1 is coated before the photoconductive film 2 is attached.
The method used is to heat-treat the chisel at a temperature of over 600°C to shrink it beforehand. However, in reality, even if heat treated in advance like this,
Further shrinkage occurs during the activation process, and pitch deviations cannot be completely eliminated. Furthermore, since the heat treatment process is increased, the probability that the surface of the glass substrate becomes contaminated increases.

第4は、一般に光導電体膜2とガラス基板1と
の密着性が悪いという問題である。従つて第1図
b、第1図cに示すような、島状にエツチング
し、上部のレジストをリムーバで除去するプロセ
スにおいて、島状の光導電膜2が剥離して、流れ
てしまう確率が非常に高い。従つて現実には、エ
ツチング用のレジストを塗布する前に、即ち光導
電膜2を付けた直後、密着性を良くするため400
℃以上のアニーリングを行つている。この様な方
法も、工程が増えるだけでなく、汚れるという確
率が増える。この様な問題は、大型のラインセン
サとしての光導電装置の場合には歩留り低下に大
きく影響を及ぼす。
The fourth problem is that the adhesion between the photoconductor film 2 and the glass substrate 1 is generally poor. Therefore, in the process of etching into islands and removing the upper resist with a remover as shown in FIGS. 1b and 1c, there is a high probability that the island-shaped photoconductive film 2 will peel off and flow. Very expensive. Therefore, in reality, before applying the etching resist, that is, immediately after applying the photoconductive film 2, in order to improve the adhesion, 400
Annealing is performed above ℃. Such a method not only increases the number of steps but also increases the probability of contamination. Such problems greatly affect yield reduction in the case of photoconductive devices used as large line sensors.

第5は、前述のようなリフトオフ法により電極
を形成し、すぐにフイルムリードをボンデイング
するのでなく、実際にはその間にアニーリング、
観察、測定、補修、パシベーシヨン等のプロセス
が入る。即ちパシベーシヨンを行うまでに、各種
プロセス、取扱いがあるので、極く軽く、極く微
小部分ではあるが、光導電膜の受光面をこすつた
りしてしまう場合がある。CdS−CdSe薄膜は機
械的に弱く、表面は非常にキズ付き易い。顕微鏡
観察によつても判別し難い様な極くわずかなキズ
でも、出力低下をもたらし、ピツドダウン
(bitdown)になる事を高い確率で経験している。
Fifth, the electrodes are formed by the lift-off method as described above, and the film leads are not bonded immediately, but in fact, annealing and
Processes such as observation, measurement, repair, and passivation are included. That is, since various processes and handling are required before passivation is performed, the light-receiving surface of the photoconductive film may be rubbed, although it is a very light and minute portion. CdS-CdSe thin films are mechanically weak and the surface is very easily scratched. There is a high probability that even the slightest scratch, which is difficult to discern even by microscopic observation, will cause a drop in output, resulting in a bitdown.

本発明は従来における上記のような問題点を解
決せんとするものであり、フアクシミリの送信側
に用いる、原稿と1:1に対応する大きさの光電
変換装置の最大の問題である歩留り低下即ち特性
のバラツキ要因をなくすための製造方法を提供す
ることを目的とするものである。
The present invention is intended to solve the above-mentioned conventional problems, and the biggest problem with photoelectric conversion devices used on the sending side of facsimile machines, whose size corresponds 1:1 to the original, is the reduction in yield, i.e. The object of the present invention is to provide a manufacturing method for eliminating factors that cause variations in characteristics.

以下に、本発明の光電変換装置の製造方法の実
施例について詳細に説明する。
Examples of the method for manufacturing a photoelectric conversion device of the present invention will be described in detail below.

まず、大きさ230mm×50mm、厚み1.2mmのコーニ
ング7059ガラス基板をよく洗滌、乾燥する。その
後、従来のようにピツチずれを防ぐための600℃
以上のアニーリング処理を経ることなく、すぐに
光導電膜、例えばCdS−CdSeの固溶体を真空蒸
着又はスパツタリング法により、前記ガラス基板
上に被着する。この場合、全面に蒸着するとでは
なく、メタルマスクを用いて、第5図に示すよう
にガラス基板21の上に光導電膜22,22′を
主走査方向に帯状に蒸着する。第5図において光
導電膜22,22′がガラス基板21に形成され
ているのは、一枚のガラス基板21から2本のセ
ンサを得るためであり、最後の工程で中心部から
半分に割る様にしている。第6図は第5図の副走
査方向の断面部分拡大図で、メタルマスク23を
用いてCdS−CdSe光導電膜22を蒸着する時の
様子を示す。第6図から明らかなように、斜めか
らとんできた蒸発粒子24はメタルマスク23の
影になり、メタルマスク23に隣接した箇所には
被着し難い。従つて蒸着された光導電膜22の副
走査方向の端部は点線で示す様に厚みが薄く順テ
ーパとなる。
First, a Corning 7059 glass substrate measuring 230 mm x 50 mm and 1.2 mm thick was thoroughly washed and dried. After that, the temperature was increased to 600℃ to prevent pitch deviation as before.
A photoconductive film, such as a CdS-CdSe solid solution, is immediately deposited on the glass substrate by vacuum evaporation or sputtering without going through the above annealing process. In this case, the photoconductive films 22, 22' are not deposited over the entire surface, but are deposited in a band shape in the main scanning direction on the glass substrate 21 using a metal mask, as shown in FIG. The reason why photoconductive films 22 and 22' are formed on the glass substrate 21 in FIG. 5 is to obtain two sensors from one glass substrate 21, and in the final step, the photoconductive films 22 and 22' are formed in half from the center. I'm doing it like that. FIG. 6 is a partially enlarged cross-sectional view in the sub-scanning direction of FIG. 5, showing how the CdS-CdSe photoconductive film 22 is deposited using the metal mask 23. As is clear from FIG. 6, the evaporated particles 24 falling obliquely are in the shadow of the metal mask 23 and are difficult to adhere to areas adjacent to the metal mask 23. Therefore, the end portion of the deposited photoconductive film 22 in the sub-scanning direction is thin and tapered as shown by the dotted line.

次に従来の様にレジストを使つてエツチング、
レジスト除去等の工程を経ることなしに、蒸着装
置から光導電膜22を形成したガラス基板21を
取り出して直ちに、クリーンな状態で活性化工程
に入る。活性化となCdCl2雰囲気中で500〜600℃
の熱処理を行う事である。この処理により光導電
膜22が感度を持つ様になり、かつガラス基板2
1と光導電膜22との密着性も良くなる。
Next, etching using resist as before,
The glass substrate 21 on which the photoconductive film 22 is formed is taken out from the vapor deposition apparatus without going through a process such as resist removal, and immediately enters the activation process in a clean state. Activated at 500-600℃ in CdCl2 atmosphere
It is to perform heat treatment. Through this treatment, the photoconductive film 22 becomes sensitive, and the glass substrate 2
The adhesion between 1 and the photoconductive film 22 also improves.

その後、リフトオフ法で電極を形成するため
に、例えばポジレジストを全面に塗布し、電極を
付けるべき部分のみ露光し、レジストを除去して
おく。次に電極NiCr.Auを全面に蒸着し、続いて
アセトンに浸漬する。レジストの残つている部分
のNiCr.Auはレジストの溶解により、ガラス基板
から遊離し、第7図に示すような所望の電極パタ
ーンを有する共通電極24、個別電極24′が形
成される。第7図において22は光導電膜であ
る。
Thereafter, in order to form electrodes by a lift-off method, for example, a positive resist is applied to the entire surface, only the portion where the electrodes are to be attached is exposed, and the resist is removed. Next, the electrode NiCr.Au is deposited on the entire surface, followed by immersion in acetone. The remaining portions of the resist, NiCr.Au, are released from the glass substrate by dissolving the resist, and a common electrode 24 and individual electrodes 24' having a desired electrode pattern as shown in FIG. 7 are formed. In FIG. 7, 22 is a photoconductive film.

最後に帯状の光導電膜22を第8図の様に、各
ビツトに分離するため、受光部及び個別電極2
4′の間の部分25及び共通電極24のブロツク
間の部分26をフオトレジストをマスクとして、
ドライ又はウエツトエツチングする。ドライエツ
チングを採用した場合にはマスクとして用いるフ
オトレジストは、エツチング後、除去する必要は
なく、光導電体22及び共通電極24、個別電極
24′の両表面の保護膜として、そのまゝ残して
おいて良い。その場合、フオトレジストとしてポ
リイミド系樹脂のホトニース(東洋レーヨン製)
を用いると、より優れたパシベーシヨン効果を示
すことが確認されている。フオトレジストを除去
する必要がない点に関し、例えば第1図に基づい
て説明すると、光の入射は、基板1の第2主面即
ち裏面から行うので、第1主面即ち表面の光導電
膜2や電極4,4′の上にのせるパシベーシヨン
材料は透明である必要はない。したがつて本発明
の場合、レジストを除去する必要もないし、その
レジストを保護用として利用出来るので、従来の
ようにエツチング後のレジスト除去の不完全性に
よるビツトダウン(bit down)等の心配がなく
なる。もちろん、前述の保護用レジストは表面に
付いているだけで、側面には付いていないので、
最終的には、ホトニース等のパシベーシヨン剤を
更にその上全面に塗布する必要がある事は当然で
ある。
Finally, in order to separate the strip-shaped photoconductive film 22 into each bit as shown in FIG.
A photoresist is used as a mask for the portion 25 between the blocks 4' and the portion 26 between the blocks of the common electrode 24,
Etch dry or wet. When dry etching is employed, the photoresist used as a mask does not need to be removed after etching, and is left as is as a protective film on both surfaces of the photoconductor 22, the common electrode 24, and the individual electrodes 24'. You can leave it there. In that case, as a photoresist, polyimide resin photonyce (manufactured by Toyo Rayon) is used.
It has been confirmed that the use of 100% has a better passivation effect. With regard to the fact that there is no need to remove the photoresist, for example, referring to FIG. The passivation material placed on the electrodes 4, 4' need not be transparent. Therefore, in the case of the present invention, there is no need to remove the resist, and the resist can be used for protection, so there is no need to worry about bit down due to incompleteness in resist removal after etching as in the conventional method. . Of course, the aforementioned protective resist is only attached to the surface, not the sides, so
It goes without saying that it is ultimately necessary to further apply a passivation agent such as photo-neath to the entire surface.

これに対し、ウエツトエツチングを行うことも
出来るが、この場合にはエツチング液として臭素
を用いることになるので、エツチング後のレジス
ト等は臭素を含有しており、必ず除去する必要が
ある。除去しないと、残存臭素が光導電膜22に
悪影響を及ぼし、信頼性が悪くなる。したがつ
て、ウエツトエツチングの場合には、エツチング
後レジスト除去のプロセスが必要となる。
On the other hand, wet etching can be performed, but in this case, bromine is used as the etching solution, so the resist etc. after etching contain bromine, which must be removed. If not removed, the remaining bromine will have an adverse effect on the photoconductive film 22, resulting in poor reliability. Therefore, in the case of wet etching, a resist removal process is required after etching.

これで一応光導電膜と共通電極、個別電極が出
来たわけであるが、特性安定化のため更に熱処理
する場合が多い。
In this way, the photoconductive film, common electrode, and individual electrodes have been completed, but in many cases further heat treatment is required to stabilize the characteristics.

次に従来例と同様であるが、第2図に示す様に
ポリイミドフイルム5上に銅箔配線6が形成され
たフイルムリードを用いて、第2図の部分7で下
層配線4とボンデイングすることにより、マトリ
ツクス結線して個別電極側取出し端子とする。
Next, as in the conventional example, as shown in FIG. 2, using a film lead in which a copper foil wiring 6 is formed on a polyimide film 5, bonding is performed with the lower layer wiring 4 at a portion 7 in FIG. The wires are connected in a matrix and used as individual electrode side extraction terminals.

前述の工程で、CdS−CdSeを蒸着した後すぐ
に活性化工程に入る場合もあるが、ガラス基板と
CdS−CdSeの密着性のためではなく、CdS−
CdSeの結晶性を良くするために、活性化前に400
〜500℃でアニーリングすることが好ましい。
In the above process, the activation process may begin immediately after CdS-CdSe is deposited, but it
This is not due to the adhesion of CdS−CdSe, but because of the CdS−
400% before activation to improve the crystallinity of CdSe.
Annealing at ~500°C is preferred.

なお、所望の電極パターンを有する共通電極2
4、個別電極24′を形成するためのエツチング
工程において、第9図に示す様に共通電極部の一
部25′を切り込んでも良い。実際にはマスク合
せ精度等の関係で、種々な形状があり得るが、実
効的には第8図の様に切り込めば良い。
Note that the common electrode 2 having a desired electrode pattern
4. In the etching process for forming the individual electrodes 24', a portion 25' of the common electrode portion may be cut out as shown in FIG. In reality, there may be various shapes depending on the accuracy of mask alignment, etc., but it is effective to cut as shown in FIG. 8.

大型のラインセンサの最大の問題は、全ビツト
の出力特性をそろえる事が非常に難しいため歩貿
りの向上をはかることが困難な点にある。本発明
の実施例によれ光電変換装置の構造及びその製造
方法は前述のとおりであり、このことにより以下
の観点から出力特性をそろえて歩留りを向上させ
ることができる。すなわち、本発明の実施例によ
る光電変換装置の製造方法によれば光導電膜を蒸
着直後すぐに活性化工程に入るので、活性化前の
よごれが殆んどなく、出力バラツキの最大の要因
が取除かれる。
The biggest problem with large line sensors is that it is extremely difficult to make the output characteristics of all bits the same, making it difficult to improve the walking speed. The structure of the photoelectric conversion device and the manufacturing method thereof according to the embodiment of the present invention are as described above, and thereby the output characteristics can be made uniform and the yield can be improved from the following viewpoints. That is, according to the method for manufacturing a photoelectric conversion device according to the embodiment of the present invention, the activation step is started immediately after the photoconductive film is deposited, so there is almost no contamination before activation, and the biggest cause of output variation is eliminated. removed.

また、例えば第6図に示す様に、メタルマスク
を用いて蒸着することにより副走査方法の断面形
状が順テーパになり、第4図に示す様な電極の段
切れという問題が起らない。
Further, as shown in FIG. 6, for example, by performing vapor deposition using a metal mask, the cross-sectional shape of the sub-scanning method becomes a forward taper, so that the problem of electrode breakage as shown in FIG. 4 does not occur.

さらに本発明においては光導電膜を分離せずに
活性化のための熱処理を行なうため、熱処理の結
果起る基板の収縮に起因する島状の光導電膜群と
電極パターンのピツチずれの心配がないので、ガ
ラス基板の予備熱処理及び予備熱処理後の第2回
目の洗滌が不要となり、第1回目の洗滌後すぐに
光導電膜の蒸着を行う事が出来る。したがつて、
工程が減りガラス基板表面の汚れる確率が減るこ
とになり、出力バラツキ減少、歩留向上、コスト
低減になる。加わうるに熱処理しても、なお起る
ピツチずれが皆無になり、ピツチずれによる出力
バラツキも無くなる。
Furthermore, in the present invention, since the heat treatment for activation is performed without separating the photoconductive film, there is no need to worry about the pitch misalignment between the island-shaped photoconductive film group and the electrode pattern due to shrinkage of the substrate as a result of the heat treatment. Therefore, the preliminary heat treatment of the glass substrate and the second cleaning after the preliminary heat treatment are not necessary, and the photoconductive film can be deposited immediately after the first cleaning. Therefore,
This reduces the number of steps and reduces the probability of contamination of the glass substrate surface, resulting in reduced output variations, improved yields, and reduced costs. Even after additional heat treatment, there is no pitch shift that still occurs, and output variations due to pitch shift are also eliminated.

また、本発明によれば従来の様に、ガラス基板
と光導電膜との密着性を必要とするエツチング工
程に入る前に、密着性を増す活性化工程に入るの
で、密着性を増すための熱処理工程を必要としな
い。これは工程を減らすだけでなく、基板表面の
汚れを減らすことになり、歩留り向上につながら
る。ただ場合によつては、密着性のためではな
く、結晶性を良くするために、活性化工程の前
に、従来のようにアニーリングする場合もある
が、アニーリング処理だけでは完全な密着性が得
られない場合が多く、本発明の場合にはCdS−
CdSeのエツチングの前に活性化という工程が入
るので、密着性という問題は全く無くなる。
Furthermore, according to the present invention, an activation process is performed to increase the adhesion before an etching process that requires adhesion between the glass substrate and the photoconductive film is started, unlike conventional methods. No heat treatment process required. This not only reduces the number of steps, but also reduces contamination on the substrate surface, leading to improved yields. However, in some cases, conventional annealing may be performed before the activation process, not to improve adhesion but to improve crystallinity, but complete adhesion may not be achieved with annealing treatment alone. In many cases, CdS-
Since an activation process is performed before CdSe etching, there is no problem with adhesion.

さらにまた、リフトオフによる電極形成後、パ
シベーシヨンを行うまでのアニーリング、観察、
測定、補修等の各プロセスにおいて、その取扱い
上の極くわずかなキズによるビツトダウン(bit
down)の発生の心配は、本発明の場合、エツチ
ング時使用したホトニース等のレジスト膜をその
まゝ保護用として用いるので、全くなくなる。
Furthermore, after electrode formation by lift-off, annealing, observation,
In each process such as measurement and repair, bit down (bit
In the case of the present invention, there is no need to worry about the occurrence of "down" because the photoresist film used during etching is used as it is for protection.

さらに、ドライエツチング後のレジストを保護
膜として用いるという事により、レジスト除去の
難しさを避けることができ、レジスト除去の不完
全性に起因する多数のビツトダウン(bit down)
の問題を解決することができる。すなわち、CdS
−CdSeのエツチングを最後の工程にもつて来た
ので、レジスト除去の必要性がなくなり、ビツト
ダウン(bit down)発生原因を激減させる事に
なる。
Furthermore, by using the resist after dry etching as a protective film, the difficulty of resist removal can be avoided, resulting in a large number of bit downs caused by incomplete resist removal.
can solve the problem. That is, CdS
- Since CdSe etching is carried out as the last step, there is no need to remove the resist, and the cause of bit down is drastically reduced.

また、CdS−CdSeのドライエツチング時に電
極も同時に切断するという方法をとつているた
め、シヨートによる不良を低減することができる
という特徴も有している。
In addition, since the electrodes are also cut at the same time when CdS-CdSe is dry etched, defects due to shoots can be reduced.

以上説明したように本発明の光電変換装置の製
造方法は、光導電膜の段切れ等の欠陥が生じず、
また得られた光電変換装置は良好な特性を示すも
ので工業上の利用価値が高い。
As explained above, the method for manufacturing a photoelectric conversion device of the present invention does not cause defects such as breakage of the photoconductive film, and
Furthermore, the obtained photoelectric conversion device exhibits good characteristics and has high industrial utility value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dは従来の光電変換装置の製造方法
の各工程における断面図、第2図は第1図に示す
光電変換装置の上面部分拡大図、第3図は光電変
換装置を原稿読み取りセンサとして用いる場合の
概略配置図、第4図は従来の光電変換装置におけ
る電極の段切れの様子を示す図、第5図は本発明
の実施例の光電変換装置の製造方法においてガラ
ス基板に光導電膜をした様子を示す上面部分拡大
図、第6図は本発明の実施例の光電変換装置の製
造方法においてメタルマスクを用いて、光導電膜
を蒸着する場合の副走査方向部分拡大図、第7図
は本発明の実施例の光電変換装置の製造方法にお
いて光導電膜に電極を形成した様子を示す上面部
分拡大図、第8図は本発明の実施例の光電変換装
置の製造方法において受光部及び個別電極の間と
共通電極間の部分の光導電膜を除去した様子を示
す上面部分拡大図、第9図は受光部及び個別電極
の間と共通電極間の部分の光導電膜を除去する本
発明の他の実施例における光電変換装置の上面部
分拡大図である。 1,21……ガラス基板、2,22……光導電
膜、4′,24……共通電極、4,24′……個別
電極。
Figures 1 a to d are cross-sectional views of each step of a conventional method for manufacturing a photoelectric conversion device, Figure 2 is an enlarged partial top view of the photoelectric conversion device shown in Figure 1, and Figure 3 is a photoelectric conversion device used to read an original. A schematic layout diagram when used as a sensor, FIG. 4 is a diagram showing how the electrodes are separated in a conventional photoelectric conversion device, and FIG. FIG. 6 is a partial enlarged view in the sub-scanning direction when a photoconductive film is deposited using a metal mask in the method for manufacturing a photoelectric conversion device according to an embodiment of the present invention. FIG. 7 is a partially enlarged top view showing how electrodes are formed on a photoconductive film in the method for manufacturing a photoelectric conversion device according to an embodiment of the present invention, and FIG. FIG. 9 is an enlarged top view showing the photoconductive film in the areas between the light receiving part and the individual electrodes and between the common electrodes. FIG. 7 is a partially enlarged top view of a photoelectric conversion device according to another embodiment of the present invention to be removed. 1, 21... Glass substrate, 2, 22... Photoconductive film, 4', 24... Common electrode, 4, 24'... Individual electrode.

Claims (1)

【特許請求の範囲】 1 透明絶縁性基板上に、マスクを用いて真空蒸
着法又はスパツタ法で光導電膜を特定方向に帯状
に形成する工程と、次に前記光導電膜を熱処理し
て活性化する熱処理工程と、特定方向に一列に配
列された複数個の個別電極群及び一定単位数の前
記個別電極に対向する共通電極を形成する工程
と、前記光導電膜を前記電極群の位相に合せて
個々に分離する工程とよりなることを特徴とする
光電変換装置の製造方法。 2 光導電膜が−族化合物であり、かつ熱処
理工程がCdのハロゲン化物の一種以上の蒸気を
含む雰囲気中で前記−族化合物と前記Cdハ
ロゲン化物との共晶温度以上の温度で行われる特
許請求の範囲第1項に記載の光電変換装置の製造
方法。 3 光導電膜を分離する工程が、ホトレジストパ
ターンを用いて電極群の位相に合せて、ドライエ
ツチングして個々に分離する工程である特許請求
の範囲第1項記載の光電変換装置の製造方法。
[Claims] 1. A step of forming a photoconductive film in a band shape in a specific direction on a transparent insulating substrate by vacuum evaporation or sputtering using a mask, and then heat-treating the photoconductive film to activate it. a step of forming a plurality of individual electrode groups arranged in a line in a specific direction and a common electrode facing a certain number of the individual electrodes; and a step of forming the photoconductive film in phase with the electrode group. 1. A method for manufacturing a photoelectric conversion device, comprising the steps of combining and separating each device. 2. A patent in which the photoconductive film is a - group compound, and the heat treatment step is carried out at a temperature equal to or higher than the eutectic temperature of the - group compound and the Cd halide in an atmosphere containing vapor of one or more Cd halides. A method for manufacturing a photoelectric conversion device according to claim 1. 3. The method of manufacturing a photoelectric conversion device according to claim 1, wherein the step of separating the photoconductive film is a step of individually separating the photoconductive films by dry etching in accordance with the phase of the electrode group using a photoresist pattern.
JP57099666A 1982-06-09 1982-06-09 Photoelectric converter and manufacture thereof Granted JPS58216459A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57099666A JPS58216459A (en) 1982-06-09 1982-06-09 Photoelectric converter and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57099666A JPS58216459A (en) 1982-06-09 1982-06-09 Photoelectric converter and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58216459A JPS58216459A (en) 1983-12-16
JPH0228903B2 true JPH0228903B2 (en) 1990-06-27

Family

ID=14253355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57099666A Granted JPS58216459A (en) 1982-06-09 1982-06-09 Photoelectric converter and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58216459A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135982A (en) * 1980-03-28 1981-10-23 Canon Inc Array of photoelectric conversion element
JPS56153783A (en) * 1980-04-30 1981-11-27 Nippon Telegr & Teleph Corp <Ntt> Photoelectric converting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56135982A (en) * 1980-03-28 1981-10-23 Canon Inc Array of photoelectric conversion element
JPS56153783A (en) * 1980-04-30 1981-11-27 Nippon Telegr & Teleph Corp <Ntt> Photoelectric converting element

Also Published As

Publication number Publication date
JPS58216459A (en) 1983-12-16

Similar Documents

Publication Publication Date Title
JPS5812747B2 (en) Manufacturing method of thin substrate imaging device
KR100345677B1 (en) Defect analysis technology in image sensor device
JPH0228903B2 (en)
JPS598369A (en) Fabrication of photo-electric converting apparatus
JP2001015514A (en) Manufacture of semiconductor device
JPH0251264B2 (en)
JPH0566411A (en) Transparent conductive film and production of transparent conductive film
JP3413098B2 (en) Dry etching substrate surface treatment method and apparatus
JP3393470B2 (en) Liquid crystal display device and manufacturing method thereof
JP2003332541A (en) Method of manufacturing imaging device
JP2706443B2 (en) Image sensor and method of manufacturing the same
EP0517208A1 (en) Semiconductor device and method of manufacturing the same
JPH0228975A (en) Manufacture of image sensor
EP0421476A2 (en) Method of manufacturing a semiconductor device
KR0141176B1 (en) Treatment method of wafer edge
JPH02130551A (en) Thin film pattern and production thereof as well as matrix circuit board formed by using this pattern and image display device
JPS6041874B2 (en) Manufacturing method of solid-state image sensor
JP3677956B2 (en) Manufacturing method of semiconductor device
US8686423B2 (en) Thin film transistor substrate and manufacturing method thereof
JPH02280385A (en) Contact sensor and manufacture thereof
JPH07142428A (en) Semiconductor device and fabrication thereof
JPS5923523A (en) Semiconductor device
JPS58175863A (en) Processing of semiconductor element
JPS6151968A (en) Manufacture of semiconductor device
JPH01212466A (en) Manufacture of thin film semiconductor device