WO1992018990A1 - Method for manufacturing transparent conductive film - Google Patents

Method for manufacturing transparent conductive film Download PDF

Info

Publication number
WO1992018990A1
WO1992018990A1 PCT/JP1992/000455 JP9200455W WO9218990A1 WO 1992018990 A1 WO1992018990 A1 WO 1992018990A1 JP 9200455 W JP9200455 W JP 9200455W WO 9218990 A1 WO9218990 A1 WO 9218990A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
gas
film
sputtering
Prior art date
Application number
PCT/JP1992/000455
Other languages
French (fr)
Japanese (ja)
Inventor
Tokio Nakada
Original Assignee
Tokio Nakada
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokio Nakada filed Critical Tokio Nakada
Priority to JP50807692A priority Critical patent/JP3325268B2/en
Publication of WO1992018990A1 publication Critical patent/WO1992018990A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4

Definitions

  • the present invention relates to a method for manufacturing a transparent conductive film having a surface texture structure, and more particularly to a method for manufacturing a transparent conductive film suitable for a configuration of a photoelectric conversion device by sputtering.
  • a transparent conductive film conventionally, S n 0 2 system, (eg, I n 2 O 3: S n O 2 (1 0 wt%), ITO) I n 2 0 3 system and the like are known .
  • S n 0 2 system eg, I n 2 O 3: S n O 2 (1 0 wt%), ITO
  • the film surface is also incident due to the light confinement effect. It is important to have a surface texture structure that allows effective use of light and to have high transmittance in the near-infrared region. Also, it is desired that the resistive resistance be as low as possible ( ⁇ 10 ⁇ / port).
  • a transparent conductive film having a surface texture structure is conventionally known by a chemical vapor deposition (CVD) method.
  • the S n 0 2 is resistant problem of poor to hydrogen plasma.
  • ZnO has good resistance to hydrogen plasma. Therefore, the Amorufu ⁇ scan S i film, when forming on S n 0 2 by the plasma CVD method is considered to be Koti ring of Z n O film on S n 0 2.
  • a sputtering method as a method for producing a transparent conductive film that does not use a toxic gas as a main raw material.
  • a transparent conductive film having a surface texture structure has not been obtained by the sputtering method.
  • the transparent conductive ZnO: B film obtained by the MOCVD method described above has a problem that the change with time is large. For example, This film is 200 in air. If left for 10 hours in the state of C, the resistance value changes to about twice the initial value. In the case of solar batteries, environmental resistance is a major issue, and this is also an issue to be solved.
  • An object of the present invention is to provide a method for manufacturing a transparent conductive film capable of forming a transparent conductive film having a surface texture structure by a sputtering method.
  • a method for producing a transparent conductive film on a substrate by sputtering at least a part of the composition of a target film is used as a component.
  • a method for producing a transparent conductive film is provided, wherein the target is sputtered in a gas atmosphere containing OH to form a transparent conductive film.
  • the target transparent conductive film is, for example, Zn0,
  • Zn0 X (X is one of Al, Si, B, F, and CI)
  • OH in the gas atmosphere containing OH is generated by decomposing a compound having an OH group.
  • the compound having an OH group for example, at least one of water and alcohol can be used. These can be used alone or as a mixture with an inert gas such as Ar.
  • a compound gas containing an unblendable substance to be doped can be mixed into the sputtering gas.
  • a target for forming a film of the target substance described above a target composed of the same substance as the target substance can be used.
  • reactive sputtering is performed by introducing metals such as n, Sn, and InSn, which are mixed or not mixed with unbleached substances, and introducing oxygen in addition to other gases. You can also do
  • the present invention uses an oxide-based target having at least the composition of a target film as a component, and performs sputtering in a gas atmosphere containing OH to form an oxide on a substrate.
  • a system transparent conductive film may be formed.
  • a method of manufacturing an oxide-based transparent conductive film on a substrate by sputtering wherein the oxide-based transparent conductive film has at least a target film composition as a component.
  • a method for producing a transparent conductive film is provided, wherein sputtering is performed using a target and a gas containing B 2 H ⁇ .
  • the gas containing B 2 Hs for example, a gas obtained by diluting B 2 Hs with Ar is used.
  • the target for example, ZnO is used. It is.
  • a texture structure is formed on the surface of the film. This generation mechanism is not always clear, but can be considered as follows.
  • OH in the atmosphere is generated by decomposing compounds having OH groups.
  • compounds having OH groups For example, water and alcohol.
  • ⁇ H in the atmosphere for example, and H which is generated by decomposing a gas containing hydrogen such as B 2 H e, is made fresh from 0 Metropolitan separated from the oxide-based target.
  • the film is formed by sputtering, not only is toxic gas not used as a raw material, but also it is easy to form a large-area transparent conductive film.
  • a transparent conductive film having a surface texture structure can be formed by sputtering.
  • FIG. 1 is a cross-sectional view showing one embodiment of a DC magnetron sputtering apparatus preferably used for producing a transparent conductive film of the present invention.
  • FIG. 3 is a graph showing the wavelength dependence of the total transmittance T d, turbidity M and diffuse reflectance R of the sample of Example 2.
  • FIG. 4 is a graph showing the wavelength dependence of the total transmittance Td, turbidity M, and diffuse reflectance R of the sample of Example 3 (3-a, 3-b, 3-c).
  • FIG. 5 is a graph showing the wavelength dependence of the total transmittance T d, turbidity, and diffuse reflectance R of the sample of Example 4.
  • Figure 6 is a graph showing the substrate temperature dependence of resistivity, mobility, and carrier concentration for the sample of Example 3 (3-a, 3-b, 3-c).
  • FIG. 7A is a photograph showing the observation result of the sample of Comparative Example 4 by SEM
  • FIG. 7B is a photograph showing the observation result of the sample surface of Example 5 by SEM.
  • FIG. 8 shows the results for the samples of Examples 5 to 7 and Comparative Examples 4 and 5.
  • FIG. 9 is a graph showing the dependence of resistivity, mobility, and carrier concentration on the doping amount of B 2 H 6 for each of the samples of Examples 5 to 7 and Comparative Example 4.
  • FIG. 10A is a photograph showing the observation result of the sample of Comparative Example 6 by SEM
  • FIG. 10B is a photograph showing the observation result of the sample surface of Example 9 by SEM.
  • FIG. 11 is a graph showing the dependence of resistivity, mobility, and carrier concentration on the doping amount of B 2 H 6 for each of the samples of Examples 8 to 13 and Comparative Example 6.
  • the DC magnetron sputtering device shown in FIG. 1 has a vacuum chamber 1 that is evacuated by an exhaust system 2 having an exhaust device (not shown), and a gas chamber for introducing gas into the vacuum chamber 1.
  • the system includes a gas introduction system 3, a target electrode 4, a substrate electrode 5, and a power supply device (not shown).
  • the gas introduction system 3 is connected to an Ar gas supply source (not shown) to regulate the introduction amount of Ar gas and a flow control valve 31 for controlling the introduction amount of the mixture of the impurity doping gas and the texture structure forming gas. It is provided with a flow control valve 32 for adjusting the flow rate, a flow control valve 33 for adjusting the introduction amount of the mixed gas, and a gas inlet 34 to which the gas introduction system 3 is connected.
  • the target gas May be introduced in advance. For example, as shown in the examples below, B 2 previously diluted with Ar
  • Target electrode 4 is connected to target 40 and this target
  • the substrate electrode 5 includes a plate 51 on which the substrate 50 is placed, a plate holder 52 for holding the plate 51, and a heater 53 for heating the substrate 50.
  • the substrate glass, quartz or the like is used.
  • the distance between the substrate 50 and the target 40 is 35 ⁇ in Examples 1 to 4 and Comparative Examples 1 and 2. Further, in Example 5 and later, and in Comparative Example 4 and later, 5 Omm is set.
  • a disk having a diameter of 10 cm is used as the target 40.
  • Is a substance, Z n O (9 9 9 wt.) Or Z n O: sintered body of A 1 (2 wt% A 1 2 0 3) is used.
  • a mixed gas of A r and beta 2 Eta epsilon is Ru is used.
  • Sputtering was carried out under the same conditions as in Example 1 except that the sputtering gas was Ar, and a ZnO thin film having a thickness of 1.5 m was formed on a glass substrate.
  • Td-T / Td T is the transmittance at normal incidence
  • R the measurement results of the wavelength dependence of the diffuse reflectance R are shown.
  • FIG. 2 (shown by a solid line in this figure) sample was deposited by introducing Eta 2 0 is compared with the sample of Comparative Example was sputtered using A r 1 (indicated by a broken line in this figure)
  • a r 1 indicated by a broken line in this figure
  • the sputtering gas was changed to boric acid solution under the conditions of a sputtering gas pressure (operating gas pressure) of 5 X 10 _3 Torr and a substrate temperature of 400.
  • H 3 B 0 3 + H 2 0) solution gas and Ar are mixed in a one-to-one ratio and sputtered for 1 hour to form a film having a thickness of about 1.5 ⁇ m on a glass substrate.
  • a ZII0: B thin film was formed.
  • a sputtering gas, a solution gas and Alpha iota »and mixed gas in a one-to-one borate methyl alcohol (H 3 B 0 3 + CH a OH), the substrate temperature, room temperature (Example 3 - a) , At 300 ° C. (Example 3—b) and at 400 ° C. (Example 3—c), the sputtering was performed under the same conditions as in Example 2 above, A Zn0 ⁇ B thin film was formed with a thickness of 1.5 m.
  • the sputtering gas, solution gas boric acid + H 2 0 + CH 3 OH and A Sputtering was performed under the same conditions as in Example 2 except that r and were mixed in a one-to-one ratio, and a ZnO: B thin film was formed on a glass substrate to a thickness of about 1.5 jam. Was formed.
  • FIG. 3 to 5 show the wavelength dependence of the total transmittance T d, turbidity M and diffuse reflectance R for each of the samples of Examples 2 to 4.
  • FIG. 6 shows the substrate temperature dependence of resistivity, mobility, and carrier concentration for the sample of Example 3.
  • the turbidity indicating the degree of white turbidity was highest when a mixed solution of boric acid water and alcohol was used, and reached 70% or more at 600 nm.
  • the turbidity increased with the substrate temperature.
  • the transmittance in the near-infrared region decreases with decreasing substrate temperature, suggesting that the lower the temperature, the higher the boron concentration doped in the film.
  • Tag gas pressure (operating gas pressure) 2 X 10 Torr, substrate temperature 2000, sputtering gas used to dilute ⁇ 2 ⁇ 6 with Ar ⁇ 2 ⁇ ⁇ concentration 1 Sputtering was performed for 1 hour using a gas of 0.0 vol% to form a Zn0: B thin film with a thickness of about 2 ⁇ on a glass substrate.
  • the sputtering gas, B 2 except that the H e was B 2 H e concentration 0. 8 vol% gas obtained by diluting with A r is performed Supadzuta the same conditions as in Example 5, a glass substrate A ZnO: B thin film having a thickness of about 2 m was formed thereon.
  • the sputtering gas, in addition to the beta 2 Eta epsilon was beta 2 Eta epsilon concentration 0 ⁇ 5 vol% of gas obtained by diluting with A r is performed sputtering under the same conditions as those in Example 5, a glass substrate A Zn0: B thin film was formed on the upper surface with a thickness of about 2 m.
  • Sputtering was performed for 1 hour using Ar 100% gas as the sputter gas under the conditions of 10 Torr and a substrate temperature of 200.
  • Ar 100% gas as the sputter gas under the conditions of 10 Torr and a substrate temperature of 200.
  • a ZnO Al thin film was formed on a glass substrate with a thickness of about 2 tm.
  • Fig. 7 (A) shows a photograph of the observation result of the sample of Comparative Example 4
  • Fig. 7 (B) shows a photograph of the observation result of the sample of Example 5.
  • the surface has a pyramid-shaped irregularity peculiar to the texture structure.
  • FIG. 8 shows the wavelength dependence of the total transmittance T d for the samples of Examples 5 to 7 and Comparative Examples 4 and 5.
  • FIG. 9 shows the dependence of resistivity, mobility, and carrier concentration on the doping amount of ⁇ 2 ⁇ 6 for each of the samples of Examples 5 to 7 and Comparative Example 4.
  • the B 2 H 6 -doped sample (b, c, d) in the near infrared region was smaller than the ZnO: A1 thin film of Comparative Example 5 in the near-infrared region.
  • the transmittance is ⁇ ⁇ . Comparing d and e in the figure, ZnO: B (d) has a high mobility and a low carrier concentration even at almost the same resistivity. For this reason, ZnO: B (d) can reduce free electron absorption and correspondingly increase the transmittance.
  • each sample thin film B satisfies substantially the condition.
  • the sample thin film of ZnO: B of Example 5 has a remarkable texture structure, can expect an effect of confining incident light, and is preferable as a transparent conductive film.
  • a spa Ttagasu pressure (the working gas pressure) 2 X 1 0- Torr, as a spatter gas, beta 2 Eta epsilon at A r using diluted B 2 H s concentration 1 obtained.
  • 0 vol% of a gas in each of the following substrate temperature, perform the 1 hour spatter, Z n a thickness of approximately 2 m on a glass substrate ⁇ : B thin film was formed.
  • New paper Sputtering was carried out under the same conditions as in Example 8 except that the substrate temperature was set to 100 ° C (sputtered without heating) to form a Zn film with a thickness of about 2 m on the glass substrate.
  • FIG. 10 (B) shows a photograph of the observation result of the sample of Example 9.
  • the figure has a surface structure exhibiting pyramid-shaped irregularities peculiar to the texture structure.
  • the surface structure was almost the same for each sample from 200 ° C to 400 ° C.
  • it can have sample Nitsu of Comparative Example 6, not using B 2 H e, as compared to that shown in FIG. 7 (A), slight but although irregularities of the surface were observed.
  • FIG. 10 (A) shows a photograph of the observation result of Comparative Example 6.
  • Example 8-1 3 Oyopi Comparative Example 6 shows the resistivity, mobility, the doping amount dependency of B 2 H e of calibration Li A concentration. As shown in the figure, a material having a low resistivity is obtained in a wide temperature range from 150 ° to 300 °. In addition, even if the substrate temperature is low, low resistivity is obtained. Then, as described above, 200. In the range of C to 400 ° C, the surface structure exhibits pyramid-shaped irregularities peculiar to the texture structure. Is obtained.
  • H 2 0 or alcohol or by using these mixed solution gas as the sputtering gas, rather by efficiency, texturing of the film can be realized. Further, as shown in Examples 2 to 4, by doping with boron, a low-resistance film having a high total transmittance could be obtained.
  • a film having a low resistivity and a texture structure can be formed at a relatively low temperature in a film forming process.
  • a film can be formed.
  • the initial sheet resistance value 4 ⁇ changed to 4.4 ⁇ . Therefore, the change was reduced by about 10%.
  • the transparent conductive film produced by the present invention has a low resistivity, a high transmittance, and is textured, so that it can be used as a window material for a solar cell or an optical sensor. By using this, improvement of photoelectric conversion efficiency is expected. In addition, since the device has good environmental resistance, it is possible to reduce the time-dependent change of a device used outdoors such as a solar cell, and to prolong its life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

A film forming method capable of forming a transparent conductive film whose surface has a texture structure by a sputtering method. By using a target (40) of an oxide, which has at least the composition of the objective film as its component, and by sputtering the target in a gas atmosphere containing OH, a transparent conductive film is formed on a base (50).

Description

- - 明 細 書 透明導電膜の製造方法  --書 明 方法 方法 製造 製造 製造 製造
【技術分野】 【Technical field】
本発明は、 表面テクスチャ構造を有する透明導電膜の製造 方法に関し、 特に、 光電変換デバイスの構成に好適な透明導 電膜をスパッタ リ ングによ リ製造する方法に関する。  The present invention relates to a method for manufacturing a transparent conductive film having a surface texture structure, and more particularly to a method for manufacturing a transparent conductive film suitable for a configuration of a photoelectric conversion device by sputtering.
【背景技術】 [Background Art]
透明導電膜と して、 従来、 S n 02系、 I n 203系 (例え ば、 I n 2 O3 : S n O2 ( 1 0 w t % ) 、 I T O ) 等が知ら れている。 最近、 これらの薄膜に代わる透明導電膜と して、 低コス トの Z n O系薄膜が注目 を集めている。 And a transparent conductive film, conventionally, S n 0 2 system, (eg, I n 2 O 3: S n O 2 (1 0 wt%), ITO) I n 2 0 3 system and the like are known . Recently, low-cost ZnO-based thin films have attracted attention as a transparent conductive film replacing these thin films.
と ころで、 光電変換デバイスに透明導電膜を用いる際の必 要条件と しては、 低抵抗、 高透過率であるこ とは無論である が、 この他、 膜表面が、 光閉じ込め効果による入射光の有効 利用が可能な表面テクスチャ構造を有する こ とや、 近赤外領 域における透過率が高いこ となどが重要と されている。 また、 できる限リ シ一 ト抵抗が低いこと (< 1 0 Ω /口) が望まれ ている。  Although it is a matter of course that the requirements for using a transparent conductive film in a photoelectric conversion device are low resistance and high transmittance, the film surface is also incident due to the light confinement effect. It is important to have a surface texture structure that allows effective use of light and to have high transmittance in the near-infrared region. Also, it is desired that the resistive resistance be as low as possible (<10 Ω / port).
と こ ろで、 従来、 表面テク スチャ構造を有する透明導電膜 については、 化学的,気相成長 (Chemical Vapor Deposition, C V D ) 法によるものが知られている。  By the way, a transparent conductive film having a surface texture structure is conventionally known by a chemical vapor deposition (CVD) method.
すなわち、 S n 〇 2については、 "M. Mizuhashi et al : Jpn. J. Appl. phys. 27 (11) (1988) 2053 - 2061" に、 H2 0 / S n C l 4、 C H3 O H / Hz O , H F Z S n C および 02/ S i H4を原料と して、 C V D法によ り、 S n 02 : F を成膜させる例が記載されている。 また、 "H. IIDA et al : IEEE Electron Device Lett. EDL 4 No.5 (1983) 157" に、 上記文献と同様の原料を用い、 基板温度を最適化して、 C V D法にょ リ S n 02を成膜させる例が記載されている。 That is, for the S n 〇 2, "M. Mizuhashi et al: ... Jpn J. Appl phys 27 (11) (1988) 2053 - 2061" to, H 2 0 / S n C l 4, CH 3 OH / H z O, and as a raw material HFZS n C and 0 2 / S i H 4, Ri by the CVD method, S n 0 2: Example for formation of the F Is described. Also,: the "H. IIDA et al. IEEE Electron Device Lett EDL 4 No.5 (1983) 157", using the same raw material and the above documents, by optimizing the substrate temperature, CVD method Nyo Li S n 0 2 Is described.
また、 Z n 0 ·· B については、 "A. Yamada et al : Tech nical Digest of the International PVSEC― 5, Kyoto , Jap an ( 1990) 1033" に、 ジェチルジンク : H20を原料と し、 ドーパン トと して B を用いて、 M O C V D法によ リ成膜させ る例が記載されている。 In addition, for the Z n 0 ·· B,: to "A. Yamada et al Tech nical Digest of the International PVSEC- 5, Kyoto, Jap an (1990) 1033", Jechirujinku: the H 2 0 as a raw material, dopant An example is described in which B is used as a substrate and a film is formed by MOCVD.
ところで、 上記 S n 02は、 水素プラズマに対する耐性が 悪いという問題がある。 一方、 Z n Oは、 水素プラズマに対 する耐性が良好である。 そのため、 アモルフ ァ ス S i膜を、 プラズマ C V D法で S n 02上に成膜する場合、 S n 02上に Z n O膜をコーティ ングすることが考えられている。 Meanwhile, the S n 0 2 is resistant problem of poor to hydrogen plasma. On the other hand, ZnO has good resistance to hydrogen plasma. Therefore, the Amorufu § scan S i film, when forming on S n 0 2 by the plasma CVD method is considered to be Koti ring of Z n O film on S n 0 2.
しかしながら、 上記した M O C V D法にょ リ透明導電膜を 製造する場合、 主原料と して大量に有毒ガスを用いる ことが 多いという問題がある。  However, when a transparent conductive film is produced by the above-mentioned MOCVD method, there is a problem that a large amount of toxic gas is often used as a main raw material.
これに対して、 有毒ガスを主原料と して用いない透明導電 膜の製法と して、 スパッタ リ ング法がある。 しかし、 従来、 スパッ タ リ ング法では、 表面テクスチャ構造を有する透明導 電膜が得られていない。  On the other hand, there is a sputtering method as a method for producing a transparent conductive film that does not use a toxic gas as a main raw material. However, conventionally, a transparent conductive film having a surface texture structure has not been obtained by the sputtering method.
また、 上記した M O C V D法によ り得られる Z n O : B透 明導電膜は、 経時変化が大きいという問題がある。 例えば、 こ の膜を、 大気中で、 2 0 0。Cの状態で 1 0時間放置すると 抵抗値が、 初期値に比べ 2倍の程度の大きさに変化する。 太 陽電池の場合、 耐環境性が大きな問題となるので、 この点も 解決すべき課題である。 In addition, the transparent conductive ZnO: B film obtained by the MOCVD method described above has a problem that the change with time is large. For example, This film is 200 in air. If left for 10 hours in the state of C, the resistance value changes to about twice the initial value. In the case of solar batteries, environmental resistance is a major issue, and this is also an issue to be solved.
【発明の開示】 DISCLOSURE OF THE INVENTION
本発明の目的は、 スパッタ リ ング法によって表面テクスチ ャ構造を有する透明導電膜を成膜すること ができる透明導電 膜の製造方法を提供するこ と にある。  An object of the present invention is to provide a method for manufacturing a transparent conductive film capable of forming a transparent conductive film having a surface texture structure by a sputtering method.
上記目的を達成するため本発明の一態様によれば、 基板上 に透明導電膜をスパッ タ リ ングによ り製造する方法において、 少なく とも 目的とする膜の組成の一部を成分と して有するタ 一ゲッ 卜を、 O Hを含むガス雰囲気中でスパジ タ して、 透明 導電膜を成膜するこ と を特徴とする透明導電膜の製造方法が 提供される。  According to one embodiment of the present invention, in order to achieve the above object, in a method for producing a transparent conductive film on a substrate by sputtering, at least a part of the composition of a target film is used as a component. A method for producing a transparent conductive film is provided, wherein the target is sputtered in a gas atmosphere containing OH to form a transparent conductive film.
本発明において、 目的とする透明導電膜と しては、 例えば、 Z n 0、  In the present invention, the target transparent conductive film is, for example, Zn0,
Z n 0 : X ( Xは A l , S i , B , Fおよび C I のうち  Zn0: X (X is one of Al, Si, B, F, and CI)
少な く とも 1種) 、  At least one),
S n O 2 S n O 2
S n 02 Y ( Yは Fおよび C 1 のうち少なく とも 1種)S n 0 2 Y (Y is at least one of F and C 1)
I n 2 O I n 2 O
I n 20リ 3 : Z ( Zは S n 02および S nのうち少な く とも I n 20 0 3: Z (Z is at least one of S n 0 2 and S n
1種)  1)
が挙げられる。 上記 OHを含むガス雰囲気における OHは、 OH基を持つ 化合物を分解して生成される。 OH基を持つ化合物は、 例え ば、 水およびアルコールのうち少なく とも一方を用いること ができる。 これらは、 単独で、 または、 A r等の不活性ガス と混合して用いることができる。 Is mentioned. OH in the gas atmosphere containing OH is generated by decomposing a compound having an OH group. As the compound having an OH group, for example, at least one of water and alcohol can be used. These can be used alone or as a mixture with an inert gas such as Ar.
また、 スパッタガス中に、 ドープすべき不鈍物を含む化合 物のガスを混合することができる。  In addition, a compound gas containing an unblendable substance to be doped can be mixed into the sputtering gas.
上述した目的の物質を成膜するためのターゲッ トと して、 目的物質と同一の物質からなるターゲッ トを用いることがで きる。 また、 不鈍物を混入させた、 または、 させていない Ζ n, S n , I n S n等の金属をターゲッ トと し、 他のガスの 他に酸素を導入して、 反応性スパッタ リングを行なう ことも できる。  As a target for forming a film of the target substance described above, a target composed of the same substance as the target substance can be used. In addition, reactive sputtering is performed by introducing metals such as n, Sn, and InSn, which are mixed or not mixed with unbleached substances, and introducing oxygen in addition to other gases. You can also do
また、 本発明は、 少なく とも 目的とする膜の組成を成分と して有する酸化物系ターゲッ トを用い、 かつ、 OHを含むガ ス雰囲気中でスパッタすること によ リ、 基板上に酸化物系透 明導電膜を成膜するようにしてもよい。  Further, the present invention uses an oxide-based target having at least the composition of a target film as a component, and performs sputtering in a gas atmosphere containing OH to form an oxide on a substrate. A system transparent conductive film may be formed.
また、 本発明の他の態様によれば、 基板上に酸化物系透明 導電膜をスパッタ リングによ り製造する方法において、 少な く とも目的とする膜の組成を成分と して有する酸化物系ター ゲッ トを用い、 かつ、 B 2 H εを含むガスを用いて、 スパッタ することを特徴とする透明導電膜の製造方法が提供される。 According to another aspect of the present invention, there is provided a method of manufacturing an oxide-based transparent conductive film on a substrate by sputtering, wherein the oxide-based transparent conductive film has at least a target film composition as a component. A method for producing a transparent conductive film is provided, wherein sputtering is performed using a target and a gas containing B 2 .
B 2Hsを含むガスは、 例えば、 B 2Hsを A r希积したガス が用いられる。 As the gas containing B 2 Hs, for example, a gas obtained by diluting B 2 Hs with Ar is used.
この場合、 ターゲッ トと しては、 例えば、 Z n Oが用いら れる。 In this case, as the target, for example, ZnO is used. It is.
本発明によ り透明導電膜を成膜すると、 膜の表面にテクス チヤ構造が形成される。 この生成機構は、 必ずしも明確では ないが、 次のよう に考えるこ とができる。  When a transparent conductive film is formed according to the present invention, a texture structure is formed on the surface of the film. This generation mechanism is not always clear, but can be considered as follows.
すなわち、 スパッタの場合には、 プラズマ中で H 2 0など からの O H, H , 0などの活性種が存在し、 膜形成初期にお ける成長様式に影響を与えたと考えられる。 That is, in the case of sputtering, OH such as from H 2 0 in the plasma, there is the active species, such as H, 0, is considered to have influenced your Keru growth mode to film formation initial.
雰囲気中の O Hは、 O H基を持つ化合物を分解して生成さ れる。 例えば、 水およびアルコールがこれにあたる。 すなわ ち、 例えば、 水蒸気を、 A r に混合して供給すると、 プラズ マ中で分解されて、 O Hが生成される。 また、 雰囲気中の〇 Hは、 例えば、 B 2 H e等の水素を含むガスを分解して生成さ れる Hと、 酸化物系ターゲッ トから分離される 0とからも生 成される。 OH in the atmosphere is generated by decomposing compounds having OH groups. For example, water and alcohol. In other words, for example, when steam is mixed with Ar and supplied, it is decomposed in plasma and OH is generated. Further, 〇 H in the atmosphere, for example, and H which is generated by decomposing a gas containing hydrogen such as B 2 H e, is made fresh from 0 Metropolitan separated from the oxide-based target.
本発明では、 スパッ タ リ ングで成膜されるので、 有毒ガス を生原料と して用いないこ とは勿論、 大面積の透明導電膜の 形成も容易である。  In the present invention, since the film is formed by sputtering, not only is toxic gas not used as a raw material, but also it is easy to form a large-area transparent conductive film.
このよ う に して形成される表面テクスチャ構造は、 走査型 電子顕微鏡 ( S E M ; Scanning Electron Microscope ) で観 察すると、 四角錐等の角錐状の突出部が多数形成されている こ とが分かる。 このようなテクスチヤ構造を表面に有する膜 に対して、 光が入射する と, 角錐の斜面での反射、 屈折によ リ、 入射側に戻る光が多く な リ、 例えば、 この透明導電膜上 に、 太陽電池等の光電変換素子が形成されている場合には、 その素子に、 入射光が有効に取り込まれ、 光の利用率が向上 する。 When the surface texture structure thus formed is observed with a scanning electron microscope (SEM), it can be seen that many pyramid-shaped protrusions such as quadrangular pyramids are formed. When light is incident on a film having such a texture structure on the surface, much light returns to the incident side due to reflection and refraction on the slope of the pyramid. When a photoelectric conversion element such as a solar cell is formed, the incident light is effectively taken into the element, improving the light utilization rate. I do.
以上説明したよう に、 本発明によれば、 スパッタ リングに よって表面テクスチャ構造を有する透明導電膜を成膜するこ とができる。  As described above, according to the present invention, a transparent conductive film having a surface texture structure can be formed by sputtering.
【図面の箇単な説明】 [Single description of drawings]
図 1 は、 本発明の透明導電膜の製造に好まし く用いられる D Cマグネ 卜 ロンスパッタ装置の一実施例を示す断面図。  FIG. 1 is a cross-sectional view showing one embodiment of a DC magnetron sputtering apparatus preferably used for producing a transparent conductive film of the present invention.
図 2は、 実施例 1 の試料薄膜の、 全透過率 T d、 濁度 M ( = T d - T / T d ; Tは垂直入射透過率) 、 拡散反射率 R の波長依存性についての測定結果を示すグラ フ。  Figure 2 shows the wavelength dependence of the total transmittance Td, turbidity M (= Td-T / Td; T is the normal incidence transmittance), and diffuse reflectance R of the sample thin film of Example 1. Graph showing results.
図 3は、 実施例 2の試料について、 全透過率 T d、 濁度 M および拡散反射率 Rの波長依存性を示すグラ フ。  FIG. 3 is a graph showing the wavelength dependence of the total transmittance T d, turbidity M and diffuse reflectance R of the sample of Example 2.
図 4は、 実施例 3 ( 3 - a , 3 - b , 3 - c ) の試料につ いて、 全透過率 T d、 濁度 Mおよび拡散反射率 Rの波長依存 性を示すグラフ。  FIG. 4 is a graph showing the wavelength dependence of the total transmittance Td, turbidity M, and diffuse reflectance R of the sample of Example 3 (3-a, 3-b, 3-c).
図 5は、 実施例 4の試料について、 全透過率 T d、 濁度 および拡散反射率 Rの波長依存性.を示すグラフ。  FIG. 5 is a graph showing the wavelength dependence of the total transmittance T d, turbidity, and diffuse reflectance R of the sample of Example 4.
図 6は、 実施例 3 ( 3 - a , 3 — b, 3 — c ) の試料につ いて、 抵抗率、 移動度、 キャ リ ア濃度の基板温度依存性を示 すグラ フ。  Figure 6 is a graph showing the substrate temperature dependence of resistivity, mobility, and carrier concentration for the sample of Example 3 (3-a, 3-b, 3-c).
図 7の (A ) は、 比較例 4の試料の表面を S E Mでの観察 結果を示す写真、 (B ) は、 実施例 5 の試料表面を S E Mで の観察結果を示す写真。  7A is a photograph showing the observation result of the sample of Comparative Example 4 by SEM, and FIG. 7B is a photograph showing the observation result of the sample surface of Example 5 by SEM.
図 8は、 実施例 5 ~ 7および比較例 4および 5の各試料に ついて、 全透過率 T d の波長依存性を示すグラ フ。 FIG. 8 shows the results for the samples of Examples 5 to 7 and Comparative Examples 4 and 5. A graph showing the wavelength dependence of the total transmittance Td.
図 9 は、 実施例 5〜 7および比較例 4 の各試料について、 抵抗率、 移動度、 キャ リア濃度の B 2H6の ドープ量依存性を 示すグラフ。 FIG. 9 is a graph showing the dependence of resistivity, mobility, and carrier concentration on the doping amount of B 2 H 6 for each of the samples of Examples 5 to 7 and Comparative Example 4.
図 1 0の (A ) は、 比較例 6の試料の表面を S E Mでの観 察結果を示す写真、 ( B ) は、 実施例 9 の試料表面を S E M での観察結果を示す写真。  10A is a photograph showing the observation result of the sample of Comparative Example 6 by SEM, and FIG. 10B is a photograph showing the observation result of the sample surface of Example 9 by SEM.
図 1 1 は、 実施例 8〜 1 3および比較例 6の各試料につい て、 抵抗率、 移動度、 キャ リ ア濃度の B 2H6の ドープ量依存 性を示すグラ フ。 FIG. 11 is a graph showing the dependence of resistivity, mobility, and carrier concentration on the doping amount of B 2 H 6 for each of the samples of Examples 8 to 13 and Comparative Example 6.
【実施例】 【Example】
以下、 本発明の実施例について図面を参照して説明する。 以下の実施例では、 図 1 に示す D Cマグネ トロンスパッ タ 装置を用いて、 成膜を行なっている。 同図に示す D Cマグネ 卜ロ ンスパッ タ装置は、 排気装置 (図示せず) を有する排気 系 2 によ り、 真空排気される真空槽 1 と、 この真空槽 1 内に ガスを導入するためのガス導入系 3 と、 ターゲッ ト電極 4 と、 基板電極 5 と、 図示しない電源装置と を備える。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following examples, film formation is performed using the DC magnetron sputtering apparatus shown in FIG. The DC magnetron sputtering device shown in FIG. 1 has a vacuum chamber 1 that is evacuated by an exhaust system 2 having an exhaust device (not shown), and a gas chamber for introducing gas into the vacuum chamber 1. The system includes a gas introduction system 3, a target electrode 4, a substrate electrode 5, and a power supply device (not shown).
ガス導入系 3は、 図示しない A rガス供給源に接続されて A r ガスの導入量を調節する流量調節バルブ 3 1 と、 不純物 ドープ用ガスおよびテクスチャ構造形成用ガスの混合物の導 入量を調節する流量調整バルブ 3 2 と、 これらの混合ガスの 導入量を調節する流量調節バルブ 3 3 と、 このガス導入系 3 が接続されるガス導入口 3 4 と を備える。 なお、 目的のガス を予め混合したものを導入するよう に してもよい。 例えば、 以下の実施例において示すように、 予め A rで希釈した B2 The gas introduction system 3 is connected to an Ar gas supply source (not shown) to regulate the introduction amount of Ar gas and a flow control valve 31 for controlling the introduction amount of the mixture of the impurity doping gas and the texture structure forming gas. It is provided with a flow control valve 32 for adjusting the flow rate, a flow control valve 33 for adjusting the introduction amount of the mixed gas, and a gas inlet 34 to which the gas introduction system 3 is connected. The target gas May be introduced in advance. For example, as shown in the examples below, B 2 previously diluted with Ar
Heを用いることができる。 It is possible to use H e.
ターゲッ ト電極 4は、 ターゲッ ト 4 0と、 このターゲッ ト Target electrode 4 is connected to target 40 and this target
4 0を保持すると共に、 これに電圧を印加するための水冷鼋 極 4 1 と、 水冷電極 4 1内に配列されるマグネ 卜ロン用磁石A water-cooled electrode 41 for holding 40 and applying a voltage thereto, and a magnetron magnet arranged in the water-cooled electrode 41
4 2と、 ターゲッ トシールド 43と を有する。 4 2 and a target shield 43.
基板電極 5は、 基板 5 0を載置するプレー ト 5 1 と、 該プ レート 5 1 を保持するプレー ト保持体 5 2と、 基板 5 0を加 熱するヒータ 5 3 と を有する。 基板と しては、 ガラス、 石英 等が用いられる。 基板 5 0とターゲッ ト 40との間隔 は、 本実施例では、 実施例 1〜4、 および、 比較例 1および 2に ついては、 3 5 πιπιと してある。 また、 実施例 5以降、 およ ぴ、 比較例 4以降については、 5 O mmと してある。  The substrate electrode 5 includes a plate 51 on which the substrate 50 is placed, a plate holder 52 for holding the plate 51, and a heater 53 for heating the substrate 50. As the substrate, glass, quartz or the like is used. In the present embodiment, the distance between the substrate 50 and the target 40 is 35 πιπι in Examples 1 to 4 and Comparative Examples 1 and 2. Further, in Example 5 and later, and in Comparative Example 4 and later, 5 Omm is set.
ターゲッ ト 40と しては、 例えば、 直径 1 0 cmの円板が用 いられる。 物質と しては、 Z n O ( 9 9 . 9 wt ) または Z n O : A 1 ( 2 wt% A 1203 ) の焼結体が用いられる。 導入 されるガスと しては、 A rと、 ドーピング用の H3B 03また は B 203と、 テクスチャ構造生成用の H20または C H30H とが用いられる。 また、 A r と Β2Ηεの混合ガスが用いられ る。 For example, a disk having a diameter of 10 cm is used as the target 40. Is a substance, Z n O (9 9 9 wt.) Or Z n O: sintered body of A 1 (2 wt% A 1 2 0 3) is used. Is a the introduced gas, and A r, and H 3 B 0 3 or B 2 0 3 for doping, is used and H 2 0 or CH 3 0H for textured product. Further, a mixed gas of A r and beta 2 Eta epsilon is Ru is used.
次に、 本発明の具体的実施例について詳細に説明する。 ぐ Z n O薄膜の製作 >  Next, specific examples of the present invention will be described in detail. Production of ZnO thin film>
(実施例 1 )  (Example 1)
ターゲッ ト と して鈍度 9 9. 9 %の Z n Oを用い、 スパッ タ ガス圧 (動作ガス圧) 5 X 1 0 _3Torr、 基板温度 4 0 0 の条件下で、 スパッ タ ガスを H 20と して、 1 時間スパッ タ を行なって、 ガラス基板上に 1 . 5 K mの膜厚で Z n O薄 膜を成膜した。 Use 99.9% ZnO as a target and Data Gas pressure (the working gas pressure) 5 X 1 0 _ 3 Torr , under the conditions of a substrate temperature of 4 0 0, the spatter gas and H 2 0, by performing 1 hour spatter, on a glass substrate 1 A thin ZnO film was formed with a thickness of 5 Km.
(比較例 1 )  (Comparative Example 1)
スパッ タ ガスを A r と した他は、 上記実施例 1 と同様の条 件でスパッ タ を行なって、 ガラス基板上に 1 . 5 mの膜厚 で Z n O薄膜を成膜した。  Sputtering was carried out under the same conditions as in Example 1 except that the sputtering gas was Ar, and a ZnO thin film having a thickness of 1.5 m was formed on a glass substrate.
(比較例 2 )  (Comparative Example 2)
スパッ タ ガスを A r + H2 ( 1 : 1 ) と した他は、 上記実 施例 1 と 同様の条件でスパッ タ を行なって、 ガラス基板上に 1 . 5 mの膜厚で Z n O薄膜を成膜した。 Spatter gas A r + H 2 (1: 1) and the other was is performed spatter under the same conditions as the actual施例1, Z n O with a thickness of 1 5 m on a glass substrate. A thin film was formed.
(比較例 3 )  (Comparative Example 3)
スパッ タ ガスを A r + 02 ( 1 : 1 ) と した他は、 上記実 施例 1 と同様の条件でスパッ タ を行なって、 ガラス基板上に 1 . 5 mの膜厚で Z n O薄膜を成膜した。 Spatter gas A r + 0 2 (1: 1) and the other was is performed spatter under the same conditions as the actual施例1, Z n O with a thickness of 1 5 m on a glass substrate. A thin film was formed.
< Z n 0薄膜の評価 > <Evaluation of Zn0 thin film>
上述のよ う に して製作された各 Z n O薄膜について、 S E Mによ り表面を観察したと こ ろ、 実施例 1の試料では、 底面 の一辺の長さ が 0 . 5 m程度で、 高さ が 0 . 5 ^ m程度の 大きさ を持つ角錐状の突起が多数形成され、 表面テク スチャ 構造が生成されている こ と が確認された。 これに対して、 比 較例 1 、 2および 3は、 いずれも表面の凹凸がわずかであ り、 テク スチャ構造は形成されていなかっ た。  When the surface of each ZnO thin film manufactured as described above was observed by SEM, the length of one side of the bottom surface of the sample of Example 1 was about 0.5 m. Many pyramid-shaped protrusions having a height of about 0.5 ^ m were formed, confirming that a surface texture structure was generated. On the other hand, in Comparative Examples 1, 2, and 3, all had slight surface irregularities and no texture structure was formed.
図 2 に、 実施例 1 の試料薄膜の、 全透過率 T d、 濁度 M (= T d - T/ T d ; Tは垂直入射透過率) 、 拡散反射率 R の波長依存性についての測定結果を示す。 図 2に示すよう に、 Η20を導入して成膜した試料 (同図において実線で示す) は、 A r を用いてスパッタ した比較例 1 (同図において破線 で示す) の試料に比べて、 濁度 Mが大きくなつておリ、 白濁 が促進されていることが分かる。 この濁度は, 表面の凹凸状 態に応じた拡散反射に対応するもので、 この大きさによ り、 テクスチャ構造か否かの判定の指標の一つとなり得る。 Figure 2 shows the total transmittance T d and turbidity M of the sample thin film of Example 1. (= Td-T / Td; T is the transmittance at normal incidence) and the measurement results of the wavelength dependence of the diffuse reflectance R are shown. As shown in FIG. 2, (shown by a solid line in this figure) sample was deposited by introducing Eta 2 0 is compared with the sample of Comparative Example was sputtered using A r 1 (indicated by a broken line in this figure) Thus, it can be seen that the turbidity is promoted as the turbidity M increases. This turbidity corresponds to diffuse reflection in accordance with the surface unevenness, and its magnitude can serve as one index for determining whether or not it has a texture structure.
ぐ Ζ ϋ Ο : Β薄膜の製作 1 >  ぐ Ζ Ο 製作: Β Thin film fabrication 1>
(実施例 2 )  (Example 2)
ターゲッ トと して鈍度 9 9 . 9 %の Ζ η Οを用い、 スパッ タガス圧 (動作ガス圧) 5 X 1 0 _3 Torr, 基板温度 4 0 0 の条件下で、 スパッタガスを硼酸水 (H3 B 03 + H20 ) の溶液ガスと A r と を 1対 1で混合した混合ガスと し、 1時 間スパッタ を行なって、 ガラス基板上に約 1 . 5 Α ΠΙの膜厚 で Z II 0 : B薄膜を成膜した。 Using a target of 99.9% of 鈍 ηΟ as the target, the sputtering gas was changed to boric acid solution under the conditions of a sputtering gas pressure (operating gas pressure) of 5 X 10 _3 Torr and a substrate temperature of 400. H 3 B 0 3 + H 2 0) solution gas and Ar are mixed in a one-to-one ratio and sputtered for 1 hour to form a film having a thickness of about 1.5 μm on a glass substrate. Then, a ZII0: B thin film was formed.
(実施例 3 )  (Example 3)
スパッタガスを、 硼酸メチルアルコール ( H 3 B 03 + C H a O H ) の溶液ガスと Α ι» とを 1対 1で混合した混合ガスと し、 基板温度を、 室温 (実施例 3 — a ) 、 3 0 0 °C (実施例 3 — b ) 、 4 0 0 °C (実施例 3 — c ) と した他は、 上記実施 例 2 と同様の条件でスパッタ を行なって、 ガラス基板上に約 1 . 5 mの膜厚で Z n 0 ·· B薄膜を成膜した。 A sputtering gas, a solution gas and Alpha iota »and mixed gas in a one-to-one borate methyl alcohol (H 3 B 0 3 + CH a OH), the substrate temperature, room temperature (Example 3 - a) , At 300 ° C. (Example 3—b) and at 400 ° C. (Example 3—c), the sputtering was performed under the same conditions as in Example 2 above, A Zn0 ·· B thin film was formed with a thickness of 1.5 m.
(実施例 4 )  (Example 4)
スパッタガスを、 硼酸 + H20 + C H3 O Hの溶液ガスと A r と を 1対 1で混合した混合ガスと した他は、 上記実施例 2 と同様の条件でスパッタ を行なって、 ガラス基板上に約 1 · 5 ja mの膜厚で Z n O : B薄膜を成膜した。 The sputtering gas, solution gas boric acid + H 2 0 + CH 3 OH and A Sputtering was performed under the same conditions as in Example 2 except that r and were mixed in a one-to-one ratio, and a ZnO: B thin film was formed on a glass substrate to a thickness of about 1.5 jam. Was formed.
く Z n 0 : B薄膜の評価 1〉  <Zn0: Evaluation of B thin film 1>
上記したよう に製作された各 Z n O : B薄膜について、 表 面を S E Mで観察したと ころ、 いずれの試料についてもテク スチヤ構造が形成されている こ と が観察された。 特に、 実施 例 2の試料について、 その表面のテクスチャ化が顕著であつ た。  When the surface of each of the ZnO: B thin films fabricated as described above was observed by SEM, it was observed that a texture structure was formed in each of the samples. In particular, the surface texture of the sample of Example 2 was remarkable.
図 3 から図 5 に、 実施例 2〜 4 の各試料について、 全透過 率 T d 、 濁度 Mおよび拡散反射率 Rの波長依存性を示す。 ま た、 図 6 に、 実施例 3の試料について、 抵抗率、 移動度、 キ ャ リア濃度の基板温度依存性を示す。  3 to 5 show the wavelength dependence of the total transmittance T d, turbidity M and diffuse reflectance R for each of the samples of Examples 2 to 4. FIG. 6 shows the substrate temperature dependence of resistivity, mobility, and carrier concentration for the sample of Example 3.
図 3 から図 5 に示すよう に、 白濁の度合を示す濁度は、 硼 酸水 +アルコール混合溶液を用いたときに最も高く 、 6 0 0 n mにおいて 7 0 %以上となった。 また、 図 4 に見られるよ う に、 基板温度上昇と共に濁度が増加した。 近赤外領域にお ける透過率は、 基板温度低下と共に減少するが、 これは、 低 温の方が膜中に ドープされるホウ素濃度が高いこと を示唆し ている。  As shown in FIGS. 3 to 5, the turbidity indicating the degree of white turbidity was highest when a mixed solution of boric acid water and alcohol was used, and reached 70% or more at 600 nm. In addition, as shown in Fig. 4, the turbidity increased with the substrate temperature. The transmittance in the near-infrared region decreases with decreasing substrate temperature, suggesting that the lower the temperature, the higher the boron concentration doped in the film.
このことは、 図 6 に示す電気特性にも現われており、 低温 ほど抵抗率が低く 、 キャ リ ア濃度が高く なる。  This is also reflected in the electrical characteristics shown in FIG. 6, where the lower the temperature, the lower the resistivity and the higher the carrier concentration.
< Z n 0 : B薄膜の製作 2 > <Zn0: Production of B thin film 2>
(実施例 5 )  (Example 5)
ターゲッ ト と して鈍度 9 9 . 9 %の Z n 〇を用い、 スパッ -2 Using a target of 99.9% Zn n as the target, -2
タガス圧 (動作ガス圧) 2 X 1 0 Torr, 基板温度 2 0 0 での条件下で、 スパッタガスと して、 Β 2Η6を A rで希积し て得られる Β 2ΗΕ濃度 1 . 0 vol%のガスを用いて、 1時間 スパッタ を行なって、 ガラス基板上に約 2 ιιίの膜厚で Z n 0 : B薄膜を成膜した。 Tag gas pressure (operating gas pressure) 2 X 10 Torr, substrate temperature 2000, sputtering gas used to dilute 积2 Η 6 with Ar 得2 Η Ε concentration 1 Sputtering was performed for 1 hour using a gas of 0.0 vol% to form a Zn0: B thin film with a thickness of about 2 ιιί on a glass substrate.
(実施例 6 )  (Example 6)
スパッタ ガスを、 B 2Heを A rで希釈して得られる B 2He 濃度 0. 8 vol%ガスと した他は、 上記実施例 5 と同様の条 件でスパヅタ を行なって、 ガラス基板上に約 2 mの膜厚で Z n O : B薄膜を成膜した。 The sputtering gas, B 2 except that the H e was B 2 H e concentration 0. 8 vol% gas obtained by diluting with A r is performed Supadzuta the same conditions as in Example 5, a glass substrate A ZnO: B thin film having a thickness of about 2 m was formed thereon.
(実施例 7 )  (Example 7)
スパッタガスを、 Β 2Ηεを A rで希釈して得られる Β2Ηε 濃度 0 · 5 vol%のガスと した他は、 上記実施例 5 と同様の 条件でスパッタ を行なって、 ガラス基板上に約 2 mの膜厚 で Z n 0 : B薄膜を成膜した。 The sputtering gas, in addition to the beta 2 Eta epsilon was beta 2 Eta epsilon concentration 0 · 5 vol% of gas obtained by diluting with A r is performed sputtering under the same conditions as those in Example 5, a glass substrate A Zn0: B thin film was formed on the upper surface with a thickness of about 2 m.
(比較例 4 )  (Comparative Example 4)
スパッタガスを、 A r 1 0 0 %と した他は、 上記実施例 5 と同様の条件でスパッタ を行なって、 ガラス基板上に約 2 mの膜厚で Z n 0薄膜を成膜した。 (比較例 5 )  Sputtering was performed under the same conditions as in Example 5 except that the sputtering gas was changed to Ar 100%, to form a Zn 2 thin film with a thickness of about 2 m on a glass substrate. (Comparative Example 5)
ターゲッ トと して、 飩度 9 9 . 9 %の Ζ η Ο : Α 1 ( 2 w t % A 1203 ) を用い、 スパッタガス圧 (動作ガス圧) 2 X 一 2 As a target,飩度9 9 9 percent Ζ η Ο:. Α 1 used (2 wt% A 1 2 0 3), the sputtering gas pressure (the working gas pressure) 2 X one 2
1 0 Torr、 基板温度 2 0 0 の条件下で、 スパッタガス と して、 A r 1 0 0 %のガスを用いて、 1時間スパッタ を行 - - なって、 ガラス基板上に約 2 t mの膜厚で Z n O : A l 薄膜 を成膜した。 Sputtering was performed for 1 hour using Ar 100% gas as the sputter gas under the conditions of 10 Torr and a substrate temperature of 200. --A ZnO: Al thin film was formed on a glass substrate with a thickness of about 2 tm.
ぐ Z n O : B薄膜の評価 2 >  Evaluation of ZnO: B thin film 2>
上記したよう に製作された各 Z n O : B薄膜について、 表 面を S E Mで観察したと ころ、 実施例 5、 6および 7のいず れの試料についてもテクスチャ構造が形成されていることが 観察された。 図 7 ( A ) に比較例 4の試料についての観察結 果の写真を、 また、 同図 ( B ) に実施例 5 の試料についての 観察結果の写真をそれぞれ示す。 図 7 ( B ) では、 テクスチ ャ構造特有の角錐状の凹凸を呈する表面構造を有している。  When the surface of each of the ZnO: B thin films manufactured as described above was observed by SEM, it was confirmed that the texture structure was formed in each of the samples of Examples 5, 6, and 7. Was observed. Fig. 7 (A) shows a photograph of the observation result of the sample of Comparative Example 4, and Fig. 7 (B) shows a photograph of the observation result of the sample of Example 5. In FIG. 7 (B), the surface has a pyramid-shaped irregularity peculiar to the texture structure.
図 8 に、 実施例 5〜 7および比較例 4および 5の各試料に ついて、 全透過率 T d の波長依存性を示す。 また、 図 9 に、 実施例 5〜 7および比較例 4の各試料について、 抵抗率、 移 動度、 キャ リア濃度の Β 2 Η6の ド一プ量依存性を示す。 FIG. 8 shows the wavelength dependence of the total transmittance T d for the samples of Examples 5 to 7 and Comparative Examples 4 and 5. FIG. 9 shows the dependence of resistivity, mobility, and carrier concentration on the doping amount of Β 2 Η 6 for each of the samples of Examples 5 to 7 and Comparative Example 4.
図 8 に示すよう に、 B 2H6 ドープの試料 (同図中、 b、 c、 d ) は、 比較例 5 の試料である Z n O : A 1薄膜に比べ、 近 赤外領域において、 透過率が髙ぃ。 同図の d と e と を比較す る と、 ほぼ同じ抵抗率でも、 Z n O : B ( d ) は、 移動度が 大き く、 キャ リア濃度が小さい。 このため、 Z n O : B ( d ) は、 自由電子吸収が低減でき、 これに対応して透過率が高く なる。 As shown in FIG. 8, the B 2 H 6 -doped sample (b, c, d) in the near infrared region was smaller than the ZnO: A1 thin film of Comparative Example 5 in the near-infrared region. The transmittance is 髙 ぃ. Comparing d and e in the figure, ZnO: B (d) has a high mobility and a low carrier concentration even at almost the same resistivity. For this reason, ZnO: B (d) can reduce free electron absorption and correspondingly increase the transmittance.
また、 B ドープ量の異なる Z n O : B薄膜について比較す る と、 Β 2 Ηεの濃度が高く なるほど、 近赤外領域における透 過率が低下している こと が判る。 一方、 図 9 に示すよ う に、 移動度、 キャ リア濃度は、 Β 2 Ηεの濃度が高くなるほど増大 し、 抵抗率は、 B 2 Heの濃度が高く なるほど滅少することが 判る。 Also, different Z n O of B-doped amount: If you compare the B thin film, the more high concentration of beta 2 Eta epsilon, it can be seen that reduces the permeability over rate in the near infrared region. On the other hand, Remind as in FIG. 9, the mobility, career concentration is increased as the concentration of beta 2 Eta epsilon is high And, resistivity, it can be seen that the concentration of B 2 H e is higher the more dark to small.
ところで、 透明導電膜の場合、 抵抗率ができるかぎり低い こと、 および、 太陽電池等の実用上、 3 0 0 n mから 1 3 0 O n mの波長域で、 透過率が髙ぃことが望ましい。 実施例 5 、 6 、 7の Z n 0 : Bの各試料薄膜は、 この条件をほぼ満たし ている。 特に、 実施例 5の Z n O : Bの試料薄膜は、 上述し たように、 テクスチャ構造が顕著であり、 入射光の閉じ込め 効果を期待でき、 透明導電膜と して好ましい。 By the way, in the case of a transparent conductive film, it is desirable that the resistivity be as low as possible and that the transmittance be in the range of 300 nm to 130 O nm in practical use such as a solar cell. Example 5, 6, 7 of Z n 0: each sample thin film B satisfies substantially the condition. In particular, as described above, the sample thin film of ZnO: B of Example 5 has a remarkable texture structure, can expect an effect of confining incident light, and is preferable as a transparent conductive film.
< Z n 0 : B薄膜の製作 3 > <Zn0: Production of B thin film 3>
(実施例 8 〜 1 3 )  (Examples 8 to 13)
ターゲッ トと して、 鈍度 9 9 . 9 %の Z n Oを用い、 スパ ッタガス圧 (動作ガス圧) 2 X 1 0— Torr, スパッ タ ガス と して、 Β 2 Ηεを A rで希釈して得られる B 2 Hs濃度 1 . 0 vol%のガスを用いて、 それぞれ次の基板温度で、 1時間ス パッタ を行なって、 ガラス基板上に約 2 mの膜厚で Z n 〇 : B薄膜を成膜した。 As a target, using a Z n O of Dondo 9 9.9%, a spa Ttagasu pressure (the working gas pressure) 2 X 1 0- Torr, as a spatter gas, beta 2 Eta epsilon at A r using diluted B 2 H s concentration 1 obtained. 0 vol% of a gas, in each of the following substrate temperature, perform the 1 hour spatter, Z n a thickness of approximately 2 m on a glass substrate 〇 : B thin film was formed.
実施例 8 : 1 5 0  Example 8: 150
実施例 9 : 2 0 0 。C  Example 9: 200. C
実施例 1 0 : 2 5 0 。C  Example 10: 250. C
実施例 1 1 : 3 0 0 。C  Example 11: 300. C
実施例 1 2 : 3 5 0 °C  Example 12: 350 ° C
実施例 1 3 : 0 0 °C  Example 13: 0 ° C
(比較例 6 ) (Comparative Example 6)
新たな用紙 基板温度を 1 0 0 °C (加熱しないでスパッタ した状態) と した他は、 上記実施例 8 と同様の条件で、 スパッタ を行なつ て、 ガラス基板上に約 2 mの膜厚で Z n O : B薄膜を成膜 した。 New paper Sputtering was carried out under the same conditions as in Example 8 except that the substrate temperature was set to 100 ° C (sputtered without heating) to form a Zn film with a thickness of about 2 m on the glass substrate. O: B thin film was formed.
< Z n O : B薄膜の評価 3〉  <Evaluation of ZnO: B thin film 3>
上記したように製作された各 Z n O : B薄膜について、 表 面を S E Mで観察したと ころ、 実施例 9〜 1 3のいずれの試 料についてもテクスチャ構造が形成されていることが観察さ れた。 また、 実施例 8の試料についても、 実施例 9以降の試 料に比べる とそれほど顕著ではないが、 一応テクスチャ構造 が形成されている こと が観察された。 図 1 0 ( B ) に、 実施 例 9 の試料についての観察結果を写真で示す。 同図では、 テ クスチヤ構造特有の角錐状の凹凸を呈する表面構造を有して いる。 なお、 この表面構造は、 2 0 0 °Cから 4 0 0 °Cの各試 料について、 ほぼ同様であった。 また、 比較例 6の試料につ いても、 B 2Heを用いない、 図 7 ( A ) に示すものに比べて、 わずかではあるが表面の凹凸が認められた。 図 1 0 ( A ) に、 比較例 6.についての観察結果を写真で示す。 When the surface of each of the ZnO: B thin films manufactured as described above was observed by SEM, it was observed that a texture structure was formed in any of the samples of Examples 9 to 13. Was. It was also observed that a texture structure was formed for the sample of Example 8 although it was not so remarkable as compared with the samples of Example 9 and thereafter. FIG. 10 (B) shows a photograph of the observation result of the sample of Example 9. The figure has a surface structure exhibiting pyramid-shaped irregularities peculiar to the texture structure. The surface structure was almost the same for each sample from 200 ° C to 400 ° C. Moreover, it can have sample Nitsu of Comparative Example 6, not using B 2 H e, as compared to that shown in FIG. 7 (A), slight but although irregularities of the surface were observed. FIG. 10 (A) shows a photograph of the observation result of Comparative Example 6.
図 1 1 に、 実施例 8〜 1 3 およぴ比較例 6 の各試料につい て、 抵抗率、 移動度、 キャ リ ア濃度の B 2 Heの ドープ量依存 性を示す。 同図に示すよう に、 1 5 0 ° から 3 0 0 の広ぃ 温度範囲において、 低抵抗率のものが得られている。 しかも、 基板温度が低くても、 低抵抗率のものが得られている。 そし て、 上述したよう に、 2 0 0。Cから 4 0 0 °Cの範囲で、 テク スチヤ構造特有の角錐状の凹凸を呈する表面構造を呈するも のが得られている。 1 1, with the respective samples of Example 8-1 3 Oyopi Comparative Example 6 shows the resistivity, mobility, the doping amount dependency of B 2 H e of calibration Li A concentration. As shown in the figure, a material having a low resistivity is obtained in a wide temperature range from 150 ° to 300 °. In addition, even if the substrate temperature is low, low resistivity is obtained. Then, as described above, 200. In the range of C to 400 ° C, the surface structure exhibits pyramid-shaped irregularities peculiar to the texture structure. Is obtained.
このこ とは、 2 0 0 °C程度の比較的低温で、 成膜を行なつ ても、 目的の表面構造を有する透明導電膜が得られるこ と を 意味している。 しかも、 基板温度を、 厳密に管理しなく ても よく、 成膜プロセスが容易となる利点がある。  This means that a transparent conductive film having a desired surface structure can be obtained even when film formation is performed at a relatively low temperature of about 200 ° C. Moreover, there is an advantage that the substrate temperature does not need to be strictly controlled, and the film forming process is facilitated.
ぐ実施例全体の評価 >  Evaluation of the whole example>
上述した各実施例によれば、 H20やアルコール、 または、 これらの混合溶液ガスをスパッタガスに用いることによって、 効率よ く、 膜のテクスチャ化が実現できた。 また、 実施例 2 〜4 に示すように、 ホウ素を ドープすることで、 全透過率が 高い低抵抗膜を得ることができた。 According to the embodiments described above, H 2 0 or alcohol, or by using these mixed solution gas as the sputtering gas, rather by efficiency, texturing of the film can be realized. Further, as shown in Examples 2 to 4, by doping with boron, a low-resistance film having a high total transmittance could be obtained.
また、 Z n 0ターゲッ トを用いて、 B 2HSを A rで希釈し たスパッタガスを用いることによ り、 抵抗率の低い、 テクス チヤ構造の膜を、 比較的低温の成膜プロセスで、 成膜するこ とができる。 In addition, by using a sputtering gas obtained by diluting B 2 H S with Ar using a Zn0 target, a film having a low resistivity and a texture structure can be formed at a relatively low temperature in a film forming process. Thus, a film can be formed.
さ らに、 上述した各実施例によって得られた Ζ η Ο : Β の 試料について、 耐環境性を評価するため、 次の項目 を調べた。 In addition, the following items were examined in order to evaluate the environmental resistance of the sample of 上述 η 上述: Β obtained by each of the above-described examples.
① Z n Q : Bの試料を、 大気中で、 2 0 0 、 1 0時間放置 した後のシー ト抵抗の変化率。 ① ZnQ: Rate of change in sheet resistance after the sample of B was left in the air for 200 and 10 hours.
初期シート抵抗値 4 Ωが 4 . 4 Ω に変化した。 従って、 1 0 %程度の変化で収まっていた。  The initial sheet resistance value 4 Ω changed to 4.4 Ω. Therefore, the change was reduced by about 10%.
② Z n O : Bの試料を、 沸騰水 ( 1 0 0 °C) 中、 2時間煮沸 した後のシート抵抗の変化率。  (2) The rate of change in sheet resistance after boiling the ZnO: B sample in boiling water (100 ° C) for 2 hours.
この場合も、 ①と同様、 1 0 %程度の変化で収まっていた。 従って、 通常の温度範囲であれば、 ほとんど変化がないと 考えられる。 従って、 通常の使用条件では、 経時変化はほと んどないと考えられる。 In this case, as in ①, the change was reduced by about 10%. Therefore, if there is almost no change in the normal temperature range Conceivable. Therefore, under normal conditions of use, there is little change over time.
このよ う に、 本発明によ り製造される透明導電膜は、 抵抗 率が低いと共に、 透過率が高く 、 さ らに、 テクスチャ化して いるので、 太陽電池や光センサの窓材と して用いる こ とによ つて、 光電変換効率の向上が期待される。 しかも、 耐環境性 が良好であるので、 太陽電池等の屋外で使用されるデバイス の経時変化を小さ くでき、 寿命を長くすることができる。  Thus, the transparent conductive film produced by the present invention has a low resistivity, a high transmittance, and is textured, so that it can be used as a window material for a solar cell or an optical sensor. By using this, improvement of photoelectric conversion efficiency is expected. In addition, since the device has good environmental resistance, it is possible to reduce the time-dependent change of a device used outdoors such as a solar cell, and to prolong its life.

Claims

請求の範囲 The scope of the claims
1 . 基板上に透明導電膜をスパッタ リング法にょ リ製造す る方法において、 1. In the method of manufacturing a transparent conductive film on a substrate by sputtering,
少なく とも 目的とする膜の組成の一部を成分と して有する ターゲッ トを、 O Hを含むガス雰囲気中でスパッタ して、 透 明導電膜を成膜することを特徴とする透明導電膜の製造方法, Manufacturing a transparent conductive film by sputtering a target having at least a part of the composition of a target film as a component in a gas atmosphere containing OH to form a transparent conductive film. Method,
2. 請求項 1 において、 目的とする透明導電膜が、 2. In Claim 1, the target transparent conductive film is:
Z n 0、  Z n 0,
Z n 0 : X (Xは A l , S i , B , Fおよび C I のうち  Zn0: X (X is one of Al, Si, B, F and CI)
少なく とも 1種) 、  At least one),
S n 0  S n 0
S n 0 Y (Yは Fおよび C I のうち少なく とも 1種) 、 S n 0 Y (Y is at least one of F and C I),
I n 2 O a I n 2 O a
I n 2 O : Z ( Zは S n 02および S nのうち少なく とも I n 2 O: Z (Z is at least one of S n 0 2 and S n
1種)  1)
である透明導電膜の製造方法。 A method for producing a transparent conductive film.
3 . 請求項 2において、 上記 O Hを含むガス雰囲気におけ る O Hは、 O H基を持つ化合物を分解して生成されるもので ある透明導電膜の製造方法。  3. The method for producing a transparent conductive film according to claim 2, wherein the O H in the gas atmosphere containing O H is generated by decomposing a compound having an O H group.
4 . 請求項 3 において、 0 H基を持つ化合物は、 水および アルコールのうち少なく とも一方である透明導電膜の製造方 法。  4. The method for producing a transparent conductive film according to claim 3, wherein the compound having an OH group is at least one of water and alcohol.
5 . 請求項 1 において、 上記 0 Hを含むガス雰囲気におけ る O Hは、 O H基を持つ、 ガス状の化合物を分解して生成さ れるものである透明導電膜の製造方法。 5. In claim 1, the OH in the gas atmosphere containing 0H is formed by decomposing a gaseous compound having an OH group. A method for producing a transparent conductive film,
6. 基板上に酸化物系透明導電膜をスパッ タ リ ングによ り 製造する方法において、  6. In the method of manufacturing an oxide-based transparent conductive film on a substrate by sputtering,
少な く と も 目的とする膜の組成を成分と して有する酸化物 系ターゲッ ト を用い、 かつ、 B2HSを含むガスを用いて、 ス パッ タする こ と を特徴とする透明導電膜の製造方法。 Also an oxide-based target having the composition of the film of interest as a component least for a, and the transparent conductive film by using a gas containing B 2 H S, characterized that you to scan package data Manufacturing method.
7. 請求項 6において、 B2H6を含むガスは、 Β2Ηεを A r希釈したガスである透明導電膜の製造方法。 7. The method of claim 6, B 2 gas containing H 6 is, beta 2 Eta epsilon a method for producing a transparent conductive film is a gas diluted A r.
PCT/JP1992/000455 1991-04-10 1992-04-10 Method for manufacturing transparent conductive film WO1992018990A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50807692A JP3325268B2 (en) 1991-04-10 1992-04-10 Method for producing transparent conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3/77842 1991-04-10
JP7784291 1991-04-10

Publications (1)

Publication Number Publication Date
WO1992018990A1 true WO1992018990A1 (en) 1992-10-29

Family

ID=13645306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000455 WO1992018990A1 (en) 1991-04-10 1992-04-10 Method for manufacturing transparent conductive film

Country Status (2)

Country Link
JP (1) JP3325268B2 (en)
WO (1) WO1992018990A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504306A (en) * 2008-09-30 2012-02-16 エルジー・ケム・リミテッド Transparent conductive film and transparent electrode provided with the same
JP2012506486A (en) * 2008-10-21 2012-03-15 アプライド マテリアルズ インコーポレイテッド Transparent conductive zinc oxide display film and method for producing the same
JP2012160661A (en) * 2011-02-02 2012-08-23 Ulvac Japan Ltd Substrate with transparent conductive film, solar cell, and method for manufacturing substrate and solar cell
JP2012158823A (en) * 2011-02-02 2012-08-23 Ulvac Japan Ltd Film deposition method
JP2013517381A (en) * 2010-01-19 2013-05-16 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method of vacuum coating a substrate having a transparent and conductive metal alloy oxide and a transparent and conductive layer made of metal alloy oxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181462A (en) * 1987-01-23 1988-07-26 Hitachi Ltd Photodetector and line image sensor using the same
JPH0238568A (en) * 1988-07-28 1990-02-07 Toshiba Corp Thin film-forming equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63181462A (en) * 1987-01-23 1988-07-26 Hitachi Ltd Photodetector and line image sensor using the same
JPH0238568A (en) * 1988-07-28 1990-02-07 Toshiba Corp Thin film-forming equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504306A (en) * 2008-09-30 2012-02-16 エルジー・ケム・リミテッド Transparent conductive film and transparent electrode provided with the same
JP2012506486A (en) * 2008-10-21 2012-03-15 アプライド マテリアルズ インコーポレイテッド Transparent conductive zinc oxide display film and method for producing the same
JP2013517381A (en) * 2010-01-19 2013-05-16 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Method of vacuum coating a substrate having a transparent and conductive metal alloy oxide and a transparent and conductive layer made of metal alloy oxide
JP2012160661A (en) * 2011-02-02 2012-08-23 Ulvac Japan Ltd Substrate with transparent conductive film, solar cell, and method for manufacturing substrate and solar cell
JP2012158823A (en) * 2011-02-02 2012-08-23 Ulvac Japan Ltd Film deposition method

Also Published As

Publication number Publication date
JP3325268B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
Mizuhashi Electrical properties of vacuum-deposited indium oxide and indium tin oxide films
Hu et al. Textured fluorine-doped ZnO films by atmospheric pressure chemical vapor deposition and their use in amorphous silicon solar cells
Haacke Transparent electrode properties of cadmium stannate
Subramanyam et al. Physical properties of zinc oxide films prepared by dc reactive magnetron sputtering at different sputtering pressures
Hamberg et al. High quality transparent heat reflectors of reactively evaporated indium tin oxide
Manifacier et al. In2O3:(Sn) and SnO2:(F) films—Application to solar energy conversion; part 1—Preparation and characterization
EP1443527A1 (en) SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM AND PRODUCTION METHOD THEREFOR&amp;comma; AND PHOTOELECTRIC CONVERSION ELEMENT
EP1056136B1 (en) Conductive substrate for a photoelectric conversion device and its manufacturing method
Hamelmann Thin film zinc oxide deposited by CVD and PVD
Delahoy et al. Deposition schemes for low cost transparent conductors for photovoltaics
Tahar et al. Boron-doped zinc oxide thin films prepared by sol-gel technique
Farahamndjou The study of electro-optical properties of nanocomposite ITO thin films prepared by e-beam evaporation
Ikeda et al. Surface microstructures of ZnO coated SnO2: F films
Selvan et al. The growth of surface textured aluminum doped ZnO Films for a-Si solar cells by RF magnetron sputtering at low temperature
WO2006098185A1 (en) Process for producing substrate for thin-film photoelectric transducer, and thin-film photoelectric transducer
WO1992018990A1 (en) Method for manufacturing transparent conductive film
GB2403597A (en) Porous electroconductive material having light transmitting property
Gupta et al. 14% CdS/CdTe thin film cells with ZnO: Al TCO
Robbins et al. Development of tin oxide synthesis by plasma-enhanced chemical vapor deposition
Toušková et al. Sputtered indium-tin oxide substrates for CdS CdTe solar cells
Hu et al. Electrical and optical properties of indium doped zinc oxide films prepared by atmospheric pressure chemical vapor deposition
JP5827224B2 (en) Thin film solar cell and manufacturing method thereof
JP2001015787A (en) Substrate with transparent conductive film, manufacturing method therefor, and solar battery
CN103572238A (en) Preparation method of double-frosted surface ZnO-based film
Castañeda Physical Characterization of the Zinc Oxide Thin Solid Films Doped Aluminium Plus Fluorine Deposited by the Sol–Gel Technique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LU MC NL SE

WWE Wipo information: entry into national phase

Ref document number: 1992908474

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992908474

Country of ref document: EP