JPS63181462A - Photodetector and line image sensor using the same - Google Patents

Photodetector and line image sensor using the same

Info

Publication number
JPS63181462A
JPS63181462A JP62012565A JP1256587A JPS63181462A JP S63181462 A JPS63181462 A JP S63181462A JP 62012565 A JP62012565 A JP 62012565A JP 1256587 A JP1256587 A JP 1256587A JP S63181462 A JPS63181462 A JP S63181462A
Authority
JP
Japan
Prior art keywords
layer
image sensor
protective film
electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62012565A
Other languages
Japanese (ja)
Inventor
Satoru Hashimoto
悟 橋本
Shigetoshi Hiratsuka
平塚 重利
Mamoru Morita
守 森田
Juichi Kishida
岸田 寿一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62012565A priority Critical patent/JPS63181462A/en
Publication of JPS63181462A publication Critical patent/JPS63181462A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a line image sensor with good resolution and high reliability by a method wherein a first layer and a second layer, both being island-shaped, are formed by depositing an ITO as a transparent electrode and a transparent protective film in succession and a part to be connected to the ITO of the first layer is covered with the second layer. CONSTITUTION:After an i-layer 3', a P-layer 8', both being composed of an a-Si:H film, and an ITO electrode 4' have been formed in succession, a protective film 5' composed of SiN4 is formed on the assembly by the glow-discharge dissolution using SiH4, NH3 and N2 by a plasma CVD method, an NiCr layer 11 and an Au layer 12 are formed in succession on the front end of a lower electrode 2'' in such a way that its rear end part is connected to the ITO electrode 4'. After a bonding pad has been formed by a photo-etching method, the bonding pad and an integrated element 13 for scanning use are connected by wire bonding 14, and a line image sensor is obtained. The resolution of this line image sensor is good even when the protective film 5' composed of SiN4 or the like is formed.

Description

【発明の詳細な説明】 る−次元イメージセンサと、これに使用される水素化非
晶質シリコンからなる光電変換素子(以下受光素子とい
う)に係わり、とくにクローストークの発生を防止し、
かつ特性劣化を解消して信頼性の高い高性能を期待する
のに好適な受光素子およびこの受光素子を使用する一次
元イメージセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a one-dimensional image sensor and a photoelectric conversion element (hereinafter referred to as a light receiving element) made of hydrogenated amorphous silicon used therein, and in particular, to prevent the occurrence of crosstalk,
The present invention also relates to a light-receiving element suitable for eliminating characteristic deterioration and expecting high reliability and high performance, and a one-dimensional image sensor using this light-receiving element.

〔従来の技術〕[Conventional technology]

従来、−次元イメージセンサに使用される水素化非晶質
シリコンからなる受光素子はたとえば日るように金属/
水素化非晶質シリコン(以下a−5i:Hという)/イ
ンジウムテンオキシサイド(Indius+ Tin 
0xide )  (以下ITOという)の構成をした
ものが提案される。
Conventionally, light receiving elements made of hydrogenated amorphous silicon used in -dimensional image sensors are made of metal/
Hydrogenated amorphous silicon (hereinafter referred to as a-5i:H)/indium tenoxide (Indius+ Tin)
0xide) (hereinafter referred to as ITO) is proposed.

すなわち、第4図に示すようにガラス基板1上にAfま
たはCrからなる金属電極2:a−St : H膜3、
ITOを極4の順に形成したものが提案されている。
That is, as shown in FIG. 4, a metal electrode 2 made of Af or Cr: a-St:H film 3,
A structure in which ITO is formed in the order of four poles has been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記の従来技術の実用化に当っては第5図に水上 す如く配線を保護するため金属電極2丸をSi3N4あ
るいはSiO□などで形成された保護膜5で覆ったもの
が使用されている。
In putting the above-mentioned prior art into practical use, as shown in FIG. 5, two metal electrodes are covered with a protective film 5 made of Si3N4 or SiO□ to protect the wiring.

ところが、この保護膜5で覆うと大幅に特性が劣化する
問題がある。
However, when covered with this protective film 5, there is a problem that the characteristics are significantly deteriorated.

すなわち、−次元イメージセンサが使用される上限の温
度である、70℃における保護膜5を形成する暗所での
電圧と逆方向電流(金属電極2から保護膜5の方向に流
す電流で、この種の受光素子においては従来より使用さ
れている)との特性第6図に示す如く、保護膜5を形成
する前の逆方向電流6に対して保護膜5を形成したのち
の逆方向電流は約3桁増加している。通常−次元イメー
ジセンサにおける逆方向電流は70℃でI Xl0−’
A /−以下が望ましいとされているので、保護膜5を
形成したものの受光素子では特性が劣化することになる
That is, the voltage in the dark that forms the protective film 5 at 70°C, which is the upper limit temperature at which the -dimensional image sensor is used, and the reverse current (current flowing from the metal electrode 2 to the protective film 5), As shown in FIG. 6, the reverse current 6 after forming the protective film 5 is different from the reverse current 6 before forming the protective film 5. It has increased by about 3 digits. The reverse current in a normal-dimensional image sensor is I Xl0-' at 70°C.
Since it is said that A/- or less is desirable, the characteristics of the light-receiving element will deteriorate even though the protective film 5 is formed.

また従来技術においては、a−5i: 83  により
各画素が電気的に接続されたものが使用されている。
Furthermore, in the prior art, each pixel is electrically connected by a-5i:83.

しかるにa−Si : H3により各画素が電気的に接
続されている場合には、光を受けていない画素に光を受
けた画素から光電荷が流れ込み、光を受けていない画素
があたかも受光したかのような現象すなわち、大きなり
ロストークを発生することになって一次元イメージセン
サの特性とくに解像度が劣化する問題がある。
However, when each pixel is electrically connected by a-Si: H3, photocharge flows from the pixel that receives light to the pixel that does not receive light, and the pixel that does not receive light appears as if it had received light. There is a problem in that the characteristics of the one-dimensional image sensor, especially the resolution, are deteriorated due to the occurrence of a phenomenon such as the above, that is, large loss talk.

本発明の目的は、前記従来技術の問題点を解決し、信頼
性の高い、高性能を可能とする受光素子およびこの受光
素子を使用する一次元イメージセンサを提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the problems of the prior art and provide a highly reliable and high-performance light-receiving element and a one-dimensional image sensor using this light-receiving element.

〔問題点を解決するための手段〕[Means for solving problems]

前記の目的は、受光素子については絶縁基板上の導電体
よりなる電極上にa−Si : Hをモノシランガスの
みのグロー放電分解によって形成した第1層とモノシラ
ンガスおよびドーピングガスの混合ガスのグロー放電分
解によって形成した第2層と、透明電極であるITOと
透明保護膜とを順次積層し、かつ前記第1層および第2
層を島状に形成するとともに前記第1層の前記ITOと
の接続する部分を前記第2層にて被覆するように構成す
ることによって達成され、−次元イメージセンサについ
ては、それぞれ島状に形成された導電体よりなる下部電
極上にa−Si : Hをモノシランガスのみのグロー
放電分解によって形成した第1層とモノシランガスおよ
びドーピングガスからなる混合ガスのグロー放電分解に
よって形成した第2層と透明電極であるITOと透明保
護膜とを積重し、かつ前記第1層の前記ITOに接続す
る部分を前記第2層にて被覆した受光素子を絶縁性基板
上に一次元方向に複数配置し、これら複数の受光素子の
下部電極上に前記ITOに接続するボンディングパット
を形成し、ボンディングパットと走査用集積素子とをワ
イヤボンディングにて接続するごとにより達成される。
The above purpose is to form a first layer of a-Si:H on an electrode made of a conductor on an insulating substrate by glow discharge decomposition of monosilane gas only, and glow discharge decomposition of a mixed gas of monosilane gas and doping gas. A second layer formed by the method, ITO as a transparent electrode, and a transparent protective film are sequentially laminated, and the first layer and the second layer are laminated in order.
This is achieved by forming the layers in an island shape and covering the portion of the first layer that connects with the ITO with the second layer, and for -dimensional image sensors, each layer is formed in an island shape. A first layer of a-Si:H formed by glow discharge decomposition of only monosilane gas, a second layer formed by glow discharge decomposition of a mixed gas consisting of monosilane gas and doping gas, and a transparent electrode are formed on the lower electrode made of the conductor. A plurality of light-receiving elements in which ITO and a transparent protective film are stacked and a portion of the first layer connected to the ITO is covered with the second layer are arranged one-dimensionally on an insulating substrate, This is achieved by forming bonding pads connected to the ITO on the lower electrodes of the plurality of light receiving elements, and connecting the bonding pads and the scanning integrated element by wire bonding.

〔作用〕 前記、従来技術の問題の1つである保護膜を形成するこ
とによる逆方向電流の増加については、本題発明者の実
験結果によれば、第4図に示すa−Si:Hを第7図に
示すようにモノシランガスであるBzHhガスのみをグ
ロー放電分解して得られるa−Si : Hの第1層(
以下i層という)3′と、前記モノシランガスとドーピ
ングガスであるBzHbガスとの混合ガスをグロー放電
分解して得られるB添加のa−St : Hの第2層(
以下P層という)8とからなる2層構造にすることで解
消できることがわかった。
[Function] Regarding the increase in reverse current due to the formation of a protective film, which is one of the problems of the prior art, according to the experimental results of the present inventor, a-Si:H shown in FIG. As shown in FIG. 7, the first layer of a-Si:H (
(hereinafter referred to as i-layer) 3', and a B-added a-St:H second layer (
It was found that this problem could be solved by creating a two-layer structure consisting of 8 (hereinafter referred to as P layer).

すなわち第7図に示す構成の受光素子についての保護膜
5形成後の暗所での電圧と逆方向電流との特性は第8図
に示す如<、70℃における保護膜5形成前の逆方向電
流9と、保護膜5形成後の逆方向電流10とは差がない
。そのため、保護膜5を形成したことによる特性劣化が
発生してしないことになる。
In other words, the characteristics of the voltage and reverse current in the dark after the formation of the protective film 5 for the light-receiving element having the configuration shown in FIG. 7 are as shown in FIG. There is no difference between the current 9 and the reverse current 10 after the protective film 5 is formed. Therefore, characteristic deterioration due to the formation of the protective film 5 does not occur.

なお、このときのa−3t : Hの第2層であるP層
はBtHb/Si : Ha =0.04%体積%の混
合ガスをグロー放電分解して形成したもので、膜厚は2
50人である。
The P layer, which is the second layer of a-3t:H, was formed by glow discharge decomposition of a mixed gas of BtHb/Si:Ha = 0.04% by volume, and the film thickness was 2.
There are 50 people.

しかるに前記第7図に示す受光素子を第9図(a)(b
)に示すように島状に形成すると、保護膜形成後の特性
劣化すなわち、逆方向電流の増加は解消されるが、保護
膜形成後の逆方向電流がある一定の電圧のもとで経時的
に増加するという特性劣化のある素子が発生することが
わかった。
However, the light receiving element shown in FIG. 7 is shown in FIGS.
), forming an island shape eliminates the characteristic deterioration after the protective film is formed, that is, the increase in the reverse current, but the reverse current after the protective film is formed increases over time under a certain voltage. It has been found that some elements exhibit characteristic deterioration, which increases in the number of times.

すなわち、前記第9図(a)(b)に示す如く島状に形
成された受光素子について暗所で一定電圧5■を印加し
た場合の70゛における保、ill膜形形成後逆方向電
流は第10図に示す如く経時変化を発生して実用性のな
い特性となる。
That is, as shown in FIGS. 9(a) and 9(b), when a constant voltage of 5 cm is applied in a dark place to a photodetector formed in an island shape, the reverse current after forming an ill film at 70° is as follows. As shown in FIG. 10, changes occur over time, resulting in impractical characteristics.

そこで、この原因について検討した結果、a−3i:8
層20が島状に形成されることにより、a−5i :8
層20の側面に20aにi層3′が露出し、このi層3
′とITOil極4界面との接合特性がa−3i : 
H側面部20aで保護膜形成により劣化し、電流がリー
クすることにあると思われる。このことはつぎに述べる
事実からも明らかである。
Therefore, as a result of examining the cause of this, we found that a-3i:8
By forming the layer 20 in an island shape, a-5i:8
An i-layer 3' is exposed at 20a on the side surface of the layer 20, and this i-layer 3'
′ and the ITOil pole 4 interface are a-3i:
This seems to be due to deterioration due to the formation of a protective film on the H side surface portion 20a, and current leakage. This is clear from the facts described below.

すなわち、i層3′のみの保護膜形成前後の逆方向電流
の増加は第6図に示すように電圧5■印加時で約2 X
l0−’A /−である。第10図に示す特性を有する
島状に形成されたB−5i: 8層20の画素寸法は1
00μl1lX150μmであり、膜厚が1μmである
In other words, the increase in reverse current before and after forming the protective film only on the i-layer 3' is approximately 2× when a voltage of 5 μm is applied, as shown in FIG.
l0-'A/-. B-5i formed in an island shape with the characteristics shown in FIG. 10: The pixel size of the 8 layers 20 is 1
00 μl 11×150 μm, and the film thickness is 1 μm.

したがってa−Si : H層20側面20aのi層3
′の露出部の面積はa−Si : Hの表面積の約3%
に相当する。
Therefore, a-Si: I layer 3 on the side surface 20a of the H layer 20
The exposed area of ' is approximately 3% of the surface area of a-Si:H.
corresponds to

また前記の逆方向電流増加が2 Xl0−’A /−で
あるから側面20aでは約6 Xl0−?A /adの
逆方向電流増加となり、第10図に示す逆方向電流の経
時的に増加する値とほぼ一致する。
Furthermore, since the aforementioned reverse current increase is 2 Xl0-'A/-, the increase in the reverse current is approximately 6 Xl0-'A/- at the side surface 20a. The reverse current increases by A/ad, which almost matches the value of the reverse current increasing over time shown in FIG.

なお、この特性劣化はa−5i : Hを島状に形成せ
ず、i層3′と2層8の2層構造とする限り発生しない
Note that this characteristic deterioration does not occur as long as the a-5i:H is not formed into an island shape and has a two-layer structure of the i-layer 3' and the 2-layer 8.

そこで、本発明は、a−Si : Hをi層とP層との
2層構造にして縦方向の特性劣化を防止し、かつ横方向
すなわちa−St : Hを島状に形成することにより
露出するi層の側面と透明電極であるITOとの界面の
接合特性の保護膜形成による特性の劣化は縦方向と同様
にP層で被覆する構造にして、保護膜形成するITOの
還元による接合特性の影響、インジウムの拡散あるいは
保護膜の応力による接合破壊を防止するようにしたもの
である。
Therefore, in the present invention, a-Si:H is formed into a two-layer structure of an i-layer and a p-layer to prevent deterioration of characteristics in the vertical direction, and in the horizontal direction, that is, by forming a-St:H in an island shape. The deterioration of the bonding characteristics of the interface between the exposed side surface of the i-layer and the transparent electrode ITO due to the formation of a protective film can be avoided by using a structure in which it is covered with a P layer in the same way as in the vertical direction, and bonding is performed by reduction of the ITO forming the protective film. This is designed to prevent junction breakdown due to the influence of characteristics, indium diffusion, or stress on the protective film.

したがって本発明によれば島状に形成されたa−Si:
Hの全方向について保護膜形成による特性劣化を解消す
ることができる。
Therefore, according to the present invention, a-Si formed in an island shape:
It is possible to eliminate characteristic deterioration due to the formation of a protective film in all directions of H.

〔実施例〕〔Example〕

以下、本発明の一実施例を示す第1図および第2図につ
いて説明する。第1図は本発明による受光素子を示す断
面図、第2図は第1図に示す受光素子の保護膜形成後の
逆方向電流の経時変化曲線図である。
1 and 2 showing one embodiment of the present invention will be described below. FIG. 1 is a cross-sectional view showing a light-receiving element according to the present invention, and FIG. 2 is a graph showing a time-dependent change in reverse current of the light-receiving element shown in FIG. 1 after formation of a protective film.

第1図に示す如(、ガラスなどから形成された絶縁基板
1′上にCrを1000人スパッタリング法で形成し、
ホトエツチング手法で島状に形成した金r!A電極2′
を有する。この場合、エツチング液は硝酸第2セリウム
アンモンを用いている。
As shown in FIG.
Gold r formed into islands using photoetching method! A electrode 2'
has. In this case, ceric ammonium nitrate is used as the etching solution.

ついで前記基板を1′をプラズマCVD装置の反応室に
入れ、真空状態で200℃に加熱したのち、100%5
iHa  ガスを1003cm導入し、グロー放電分解
法によりa−3i : Hvのi層3′を約1μm形成
する。
Next, the substrate 1' was placed in a reaction chamber of a plasma CVD apparatus, heated to 200°C in a vacuum state, and then heated to 100% 5
iHa gas was introduced to a depth of 1003 cm, and an i-layer 3' of a-3i:Hv was formed to a thickness of about 1 μm by glow discharge decomposition.

しかるのち、前記基板1′をプラズマCVD装置の反応
室から取り出しホトエツチングプロセスにより、前記a
−5i : H膜のi層3′をヒドラジン水溶液を用い
て100 X150μI2の島状に形成する。
Thereafter, the substrate 1' is taken out from the reaction chamber of the plasma CVD apparatus and subjected to a photoetching process to remove the a.
-5i: The i-layer 3' of the H film is formed into an island shape of 100×150 μI2 using a hydrazine aqueous solution.

ついで、前記a−St : H膜上に積層されたレジス
トを除去してa−3i : H膜のi層3′の自然酸化
膜をフッ酸水溶液で除去する。これは、つぎに積層する
a−3i : H膜のP層8′と前記i層3′との接合
性を向上するためである。この場合、フッ酸水)容ン皮
はl(F : 1(20=1.5 : 100を用いる
Next, the resist laminated on the a-St:H film is removed, and the natural oxide film of the i-layer 3' of the a-3i:H film is removed with a hydrofluoric acid aqueous solution. This is to improve the bonding property between the P layer 8' of the a-3i:H film to be laminated next and the i layer 3'. In this case, 1 (F: 1 (20 = 1.5: 100) is used for the hydrofluoric acid solution.

しかるのち、前記a−5i : H膜のi層3′を形成
したのと同様にプラズマCVD装置の反応室に入れて1
00%Sin、ガスを100 secM、水素希釈の5
00 ppmのB、H,ガスを8090CM導入し、膜
厚2−50人のa−St :H膜のP層8′を形成する
After that, it was placed in the reaction chamber of the plasma CVD apparatus and heated for 1 minute in the same way as the i-layer 3' of the a-5i:H film was formed.
00% Sin, gas at 100 secM, hydrogen dilution at 5
00 ppm of B, H, and 8090 cm of gas are introduced to form a P layer 8' of an a-St:H film having a thickness of 2 to 50 ppm.

ついでホトエツチング手法によりa−St : H膜の
i層3′と同様にP層8′を島状に形成する。この場合
P層8′は100 X150 am”のi層3′のパタ
ーンよりも大きなパターン(110X 160μm 2
 )にしてi層3′を完全に被覆するように形成する。
Next, a P layer 8' is formed in the form of an island by photo-etching, similar to the i layer 3' of the a-St:H film. In this case, the P layer 8' has a larger pattern (110 x 160 μm 2
) to completely cover the i-layer 3'.

しかるのち、レジストを除去し、その上にスパッタリン
グ法によりITO電極4′を厚さ0.5 μmの膜状に
形成し、かつホトエツチング法で島状に形成されたa−
5i : 8層20の後端部分20aを接触するように
形成するように構成されている。
Thereafter, the resist was removed, and an ITO electrode 4' was formed thereon in the form of a film with a thickness of 0.5 μm by sputtering, and an island-shaped a-
5i: The rear end portions 20a of the eight layers 20 are formed so as to be in contact with each other.

本発明による受光素子は前記の如く島状に形成されたa
−Si : H膜のi層3′がP層8′にて完全に被覆
された構成をしているから、保護膜形成によるITO電
極4′の還元による接合特性への影、インジウムの拡散
、あるいは保護膜の応力による接合破壊が防止される。
The light-receiving element according to the present invention has an island shape as described above.
-Si: Since the i-layer 3' of the H film is completely covered with the P layer 8', the bonding characteristics are affected by the reduction of the ITO electrode 4' due to the formation of the protective film, the diffusion of indium, Alternatively, bond breakdown due to stress in the protective film is prevented.

したがって第2図に示す如(、暗所で、一定電圧5■を
印加した場合の70℃における保1g!膜形成後の並方
開電流の増加はなく何ら特性劣化はみられない特性を得
ることができる。
Therefore, as shown in Fig. 2 (1 g at 70°C when a constant voltage of 5 cm is applied in a dark place), there is no increase in parallel open current after film formation, and no characteristic deterioration is observed. be able to.

また、従来のように1層3と2層8とを同時にホトエツ
チング手法により形成した場合、1層3のエツチングレ
ートが2層8のエツチングレートよりも早いために島状
に形成されたa−St : H膜にPlIJBのひさし
が発生し、a−3i: H膜上に形成されるITO電極
4の断線が発生しやすい問題も、本発明ではi層3′と
Pj18’とを個所にエツチングするため、前記の問題
を解決することができ、良好な加工性を得る上で大きな
効果がある。
Furthermore, when the first layer 3 and the second layer 8 are formed simultaneously by photo-etching as in the conventional method, the etching rate of the first layer 3 is faster than the etching rate of the second layer 8, so that the a-St layer formed in an island shape is formed. : The problem that PlIJB overhangs occur on the H film and disconnection of the ITO electrode 4 formed on the a-3i: H film is likely to occur is solved in the present invention by etching the i layer 3' and the Pj 18' at certain locations. Therefore, the above-mentioned problem can be solved and there is a great effect in obtaining good workability.

つぎに第3図は第1図に示す受光素子を用いた一次元イ
メージセンサの平面図である。
Next, FIG. 3 is a plan view of a one-dimensional image sensor using the light receiving element shown in FIG. 1.

第3図に示す如く、ガラスなどから形成された絶縁基板
1″上に前記第1図で述べた金属電極2′と同様な方法
により下部電極2#を形成する。この場合下部電極2″
の島状のピッチは8画素/Hの一次元イメージセンサで
は125μmに形成している。
As shown in FIG. 3, a lower electrode 2# is formed on an insulating substrate 1'' made of glass or the like by the same method as the metal electrode 2' described in FIG. 1. In this case, the lower electrode 2''
The pitch of the islands is 125 μm in a one-dimensional image sensor with 8 pixels/H.

ついで、前記第1図で述べたと同様な方法によりa−5
i : H膜のi層3′、P層8′およびTTO電極4
′を順次形成したのち、その上にプラズマCVD法によ
り5t14. NH3+ Nzを用いてグロー放電分解
により5IN4の保護膜5′を厚さ2μmにて形成し、
マスクを用いて必要部分に堆積される。
Then, by the same method as described in FIG. 1 above, a-5
i: H film i layer 3', P layer 8' and TTO electrode 4
', and then 5t14. A protective film 5' of 5IN4 was formed with a thickness of 2 μm by glow discharge decomposition using NH3+Nz,
It is deposited on the required areas using a mask.

しかるのち、前記下部電極2″の先端部上に後端部が前
記ITOを極4′に接続する如< NiCr1lと、こ
のNiCr1lの先端部上にAu12とをスパッタリン
グ法にて順次形成し、ホトエツチング手法によりボンデ
イングパソトを形成したのち、こボンデイングパソトと
前記絶縁基板1“上にボンディングされた走査用集積素
子13をワイヤポイング14にて接続することによって
一次元イメージセンサが完成する。
Thereafter, NiCr11 is sequentially formed on the tip of the lower electrode 2'' so that the rear end connects the ITO to the pole 4', and Au12 is formed on the tip of the NiCr11 by sputtering, and then photoetched. After forming a bonding pad by this method, a one-dimensional image sensor is completed by connecting the bonding pad and the scanning integrated element 13 bonded on the insulating substrate 1'' with a wire pointing 14.

本発明による一次元イメージセンサは前記の如く構成さ
れているから、SiN4などの保護膜5′を形成しても
良好な解像度を有し、信頼性の高い一次元イメージセン
サを得ることができる。
Since the one-dimensional image sensor according to the present invention is constructed as described above, it is possible to obtain a one-dimensional image sensor with good resolution and high reliability even if the protective film 5' of SiN4 or the like is formed.

なお、前記第2図は一画素についてのデータであるが、
−次元イメージセンサとしての全画素については再現性
良く、特性劣化のない特性を得ることができる。
Note that the data in FIG. 2 is for one pixel, but
It is possible to obtain characteristics with good reproducibility and no characteristic deterioration for all pixels as a -dimensional image sensor.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、保護膜を形成しても良好な特性を有す
る光電素子を得ることができるので、良好な解像度を有
する信頼性の高い一次元イメージセンサを得ることがで
きる。
According to the present invention, it is possible to obtain a photoelectric element having good characteristics even when a protective film is formed, and therefore a highly reliable one-dimensional image sensor having good resolution can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による受光素子の断面図、第2図は第1
図に示す受光素子の保護膜形成後の逆方向電流の経時変
化曲線図、第3図(a)は第1図に丞す受光素子を用い
たイメージセンサの平面図、第3図(b)は第3図(a
)の側面図、第4図は従来の受光素子を示す断面図、第
5図は第4図に示す従来の受光素子に保護膜を形成した
断面図、第6図は第5図に示す受光素子の保護膜形成後
の逆方向電流の曲線図、第7図は画素が電気的に接続し
ているa−Si : Hからなる2N構造の受光素子を
示す断面図、第8図は第7図に示す受光素子の保護形成
前後の逆方向電流曲線図、第9図は第7図に示す受光素
子を島状に形成した場合を示す断面図、第10図は第9
図に示す受光素子の保護膜形成後の逆方向電流の経時変
化曲線図である。 1′、1″・・・ガラス基板、2′・・・下部電極、3
 ’ −a−S’i : Hの1層、4 ’ ・ITO
電極、8 ’ −・・a−5i : IIのP層、5 
’−・・保護膜、11・=NiCr、l 2−・・Au
、 13・・・走査用Ic、 14・・・ワイヤボンデ
インイブ、代理人 弁理士   秋 本 正 実 第 IW!J 4′ 第2図 x +o−’ ¥[ 秤量(社)) 第 3 図 (a) 1’−42@注基’l  8’−a−$i:H(8管)
   II−−−NiCv2’−−−TI’t&   
4’−−−ITO12−Au3’−−−a−9i:H(
1層>5’−一一保1f!     13−N1ff1
fc14・−)伜ホ゛ンフインフ′ 第4 図 第5図 第6図 第7図 第8図 第91!!J 第10図 府間 (抄)
FIG. 1 is a sectional view of a light receiving element according to the present invention, and FIG.
Fig. 3(a) is a plan view of an image sensor using the photodetecting element shown in Fig. 1, Fig. 3(b) is a graph showing the change in reverse current over time after the formation of a protective film on the photodetector shown in the figure. is shown in Figure 3 (a
), FIG. 4 is a sectional view showing a conventional light receiving element, FIG. 5 is a sectional view of the conventional light receiving element shown in FIG. 4 with a protective film formed, and FIG. 6 is a side view of the conventional light receiving element shown in FIG. 7 is a cross-sectional view showing a 2N structure light-receiving element made of a-Si:H to which pixels are electrically connected; FIG. 9 is a cross-sectional view showing the case where the light receiving element shown in FIG. 7 is formed into an island shape, and FIG.
FIG. 3 is a curve diagram of a reverse current change over time after formation of a protective film of the light-receiving element shown in the figure. 1', 1''...Glass substrate, 2'...Lower electrode, 3
'-a-S'i: 1 layer of H, 4' ・ITO
Electrode, 8'-...a-5i: P layer of II, 5
'-...Protective film, 11.=NiCr, l 2-...Au
, 13...Scanning Ic, 14...Wire bonding Eve, Agent: Patent attorney Tadashi Akimoto, Jitsudai IW! J 4' Fig. 2
II---NiCv2'---TI't&
4'---ITO12-Au3'---a-9i:H(
1st layer>5'-11bo 1f! 13-N1ff1
FC14 ・-) 伜 Hoshin Hinef 伜 Fig. 4 Fig. 5 Fig. 6 Fig. 8 Fig. 8! ! J Figure 10 Fuuma (excerpt)

Claims (1)

【特許請求の範囲】 1、絶縁性基板上の導電体よりなる電極上に水素化非晶
質シリコン半導体と、酸化インジウムを主体とする透明
電極と、透光性保護膜を順次積層してなる受光素子にお
いて、前記電極に接する部分に前記水素化非晶質シリコ
ンをモノシランガスのみのグロー放電分解によって形成
した第1層を積層し、この第1層の前記透明電極に接す
る部分を、前記水素化非晶質シリコン半導体をモノシラ
ンガスおよびドーピングガスの混合ガスのグロー放電分
解によって形成した第2層にて被覆する如く積層し、か
つ前記第1層および第2層を島状に形成したことを特徴
とする受光素子。 2、前記ドーピングガスはB_2H_6にて形成されて
いることを特徴とする特許請求の範囲第1項記載の受光
素子。 3、導電体にて島状に形成した下部電極上に水素化非晶
質シリコン半導体をモノシランガスのみのグロー放電分
解によって形成した第1層を積層し、第1層上の酸化イ
ンジウムを主体とする透明電極に接する部分を、水素化
非晶質シリコン半導体をモノシランガスおよびドーピン
グガスの混合ガスのグロー放電分解によって形成した第
2層にて被覆する如く積層し、かつ前記第1層および第
2層を島状に形成した受光素子を絶縁性基板上に一次元
方向に複数配置し、前記島状に形成された下部電極上に
前記透明電極と接続するボンディングパットを形成し、
このボンディングパットを走査用集積素子とワイヤボン
ディングにて接続したことを特徴とする一次元イメージ
センサ。 4、前記ドーピングガスはB_2H_6で形成されてい
ることを特徴とする前記特許請求範囲の第3項記載の一
次元イメージセンサ。
[Scope of Claims] 1. A hydrogenated amorphous silicon semiconductor, a transparent electrode mainly composed of indium oxide, and a transparent protective film are sequentially laminated on an electrode made of a conductor on an insulating substrate. In the light receiving element, a first layer formed of the hydrogenated amorphous silicon by glow discharge decomposition using only monosilane gas is laminated on a portion in contact with the electrode, and a portion of this first layer in contact with the transparent electrode is laminated with the hydrogenated amorphous silicon formed by glow discharge decomposition using only monosilane gas. Amorphous silicon semiconductor is laminated so as to be covered with a second layer formed by glow discharge decomposition of a mixed gas of monosilane gas and doping gas, and the first layer and the second layer are formed in an island shape. A light-receiving element. 2. The light receiving element according to claim 1, wherein the doping gas is made of B_2H_6. 3. A first layer of hydrogenated amorphous silicon semiconductor formed by glow discharge decomposition using only monosilane gas is laminated on a lower electrode formed in an island shape using a conductor, and indium oxide on the first layer is mainly formed. A hydrogenated amorphous silicon semiconductor is laminated so as to cover the portion in contact with the transparent electrode with a second layer formed by glow discharge decomposition of a mixed gas of monosilane gas and doping gas, and the first layer and the second layer are A plurality of island-shaped light receiving elements are arranged in one dimension on an insulating substrate, and a bonding pad connected to the transparent electrode is formed on the island-shaped lower electrode,
A one-dimensional image sensor characterized in that this bonding pad is connected to a scanning integrated element by wire bonding. 4. The one-dimensional image sensor according to claim 3, wherein the doping gas is made of B_2H_6.
JP62012565A 1987-01-23 1987-01-23 Photodetector and line image sensor using the same Pending JPS63181462A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62012565A JPS63181462A (en) 1987-01-23 1987-01-23 Photodetector and line image sensor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62012565A JPS63181462A (en) 1987-01-23 1987-01-23 Photodetector and line image sensor using the same

Publications (1)

Publication Number Publication Date
JPS63181462A true JPS63181462A (en) 1988-07-26

Family

ID=11808873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62012565A Pending JPS63181462A (en) 1987-01-23 1987-01-23 Photodetector and line image sensor using the same

Country Status (1)

Country Link
JP (1) JPS63181462A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018990A1 (en) * 1991-04-10 1992-10-29 Tokio Nakada Method for manufacturing transparent conductive film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992018990A1 (en) * 1991-04-10 1992-10-29 Tokio Nakada Method for manufacturing transparent conductive film

Similar Documents

Publication Publication Date Title
KR100476622B1 (en) Liquid crystal display device using wiring with molybdenum-tungsten alloy and its manufacturing method
JPH0481353B2 (en)
JPH07221279A (en) Solid emission imaging device and manufacture of imaging device arrange
US5838054A (en) Contact pads for radiation imagers
JPS63181462A (en) Photodetector and line image sensor using the same
US4855795A (en) Photosensor
JPH06244402A (en) Solid-state image pickup device and manufacture thereof
JPH02128468A (en) Solid-state image sensing device and manufacture thereof
JPH04153623A (en) Wiring structure
JPH07118527B2 (en) Image sensor manufacturing method
JPH02143560A (en) Laminar type solid-state image sensing device
JPH0793416B2 (en) Light receiving element and manufacturing method thereof
JPS63107062A (en) Light receiving element and one-dimensional image sensor applying the same
JPH02166769A (en) Laminated solid state image sensor and manufacture thereof
JPS63136578A (en) Photodetector and one-dimensional image sensor using said photodetector
JP2763131B2 (en) Solid-state imaging device
JPS6187479A (en) Solid state image pickup element
JPH04215474A (en) Manufacture of wirings of semiconductor element
JPS59172783A (en) Photosensor
JPS61181158A (en) Contact type image sensor
JPS61127166A (en) Manufacture of image sensor
JPS60177321A (en) Manufacture of thin-film nonlinear resistance element for display device
JPS61284958A (en) Manufacture of image sensor
JPH065726B2 (en) Photoelectric conversion element array
JPH04267344A (en) Manufacture of thin film transistor array substrate