JPS63199458A - Light-receiving device and one-dimensional image sensor using this device and manufacture of said device - Google Patents

Light-receiving device and one-dimensional image sensor using this device and manufacture of said device

Info

Publication number
JPS63199458A
JPS63199458A JP62031550A JP3155087A JPS63199458A JP S63199458 A JPS63199458 A JP S63199458A JP 62031550 A JP62031550 A JP 62031550A JP 3155087 A JP3155087 A JP 3155087A JP S63199458 A JPS63199458 A JP S63199458A
Authority
JP
Japan
Prior art keywords
amorphous silicon
hydrogenated amorphous
layer
light
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62031550A
Other languages
Japanese (ja)
Other versions
JPH0793416B2 (en
Inventor
Satoru Hashimoto
悟 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62031550A priority Critical patent/JPH0793416B2/en
Publication of JPS63199458A publication Critical patent/JPS63199458A/en
Publication of JPH0793416B2 publication Critical patent/JPH0793416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain a light receiving device with high yield and a few manufacturing processes and to make this device have excellent characteristics even when a protective film of Si3N4 or the like is formed on insular a-Si:H semiconductors, by making a transparent electrode in contact with only an upper surface part of longitudinal struc ture of insular hydrogenated amorphous silicon semiconductors and not in contact with the side part. CONSTITUTION:Insular hydrogenated amorphous silicon semiconductors 3' and 8', a transparent electrode 12, and a transmissive protective film are serially laminated on an electrode 2' which is made of a conductor on an insulating substrate 1'. Such a light-receiving device is composed so that a transparent electrode 12 is made in contact with only an upper surface of longitudinal structure of the insular hydrogenated amorphous silicon semiconductors 3' and 8' and not in contact with the side part. For example, an insular lower electrode 2' is formed on the insulating substrate 1', and an (i) layer 3' of an a-Si:H film and a P layer 8' of an a-Si:H film are formed on the electrode 2'. Thereafter, when Cr is disposed all over the surface, the transmis sive conductor layer 12 is formed by an interfacial reaction of a-Si:H 3' and 8' to Cr. In succession, Cr is etched to form an upper electrode 11, and next a-Si:H 3' and 8' are etched into an insular shape.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はファクシミリなどの画像読取り装置である一次
元イメージセンサと、これに使用される水素化非晶質シ
リコンからなる光電変換素子(以下受光素子という)に
係り、とくにクローストークの発生を防止し、かつ特性
劣化を解消して信頼性の高い高性能を期待するのに好適
な受光素子と、この受光素子を使用する一次元イメージ
センサおよび前記受光素子の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a one-dimensional image sensor, which is an image reading device such as a facsimile, and a photoelectric conversion element (hereinafter referred to as a light-receiving device) made of hydrogenated amorphous silicon used therein. A light-receiving element that is suitable for preventing the occurrence of crosstalk and eliminating characteristic deterioration in order to expect highly reliable and high performance, and a one-dimensional image sensor that uses this light-receiving element. The present invention relates to a method of manufacturing the light receiving element.

〔従来の技術〕[Conventional technology]

従来、−次元イメージセンサに使用される水素化非晶質
シリコンからなる受光素子はたとえば日経エレクトロニ
クス<NIXXEI ELECTRONIC3) 19
82年4月28号第149頁乃至第161頁に記載され
ているように金属/水素化非晶質シリコン(以下a −
3i:Hという)/インジウムテンオキシサイド(In
−dium Tin 0xide)  (以下ITOと
いう)の構成をしたものが提案されている。
Conventionally, a light receiving element made of hydrogenated amorphous silicon used in a -dimensional image sensor is manufactured by Nikkei Electronics <NIXXEI ELECTRONIC3) 19
As described in April 28, 1982, pages 149 to 161, metal/hydrogenated amorphous silicon (hereinafter a-
3i:H)/indium thene oxide (In
-dium Tin Oxide) (hereinafter referred to as ITO) has been proposed.

すなわち、第4図に示すようにガラス基板1上にAβま
たはCrからなる金属電極2、a−3i:■]膜3、I
TO電極4の順に形成したものが提案されている。
That is, as shown in FIG. 4, a metal electrode 2, a-3i:■] film 3, I
It has been proposed that the TO electrodes 4 are formed in this order.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の従来技術の実用化に当っては第5図に示す如く配
線を保護するため金属電極2上を5i3Lあるいは5i
O7などで形成された保護膜5で覆ったものが使用され
ている。
In putting the above-mentioned conventional technology into practical use, as shown in FIG.
A device covered with a protective film 5 made of O7 or the like is used.

ところが、この保護膜5で覆うと大幅に特性が劣化する
問題がある。
However, when covered with this protective film 5, there is a problem that the characteristics are significantly deteriorated.

すなわち、−次元イメージセンサが使用される上限の温
度である70℃における保護膜5を形成する暗所での電
圧と逆方向電流(金属電極2から保護膜5の方向に流す
電流でこの種の受光素子においては従来より使用されて
いる。)との特性を第6図に示す如く、保護膜5を形成
する前の逆方向電流6に対して保護膜5を形成したのち
の逆方向電流7は約3桁増加している。通常−次元イメ
ージセンサにおける逆方向電流は70℃で1. Xl、
0−’A/C−以下が望ましいとされているので、保護
膜5を形成したものの受光素子では特性が劣化すること
になる。この特性劣化は、5jN4やSiO□膜形成に
より、水素化非晶質シリコンとrTO界面との接合特性
が劣化することに原因があると思われる。
In other words, the voltage in the dark that forms the protective film 5 at 70°C, which is the upper limit temperature at which the -dimensional image sensor is used, and the reverse current (current flowing from the metal electrode 2 to the protective film 5) As shown in FIG. 6, the characteristics of the reverse current 6 before forming the protective film 5 and the reverse current 7 after forming the protective film 5 are shown in FIG. has increased by about three orders of magnitude. The reverse current in a normal-dimensional image sensor is 1. Xl,
Since it is said that 0-'A/C- or less is desirable, the characteristics of the light-receiving element will deteriorate even though the protective film 5 is formed. This characteristic deterioration is thought to be caused by the deterioration of the bonding characteristics between the hydrogenated amorphous silicon and the rTO interface due to the formation of the 5jN4 or SiO□ film.

この特性劣化は、第6図に示す水素化非晶質シリコン(
以下a−3i:Hと略す)3を、第7図に示すような、
S i Haガスのみをグロー放電分解して得られるa
−3i:Hの第1層(以下′r層と略す)3と、SiH
<ガスとドーピングガスであるB2H6ガスとの混合ガ
スをグロー放電分解して得られるB添加のa−3i:H
の第2層(以下P層と略す)8とからなる2層構造とす
ることで解消できることがわかった。これを第8図に示
す。
This characteristic deterioration is caused by hydrogenated amorphous silicon (
(hereinafter abbreviated as a-3i:H) 3 as shown in FIG.
a obtained by glow discharge decomposition of only S i Ha gas
-3i:H first layer (hereinafter abbreviated as 'r layer) 3 and SiH
<B-added a-3i:H obtained by glow discharge decomposition of a mixed gas of gas and B2H6 gas which is a doping gas
It has been found that this problem can be solved by creating a two-layer structure consisting of a second layer (hereinafter abbreviated as P layer) 8. This is shown in FIG.

すなわち第8図は、第7図に示す構造の光電変換素子の
保護膜形成前後の暗所での特性を示したものであり、7
0℃にて保護膜形成前の逆方向電流9と、保護膜形成後
の逆方向電流10とに差がなく、保護膜形成による特性
劣化がない。このときのa−3i:Hの第2層であるP
層は、B2H6/SiH,=0.04%体積%の混合ガ
スをグロー放電分解して形成したもので、膜厚は250
人である。
In other words, FIG. 8 shows the characteristics of the photoelectric conversion element having the structure shown in FIG. 7 in the dark before and after the formation of the protective film.
At 0° C., there is no difference between the reverse current 9 before the protective film is formed and the reverse current 10 after the protective film is formed, and there is no characteristic deterioration due to the protective film formation. At this time, P which is the second layer of a-3i:H
The layer was formed by glow discharge decomposition of a mixed gas of B2H6/SiH, = 0.04% by volume, and the film thickness was 250 mm.
It's a person.

しかるに、この水素化非晶質シリコンを第9図に示すよ
うに、島状に形成すると、保護膜形成前後の特性劣化す
なわち逆方向電流の増加は解消されるが、保護膜形成後
の逆方向電流が、ある一定の電圧のもとで、経時的に増
加するという特性劣化のある素子が発生することがわか
った。第10図にこれを示す。
However, if this hydrogenated amorphous silicon is formed into an island shape as shown in FIG. It has been found that under a certain voltage, some elements exhibit characteristic deterioration in which the current increases over time. This is shown in FIG.

すなわち第10図は、第9図に示すような島状に形成さ
れたa−3i:Hの光電変換素子について、暗所で、一
定電圧5Vを印加した場合の70℃における保護膜形成
後の逆方向電流の経時変化を示している。この特性では
実用にならない。この特性劣化は、第9図のように、a
−3t:Hが島状に加工されたことにより、a−3i:
Hの側面部に1層3が露出し、この1層3とTTO界面
との接合特性が、保護膜形成により劣化し、電流がリー
クすることに原因があると考えられる。このことは以下
の事実からも充分に考え得ることである。
In other words, FIG. 10 shows the photoelectric conversion element of a-3i:H formed in an island shape as shown in FIG. 9 after formation of a protective film at 70° C. when a constant voltage of 5 V is applied in a dark place. It shows the change in reverse current over time. This characteristic is not practical. This characteristic deterioration is caused by a
-3t:H was processed into an island shape, a-3i:
The cause is thought to be that the layer 3 is exposed on the side surface of the H, and the bonding characteristics between the layer 3 and the TTO interface deteriorate due to the formation of the protective film, resulting in current leakage. This can be fully considered from the following facts.

すなわち、1層3のみの保護膜形成前後の逆方向電流の
増加は、第6図に示すように、5V印加時で約2 Xl
0−5A/aflである。第10図の特性を示す島状に
形成されたa−3t:Hの画素寸法は100μm X 
150μmであり、膜厚1μ川である。従って側面の1
層3露出部の面積はa−3i:I(の表面積の約3%に
あたる。前述の逆方向電流増加が2X 10− ’ A
 / ctaであるから、側面では約6X10−’A/
dの逆方向電流増加となり、第10図に示す逆方向電流
の経時的に増加した値とほぼ一致する。しかも、この特
性劣化は、a−3i:Hを島状に加工せず、1層3とP
層8の2層構造とする限り発生しない。
In other words, the increase in the reverse current before and after forming the protective film for only one layer 3 is approximately 2Xl when 5V is applied, as shown in Figure 6.
0-5A/afl. The pixel size of a-3t:H formed in an island shape showing the characteristics shown in Fig. 10 is 100 μm
The film thickness is 150 μm, and the film thickness is 1 μm. Therefore, side 1
The area of the exposed portion of layer 3 is approximately 3% of the surface area of a-3i:I(.
/cta, so the side surface is approximately 6X10-'A/
The reverse current increases by d, which almost matches the value of the reverse current increasing over time shown in FIG. Moreover, this characteristic deterioration is caused by not processing a-3i:H into an island shape, but with one layer 3 and P
This does not occur as long as the two-layer structure of layer 8 is used.

しかるに、このようにa−3i:Hを島状に形成しない
と、このa−3i:)(により各画素が電気的に接続さ
れ、光を受けていない画素に、光を受けた画素から光電
荷が流れこみ、光を受けていない画素があたかも受光し
たかのような現象、すなわち大きなりロストークを生じ
ることになり、−次元イメージセンサの特性、とくに解
像度が劣化する問題がある。
However, if a-3i:H is not formed like an island like this, each pixel will be electrically connected due to this a-3i: Charge flows into the pixel, causing a phenomenon in which a pixel that is not receiving light appears to be receiving light, that is, large loss talk, which causes a problem in that the characteristics of the -dimensional image sensor, particularly the resolution, deteriorate.

また、前記のようにa−3t:Hを金属電極とITO電
極とではさんで構成するものでは、a −3i:Hにピ
ンホールが発生した場合、ピンホールを通して金属電極
とITO電極とが接続してショートするため、歩留りが
著しく低下するという問題がある。
In addition, in the case where a-3t:H is sandwiched between a metal electrode and an ITO electrode as described above, if a pinhole occurs in a-3i:H, the metal electrode and ITO electrode are connected through the pinhole. There is a problem in that the yield is significantly reduced due to short-circuiting.

本発明の目的は、前記従来技術の問題点を解決し、信頼
性の高い、高性能を可能とする受光素子と、この受光素
子を使用する一次元イメージセンサおよび前記受光素子
の製造方法を提供することにある。
An object of the present invention is to provide a light receiving element that solves the problems of the prior art and enables high reliability and high performance, a one-dimensional image sensor using this light receiving element, and a method for manufacturing the light receiving element. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

前記の目的は、受光素子については、絶縁性基板上の導
電体よりなる電極上に島状に形成された水素化非晶質シ
リコン半導体と、透明電極と透光性保護膜とを順次積層
してなる受光素子において、前記島状に形成された水素
化非晶質シリコン半導体の縦構造の上面のみ前記透明電
極に接触させ、側面部に前記透明電極を設置しないよう
に構成することによって達成され、前記受゛光素子を使
用する一次元イメージセンサについては、導電体にて島
状に形成した下部電極上に島状に形成された水素化非晶
質シリコン半導体と透明電極と、透光性保護膜を順次積
層し、前記島状に形成された水素化非晶質シリコン半導
体の縦構造の上面のみ前記透明電極に接触させ側面部に
接触しないように形成された受光素子を絶縁性基板上に
一次元方向に複数個配置し、前記保護膜に接続するボン
ディングバットを形成し、このボンディングバットを走
査用集積素子とワイヤボンディングにて接続するように
構成することによって達成され、前記受光素子の製造方
法については、導電体にて島状に形成した下部電極上に
水素化非晶質シリコン半導体をモノシランガスのみのグ
ロー放電分解によって形成した層と、モノシランガスお
よびドーピングガスの混合ガスのグロー放電分解によっ
て形成した層との2層以上形成する工程と、この水素化
非晶質シリコンの各層の側面に酸化膜などの絶縁層を形
成する工程と、前記水素イビ非晶質シリコンと、この水
素化非晶質シリコン上に直接形成した金属膜との界面反
応によって光入射用の透光性導電体を形成する工程と、
前記金属膜の前記光入射用の透光性導電体の領域を除去
した残余の部分を上部電極として形成する工程と、前記
水素化非晶質シリコンの各層を島状に形成する工程と、
この水素化非晶質シリコン上の所要部分に保護マスクを
形成する工程とを含むことにより達成される。
The above purpose is to form a photodetector by sequentially laminating a hydrogenated amorphous silicon semiconductor formed in an island shape on an electrode made of a conductor on an insulating substrate, a transparent electrode, and a transparent protective film. This is achieved by configuring the light-receiving device consisting of a hydrogenated amorphous silicon semiconductor formed in an island shape so that only the top surface of the vertical structure is brought into contact with the transparent electrode, and the transparent electrode is not provided on the side surface. , for a one-dimensional image sensor using the above-mentioned light-receiving element, a hydrogenated amorphous silicon semiconductor formed in an island shape on a lower electrode formed in an island shape of a conductor, a transparent electrode, and a light-transmitting Protective films are sequentially laminated, and a light-receiving element formed in such a way that only the top surface of the vertical structure of the island-shaped hydrogenated amorphous silicon semiconductor contacts the transparent electrode and does not contact the side surface is placed on an insulating substrate. This is achieved by arranging a plurality of bonding bats in a one-dimensional direction and connecting them to the protective film, and connecting the bonding bats to the scanning integrated element by wire bonding. Regarding the manufacturing method, a layer of hydrogenated amorphous silicon semiconductor is formed by glow discharge decomposition of only monosilane gas on a lower electrode formed in an island shape of a conductor, and a layer is formed by glow discharge decomposition of a mixed gas of monosilane gas and doping gas. A step of forming two or more layers with the formed layer, a step of forming an insulating layer such as an oxide film on the side surface of each layer of the hydrogenated amorphous silicon, and a step of forming the hydrogenated amorphous silicon with the hydrogenated amorphous silicon. forming a transparent conductor for light incidence through an interfacial reaction with a metal film directly formed on crystalline silicon;
a step of forming the remaining portion of the metal film after removing the region of the transparent conductor for light incidence as an upper electrode; and a step of forming each layer of the hydrogenated amorphous silicon into an island shape;
This is accomplished by including the step of forming a protective mask on the required portions of the hydrogenated amorphous silicon.

〔作用〕[Effect]

前述したように、保護膜形成による特性劣化は、a−3
i:Hの縦方向の構造をi層とP層との2層にすること
で縦方向については解消される。
As mentioned above, the characteristic deterioration due to the formation of the protective film is a-3.
The problem in the vertical direction can be solved by making the vertical structure of i:H into two layers, the i layer and the P layer.

また横方向すなわちa−3i:Hを島状に加工すること
で露出するa−3t:Hの側面部の特性劣化は側面部と
透明電極とが接合しなければ発生しない。
Further, characteristic deterioration in the lateral direction, that is, in the side surface portion of a-3t:H exposed by processing a-3i:H into an island shape, does not occur unless the side surface portion and the transparent electrode are bonded.

しかるに透明電極をITOとする限り、a −3i:H
の側面部とITOとの接合がさけられない。
However, as long as the transparent electrode is made of ITO, a −3i:H
Bonding of the side surface of the ITO to the ITO cannot be avoided.

そこで、本発明は、前記透明電極を、a−3i:Hとこ
のa−3i:H上に直接形成した金属膜との界面反応に
よって形成される透光性導電層としたのち、前記a−3
t:Hを島状に加工してその側面部と前記透明電極との
接合がないようにしたので、これによって前記a−3i
:Hの形成時に発生するピンホールを通じての透明電極
と基板上に形成された下部電極である金属電極との間に
ショートが発生するのを防止することができる。
Therefore, in the present invention, the transparent electrode is made into a transparent conductive layer formed by an interfacial reaction between a-3i:H and a metal film directly formed on this a-3i:H, and then the a- 3
t:H was processed into an island shape so that there was no connection between the side surface and the transparent electrode, so that the a-3i
It is possible to prevent short circuits between the transparent electrode and the metal electrode, which is the lower electrode formed on the substrate, through the pinholes that occur during the formation of :H.

また前記透明電極の外部への引き出しは、前記金属膜の
透明電極となすべき領域を除去した残余の部分で形成さ
れた導電層を用いているので、残余の金属膜が遮光膜を
兼ねてクロストークを防止することができる。
In addition, the transparent electrode is drawn out using a conductive layer formed from the remaining portion of the metal film after removing the area that should be used as the transparent electrode, so the remaining metal film doubles as a light-shielding film and crosses. Talk can be prevented.

〔実施例〕〔Example〕

以下、本発明の一実施例である受光素子を示す第1図(
al、 (bl、 (c)について説明する。
Hereinafter, FIG. 1 (
al, (bl, (c)) will be explained.

第1図(al、 (bl、 (C1に示すように絶縁性
基板1′上には島状に加工した下部電極2′を設けてい
る。
As shown in FIG. 1 (al, (bl, (C1)), a lower electrode 2' processed into an island shape is provided on an insulating substrate 1'.

この下部電極2′はCrを1000人スパンタリング法
で形成し、ホトエツチングプロセスにより島状に形成し
ている。
This lower electrode 2' is formed of Cr by a 1000-person sputtering method, and is formed into an island shape by a photoetching process.

ついで、前記基板1′を図示しないプラズマCVD装置
の反応室に入れて真空状態で加熱し、5i)14ガスを
導入してグロー放電分解法によりa−3i :H膜のi
層3′を約1μmの厚さで形成したのち、前記水素希釈
の82F+6ガスを導入し、約250λ膜厚のa−3i
:H膜のP層8′を形成する。
Next, the substrate 1' is placed in a reaction chamber of a plasma CVD apparatus (not shown) and heated in a vacuum state.
After forming layer 3' with a thickness of about 1 μm, the hydrogen-diluted 82F+6 gas was introduced to form a-3i with a thickness of about 250λ.
: Form the P layer 8' of the H film.

ついで、前記基板1′をプラズマCVD装置より取り出
してa−3t:H3’、8’の自然酸化による酸化膜を
除去するため、フッ硝酸水溶液でライトエツチングを行
ない、その後、スパッタリング法によりCrを約0.1
μmの厚さで前記基板1の全面に形成する。このさい前
記基板1の温度は100℃乃至250℃の範囲が望まし
い。
Next, the substrate 1' is taken out from the plasma CVD apparatus, and in order to remove the oxide film caused by natural oxidation of a-3t:H3', 8', light etching is performed using a fluoro-nitric acid aqueous solution, and then approximately Cr is removed by a sputtering method. 0.1
It is formed on the entire surface of the substrate 1 to a thickness of μm. At this time, the temperature of the substrate 1 is preferably in the range of 100°C to 250°C.

これによってa−3t:H3’、8’と、このa−3t
:H3’、8’上に形成したCrとの界面反応により透
光性導体112が形成される。
As a result, a-3t:H3', 8' and this a-3t
: A translucent conductor 112 is formed by an interfacial reaction with Cr formed on H3' and 8'.

ついでCrをホトエツチング法により水入肘用の透光性
導体層12として形成する領域13を除去し、同時にこ
の透光性導体層I2である透明電極の引き出し電極とす
べき領域にCrを残存してパターニングして上部電極1
1を形成したのち、前記残存した上部電極11と光入射
用の透光性導体層である領域13にホトレジストを積層
してa−3i:H3’。
Next, the region 13 to be formed as the transparent conductor layer 12 for the water-immersion elbow is removed by photoetching Cr, and at the same time, Cr is left in the region 13 to be formed as the extraction electrode of the transparent electrode, which is the transparent conductor layer I2. and pattern the upper electrode 1.
1, a photoresist is laminated on the remaining upper electrode 11 and the region 13, which is a transparent conductor layer for light incidence, to form a-3i:H3'.

8′をエツチングする。このエツチングは、まづa−3
i:H3’、8’とこのa−3i:H3’。
Etch 8'. This etching is Mazua-3
i:H3', 8' and this a-3i:H3'.

8′上に形成したCrとの界面反応により形成された透
光性導体層12をフッ硝酸水溶液でa−3t;Hの1層
3′、P層8′をヒドラジン水溶液で行なう。これによ
りa−3i:H3’、8’が島状に形成される。
The transparent conductor layer 12 formed by an interfacial reaction with Cr formed on 8' is formed using a fluoro-nitric acid aqueous solution, and the 1 layer 3' of H is formed using a hydrazine aqueous solution. As a result, a-3i:H3', 8' is formed into an island shape.

したがってa−3i:H3’、8’の側面部と、透明電
極との接合がなく、a−3i:H3’、8’を形成する
さいに発生するピンホールを通じての透明電極と、下部
電極である金属電極2とのショートが発生しない構成に
することができる。
Therefore, there is no connection between the side parts of a-3i: H3', 8' and the transparent electrode, and the transparent electrode and the lower electrode are connected through the pinholes that occur when forming a-3i: H3', 8'. It is possible to create a structure in which short circuits with certain metal electrodes 2 do not occur.

また前記上部電極11が遮光膜を兼用しているのでクロ
ストークを防止することができる。
Further, since the upper electrode 11 also serves as a light shielding film, crosstalk can be prevented.

つぎに第2図は第1図に示す受光素子を用いた一次元イ
メージセンサを示し、第2図(alはその平面図、第2
図[blは第2図(alのA−A’断面図、第2図(C
)は第2図(alのB−B’断面図である。
Next, FIG. 2 shows a one-dimensional image sensor using the light receiving element shown in FIG.
Figure [bl is AA' sectional view of Figure 2 (al), Figure 2 (C
) is a BB' sectional view of FIG. 2 (al).

第2図(a)、 (b)、 (clに示すようにガラス
などから形成された絶縁基板1“上に前記第1図で述べ
た金属電極2′と同様な方法により下部電極2″を形成
する。この場合、下部電極2″の島状ピッチは8画素/
mmの一次元イメージセンサでは125μmに形成して
いる。
As shown in FIGS. 2(a), (b), (cl), a lower electrode 2'' is formed on an insulating substrate 1'' made of glass or the like by the same method as the metal electrode 2' described in FIG. In this case, the island pitch of the lower electrode 2'' is 8 pixels/
In a one-dimensional image sensor of mm, the thickness is 125 μm.

ついで、第1図で述べたと同様な方法でa −5i:H
膜のi層3′、P層8′を形成したのち、プラズマCV
D法により5iHa、N Hs、 N 2を用いたグロ
ー放電分解により5LNaの厚さ2μmの保護膜I5を
マスクを用いて必要部分に堆積させる。
Then, in the same manner as described in FIG. 1, a-5i:H
After forming the I-layer 3' and P-layer 8' of the film, plasma CV
A protective film I5 of 5LNa having a thickness of 2 μm is deposited on required portions using a mask by glow discharge decomposition using 5iHa, N Hs, and N 2 by method D.

しかるのち、この保護膜15上にNiCr16. A 
u’17をスパッタリング法により順次積層し、ホトエ
ツチング法により形成し、ポンデイングパツドを形成す
る。このポンデイングパツドと基板1″にボンディング
された走査用集積素子18をワイヤボンディング19に
より接続する。
After that, NiCr16. A
U'17 is sequentially laminated by sputtering and formed by photoetching to form a ponding pad. This bonding pad and the scanning integrated element 18 bonded to the substrate 1'' are connected by wire bonding 19.

ついでフレキシブルプリンテットサーキソト(Flex
ible Pr1nted C1rcuit)  (以
下FPCという)20を接続することにより一次元イメ
ージセンサが完成する。
Next, Flexible Printed Surkisoto (Flex
By connecting FPC (hereinafter referred to as FPC) 20, a one-dimensional image sensor is completed.

第3図に示すように前記−次元イメージセンサの受光素
子について暗所で一定電圧5■を印加した場合の70℃
における保護膜形成後の逆方向電流の経時変化について
実験した結果、何等の特性劣化がみられなかった。この
場合、第3図は一画素についてのデータであるが、−次
元イメージセンサとしての全画素について再現性良く特
性劣化のない特性を得ることができ、かつ光感度、応答
速度については従来と同等の特性を得ることができる。
As shown in Fig. 3, when a constant voltage of 5 cm is applied to the light receiving element of the above-mentioned -dimensional image sensor in a dark place, the temperature is 70°C.
As a result of an experiment on the change in reverse current over time after the protective film was formed, no characteristic deterioration was observed. In this case, although Figure 3 shows data for one pixel, it is possible to obtain characteristics with good reproducibility and no characteristic deterioration for all pixels as a -dimensional image sensor, and the light sensitivity and response speed are the same as conventional ones. characteristics can be obtained.

また本発明では、透明電極としてITOを使用していな
いので、ITOを使用するにあたっての問題点であるI
TO形成時のa−3t:Hへのダメージ、良質なITO
を得ることの困難性、耐薬品性の弱いことによるITO
の溶解などを解消することができる。
In addition, in the present invention, since ITO is not used as the transparent electrode, ITO, which is a problem when using ITO, is not used.
Damage to a-3t:H during TO formation, good quality ITO
ITO due to its difficulty in obtaining and poor chemical resistance.
It is possible to eliminate problems such as dissolution of

さらに本発明は、金属電極がa−3i:Hの膜形成後に
金属膜を積層し除去するのみで形成することができるの
で、透明電極にITOを使用した場合に比較して製造工
程を減少することができ、かつ、a−3i:Hを形成す
るさいに発生するビンボールを通じての下部電極である
金属電極と、透明電極とのショートを解消することがで
きるので、歩留りを大幅に向上することができる。
Furthermore, in the present invention, the metal electrode can be formed by simply stacking and removing the metal film after forming the a-3i:H film, so the manufacturing process is reduced compared to when ITO is used for the transparent electrode. In addition, it is possible to eliminate the short circuit between the metal electrode, which is the lower electrode, and the transparent electrode through the bottle ball that occurs when forming a-3i:H, so the yield can be greatly improved. can.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、島状に形成されたa−8i:H半導体
において、51g4など保護膜を形成しても良好な特性
を有する製造工程の少ない高歩留りの受光素子を得るこ
とができるので、良好な解像度を有する信頼性の高い、
低価格の一次元イメージセンサをa−8i:Hを用いて
可能にすることができる効果を有する。
According to the present invention, it is possible to obtain a high-yield light-receiving element with few manufacturing steps that has good characteristics even when a protective film such as 51g4 is formed in an island-shaped a-8i:H semiconductor. Reliable, with good resolution
This has the effect of enabling a low-cost one-dimensional image sensor using a-8i:H.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である受光素子を示し、第1
図(alはその平面図、第1図(blは断面図、第2図
は第1図に示す受光素子を用いた一次元イメージセンサ
を示し、第2図(alはその平面図、第2図(blは第
2図f8)のA−A ’断面図、第2図fc)は第2図
(a)のB−B ’断面図、第3図は第1図に示す受光
素子の保護膜形成後の逆方向電流の経時変化曲線図、第
4図は従来の受光素子の保護膜形成前の断面図、第5図
は従来の受光素子の保護膜形成後の断面図、第6図は従
来の受光素子の逆方向電流曲線図、第7図は従来のa−
3i:Hからなる2層構造の受光素子を示す断面図、第
8図は第7図に示す従来の受光素子の保護膜形成前後の
逆方向電流曲線図、第9図は従来の島状に加工された受
光素子の断面図、第1O図は第9図に示す従来の受光素
子の逆方向電流曲線図である。 1′・・・絶縁性基板、2’、2”・・・下部電極、3
′−−−a−3t:Hのi層、3’−・−a−3i:H
のP層、11・・・金属膜、12・・・透光性導電層、
13・・・光入射用領域、14・・・上部電極、15・
・・保護膜、16・・・NiCr、17・・・Au、1
8・・・走査用集積素子、19・・・ワイヤボンディン
グ、19・・・FPCo 代理人 弁理士  秋 本 正 実 第1図 (b) 3′;水亀化介晶買シ・〕コン族(j%)  12:j
1尤性導電層8’:           41層)1
3:尤入肘用標域11:金属膜 −1k 第3図 晴間(秒) 第4図 第5図 第6図 電圧(V) 第7図 第8図 t  /Th  (V) 脚間 0ケ)
FIG. 1 shows a light receiving element which is an embodiment of the present invention.
Figures (al is a plan view thereof, Figure 1 (bl is a sectional view, Figure 2 is a one-dimensional image sensor using the light receiving element shown in Figure 1), Figure 2 (al is a plan view thereof, Figure 2 (bl is Figure 2 f8) A-A' sectional view, Figure 2 fc) is Figure 2 (a) B-B' sectional view, Figure 3 is the protection of the light receiving element shown in Figure 1. Figure 4 is a cross-sectional view of a conventional light-receiving element before forming a protective film, Figure 5 is a cross-sectional view of a conventional light-receiving element after forming a protective film, and Figure 6 is a graph of the change in reverse current over time after film formation. is a reverse current curve diagram of a conventional light-receiving element, and FIG. 7 is a diagram of a conventional a-
3i: A cross-sectional view showing a light-receiving element with a two-layer structure consisting of H. Figure 8 is a reverse current curve diagram of the conventional light-receiving element shown in Figure 7 before and after the formation of a protective film. Figure 9 is a diagram showing the conventional island-shaped The cross-sectional view of the processed light-receiving element, FIG. 1O, is a reverse current curve diagram of the conventional light-receiving element shown in FIG. 1'... Insulating substrate, 2', 2''... Lower electrode, 3
'---a-3t:H i-layer, 3'-・-a-3i:H
P layer, 11...metal film, 12...transparent conductive layer,
13... Light incidence area, 14... Upper electrode, 15...
...Protective film, 16...NiCr, 17...Au, 1
8...Scanning integrated element, 19...Wire bonding, 19...FPCo Agent Patent attorney Tadashi Akimoto Figure 1 (b) 3'; j%) 12:j
1 Likelihood conductive layer 8': 41 layers) 1
3: Input elbow standard area 11: Metal film - 1k Fig. 3 Clearance (seconds) Fig. 4 Fig. 5 Fig. 6 Voltage (V) Fig. 7 Fig. 8 t /Th (V) Between legs 0 )

Claims (1)

【特許請求の範囲】 1、絶縁性基板上の導電体よりなる電極上に島状に形成
された水素化非晶質シリコン半導体と、透明電極と透光
性保護膜を順次積層してなる受光素子において、前記島
状に形成された水素化非晶質シリコン半導体の縦構造の
上面のみ前記透明電極に接触させ、側面部に接触させな
いように構成したことを特徴とする受光素子。 2、前記透明電極は、前記水素化非晶質シリコンと、こ
の水素化非晶質シリコン上に直接形成した金属膜との界
面反応によって形成された透光性導電体層にて構成され
ていることを特徴とする特許請求の範囲第1項記載の受
光素子。 3、前記水素化非晶質シリコン半導体は、モノシランガ
スのみをグロー放電分解することによって得られる層と
、モノシランガスおよびドーピングガスの混合ガスをグ
ロー放電分解によって得られる層との2層以上から構成
されていることを特徴とする特許請求の範囲第1項もし
くは第2項記載の受光素子。 4、前記水素化非晶質シリコン半導体は、その側面部が
酸化膜などの絶縁層から構成されていることを特徴とす
る特許請求の範囲第1項もしくは第2項もしくは第3項
記載の受光素子。 5、導電体にて島状に形成した下部電極上に島状に形成
された水素化非晶質シリコン半導体と透明電極と、透光
性保護膜を順次積層し、前記島状に形成された水素化非
晶質シリコン半導体の縦構造の上面のみ前記透明電極に
接触させ側面部に接触しないように形成された受光素子
を絶縁性基板上に一次元方向に複数個配置し、前記保護
膜に接続するボンディングバットを形成し、このボンデ
ィングバットを走査用集積素子とワイヤボンディングに
て接続するように構成したことを特徴とする一次元イメ
ージセンサ。 6、前記透明電極は、前記水素化非晶質シリコンと、こ
の水素化非晶質シリコン上に直接形成した金属膜との界
面反応によって形成された透光性導電体層にて構成され
ていることを特徴とする特許請求の範囲第5項記載の一
次元イメージセンサ。 7、前記水素化非晶質シリコン半導体は、モノシランガ
スのみをグロー放電分解することによって得られる層と
、モノシランガスおよびドーピングガスの混合ガスをグ
ロー放電分解によって得られる層との2層以上から構成
されていることを特徴とする特許請求の範囲第5項もし
くは第6項記載の一次元イメージセンサ。 8、前記水素化非晶質シリコン半導体は、その側面部が
酸化膜などの絶縁層から構成されていることを特徴とす
る特許請求の範囲第5項もしくは第6項もしくは第7項
記載の一次元イメージセンサ。 9、導電体にて島状に形成した下部電極上に水素化非晶
質シリコン半導体をモノシランガスのみのグロー放電分
解によって形成した層と、モノシランガスおよびドーピ
ングガスの混合ガスのグロー放電分解によって形成した
層との2層以上形成する工程と、この水素化非晶質シリ
コンの各層の側面に酸化膜などの絶縁層を形成する工程
と、前記水素化非晶質シリコンと、この水素化非晶質シ
リコン上に直接形成した金属膜との界面反応によって光
入射用の透光性導電体を形成する工程と、前記金属膜の
前記光入射用の透光性導電体の領域を除去した残余の部
分を上部電極として形成する工程と、前記水素化非晶質
シリコンの各層を島状に形成する工程と、この水素化非
晶質シリコン上の所要部分に保護マスクを形成する工程
とを含むことを特徴とする受光素子の製造方法。
[Scope of Claims] 1. Light receiving device formed by sequentially laminating a hydrogenated amorphous silicon semiconductor formed in an island shape on an electrode made of a conductor on an insulating substrate, a transparent electrode, and a transparent protective film. A light-receiving element characterized in that only the top surface of the vertical structure of the hydrogenated amorphous silicon semiconductor formed in the island shape is brought into contact with the transparent electrode, and the side surfaces thereof are not brought into contact. 2. The transparent electrode is composed of a transparent conductor layer formed by an interfacial reaction between the hydrogenated amorphous silicon and a metal film formed directly on the hydrogenated amorphous silicon. A light-receiving element according to claim 1, characterized in that: 3. The hydrogenated amorphous silicon semiconductor is composed of two or more layers: a layer obtained by glow discharge decomposition of only monosilane gas, and a layer obtained by glow discharge decomposition of a mixed gas of monosilane gas and doping gas. A light receiving element according to claim 1 or 2, characterized in that: 4. The light receiving device according to claim 1, 2, or 3, wherein the hydrogenated amorphous silicon semiconductor has a side surface formed of an insulating layer such as an oxide film. element. 5. A hydrogenated amorphous silicon semiconductor formed in an island shape, a transparent electrode, and a transparent protective film are sequentially laminated on a lower electrode formed in an island shape of a conductor, and the island shape is formed. A plurality of light-receiving elements formed in such a way that only the top surface of a vertical structure of a hydrogenated amorphous silicon semiconductor contacts the transparent electrode and does not contact the side surfaces are arranged one-dimensionally on an insulating substrate, and a plurality of light receiving elements are arranged in one dimension on an insulating substrate, and A one-dimensional image sensor characterized in that a connecting bonding bat is formed, and the bonding bat is configured to be connected to a scanning integrated element by wire bonding. 6. The transparent electrode is composed of a transparent conductive layer formed by an interfacial reaction between the hydrogenated amorphous silicon and a metal film formed directly on the hydrogenated amorphous silicon. A one-dimensional image sensor according to claim 5, characterized in that: 7. The hydrogenated amorphous silicon semiconductor is composed of two or more layers: a layer obtained by glow discharge decomposition of only monosilane gas, and a layer obtained by glow discharge decomposition of a mixed gas of monosilane gas and doping gas. A one-dimensional image sensor according to claim 5 or 6, characterized in that: 8. The primary device according to claim 5, 6, or 7, wherein the hydrogenated amorphous silicon semiconductor has a side surface formed of an insulating layer such as an oxide film. Former image sensor. 9. A layer formed of a hydrogenated amorphous silicon semiconductor by glow discharge decomposition of only monosilane gas on a lower electrode formed in an island shape of a conductor, and a layer formed by glow discharge decomposition of a mixed gas of monosilane gas and doping gas. a step of forming two or more layers of the hydrogenated amorphous silicon, a step of forming an insulating layer such as an oxide film on the side surface of each layer of the hydrogenated amorphous silicon, and a step of forming the hydrogenated amorphous silicon and the hydrogenated amorphous silicon. A step of forming a light-transmitting conductor for light incidence by an interfacial reaction with a metal film directly formed on the metal film, and a step of forming a remaining portion of the metal film after removing the region of the light-transmitting conductor for light incidence. It is characterized by comprising the steps of forming an upper electrode, forming each layer of the hydrogenated amorphous silicon into an island shape, and forming a protective mask at a required portion on the hydrogenated amorphous silicon. A method for manufacturing a light receiving element.
JP62031550A 1987-02-16 1987-02-16 Light receiving element and manufacturing method thereof Expired - Lifetime JPH0793416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62031550A JPH0793416B2 (en) 1987-02-16 1987-02-16 Light receiving element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62031550A JPH0793416B2 (en) 1987-02-16 1987-02-16 Light receiving element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63199458A true JPS63199458A (en) 1988-08-17
JPH0793416B2 JPH0793416B2 (en) 1995-10-09

Family

ID=12334296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62031550A Expired - Lifetime JPH0793416B2 (en) 1987-02-16 1987-02-16 Light receiving element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0793416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371398A (en) * 1988-10-19 1994-12-06 Fuji Xerox Co., Ltd. Thin film transistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204267A (en) * 1983-05-06 1984-11-19 Fuji Xerox Co Ltd Thin film reading device
JPS6164157A (en) * 1984-09-05 1986-04-02 Tokyo Electric Co Ltd Image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204267A (en) * 1983-05-06 1984-11-19 Fuji Xerox Co Ltd Thin film reading device
JPS6164157A (en) * 1984-09-05 1986-04-02 Tokyo Electric Co Ltd Image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371398A (en) * 1988-10-19 1994-12-06 Fuji Xerox Co., Ltd. Thin film transistor

Also Published As

Publication number Publication date
JPH0793416B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
US4593152A (en) Photoelectric conversion device
KR0169385B1 (en) Thin film transistor substrate for liquid crystal and its manufacturing method
JPH06208132A (en) Liquid crystal display device
US9128341B2 (en) Visible sensing transistor, display panel and manufacturing method thereof
JPS63199458A (en) Light-receiving device and one-dimensional image sensor using this device and manufacture of said device
JP2005116856A (en) Thermal infrared solid-state imaging device and its manufacturing method
JPH02128468A (en) Solid-state image sensing device and manufacture thereof
JPS6269552A (en) Light receiving element
JP3085180B2 (en) Field effect solar cell
JP2755707B2 (en) Method for manufacturing photovoltaic device
JPH02166769A (en) Laminated solid state image sensor and manufacture thereof
JPH04154168A (en) Manufacture of image sensor
JPS63181462A (en) Photodetector and line image sensor using the same
JPS63107062A (en) Light receiving element and one-dimensional image sensor applying the same
JP2910227B2 (en) Manufacturing method of contact image sensor
JP3407917B2 (en) Light sensor
JPS63136578A (en) Photodetector and one-dimensional image sensor using said photodetector
EP0601200A1 (en) Semiconductor device
JPH05145054A (en) Photodiode and image sensor using the same
JPS61203666A (en) Manufacture of photo-diode
JPS63119262A (en) Long length draft readout element
JPS59119759A (en) Image sensor
JPS6182467A (en) Manufacture of image sensor
JPH0414266A (en) High breakdown strength planar type semiconductor element and its manufacture
JPS6211263A (en) Image sensor