JPS61127166A - Manufacture of image sensor - Google Patents

Manufacture of image sensor

Info

Publication number
JPS61127166A
JPS61127166A JP59249267A JP24926784A JPS61127166A JP S61127166 A JPS61127166 A JP S61127166A JP 59249267 A JP59249267 A JP 59249267A JP 24926784 A JP24926784 A JP 24926784A JP S61127166 A JPS61127166 A JP S61127166A
Authority
JP
Japan
Prior art keywords
film
transparent
electrode
metal
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59249267A
Other languages
Japanese (ja)
Inventor
Shinji Nishiura
西浦 真治
Toshiaki Kato
利明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP59249267A priority Critical patent/JPS61127166A/en
Priority to US06/801,932 priority patent/US4665008A/en
Publication of JPS61127166A publication Critical patent/JPS61127166A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Facsimile Heads (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To produce individual image sensor unit with high acceptance ratio by a method wherein multiple sensor units comprising a transparent conductive film and a metallic thin film overlapped on one end of the conductive film are continuously formed on a transparent glass substrate while individual unit is covered with photoresist pattern to be etched for individual separation. CONSTITUTION:Multiple sensor units comprising a transparent conductive film 20 made of ITO, etc. and an Al thin film 40 overlapped on an overlapping part 80 at one end of the film 20 are continuously formed on a transparent glass substrate 10 to form a pattern of photoresist film 70 on individual unit. Next, utilizing the pattern as a mask, the conductive film 20 is etched using equivalently mixed solution of ferric chloride and hydrochloric acid while the thin film 40 is etched using equivalently mixed solution of phosphoric acid and nitric acid to remove the exposed part of thin films 20 and 40 outside the film 70 leaving a transparent electrode 21 and a metallic lead electrode 42 adjoining the former. Through these procedures, the reduction of hydrogen in case of metal etching process may be restrained to assure specified dimension of sensor unit.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明は基板上にIM半導体で構成されたセンサと信
号読取り等の制御用ICとを搭載するハイブリッド型の
イメージセンサの製造方法に関する。
The present invention relates to a method for manufacturing a hybrid image sensor in which a sensor made of an IM semiconductor and a control IC for signal reading, etc. are mounted on a substrate.

【従来技術とその問題点】[Prior art and its problems]

ファクシミリセットの小形化、@コスト化をめざして、
薄膜半導体素子を用いた密着型イメージセンサの開発が
進められている。第2図にその例を示す、センナ部2は
、フォトダイオード列3を育し、フォトダイオード列は
例えば1fiあたり3個、すなわちA4版の原稿に対し
ては全体で1728個のフォトダイオードから構成され
ている。このセンサ2と原稿1との間には、原稿の像が
フォトダイオードに結ぶようにセルフォックレンズアレ
イ5を配置する。原稿1は、セルフォックレンズアレイ
の両側に配置された発光ダイオード列4の光により照射
される。このフォトダイオードが1寵あたり8個の場合
は、フォトダイオードの大きさは約100μ■×100
μm、4mあたり16個の場合はフォトダイオードの大
きさは約50μ閣×50μ面の大きさとにする必要があ
る。 現在ファクシミリの高速化が指向される傾向にあり1、
G3又は今後04機種が広く普及していくことが考えら
れるが、そのためにはA4版もしくは84版において1
走査線あたりの読取速度が41程度あるいはそれ以下で
なければならない、それに対応するために非晶質シリコ
ン(a−51)を用いたセンサの開発が進められている
。 第3図はa−3lを用いたセンサの一例を示し、(bl
は平面図(MlのX−X’線断面図である。ffi明絶
縁基[10の上に基板側から入射する光信号により作動
する構造のセンサとして、透明電極21.a −51層
31.金属電極41からフォトダイオードが構成される
光デバイスが形成されている。透明電極21は厚さ50
0〜2000人の透明導電膜からなり、a −3層層3
1は公知の方法で透明電極側から厚さ約100人のp層
、厚さ約0.5 p−のノンドープ1層、厚さ約500
人の1層が順次成膜されたものであり、金属電極41は
約1μ−の厚さを有する。透明電極21は、1mあたり
8個あるいは16個の割合で形成される100 μm×
100 μmあるいは50.cps x50μ−の正方
形電極22とリード部23とから成り、これは透明導電
膜被着後フォトリソグラフィ法によって得られる。a−
SLMI31は透明電極群全体を覆う所定の領域に連続
的に形成され、金属電極41は共通電極としてa −3
1131の上に透明電極群を覆う形でしかも透明電極2
1とはa−31層31で隔てられ、接触しないようにマ
スク蒸着によって形成される。 透明電極のリード部22には金属リード電極42が接続
され、この金属リード電極42は21.31.41から
成るセンサより得られるセンナ信号読取りおよび信号制
御を行うLS[50の端子へ信号を伝達するものであり
、このパターン゛は蒸着後のフォトリソグラフィ法によ
って形成される。 LSI50のバッド51と金属リー
ド電極42との接続はり一ドボンディング法により導線
60で行われる。 第4図は、センサ部の透明電極21と金属リード電極4
2の形成方法を示す、この透明電極21と金属リード電
極4zのパターニングは微細パターンであるのでフォト
リソグラフィ法で行われろ、又、1−Stセンナの良品
率を向上させるために、フォトリソグラフィ工程はm 
−3lを形成する以前に終了してお(ことが望ましい、
すなわち(81図においてガラス基板10の前面にIT
O又はI T O/ Sn2重の複合膜を被着した後、
フォトリソグラフィ法により透明電極パターン21を形
成する。透明導電膜は、蒸着法、スパッタリング法ある
いは熱CVD法など当業者には聞知の方法で形成される
1次に(bl図に示すように、A1等の約1μmの厚さ
の金属薄膜ヰOを蒸着法により全面に形成し、この上に
金属パターンを形成するためのフォトレジストパターン
70を形成する0次いでりん酸と硝酸を21の混合液で
エツチングを行うと、レジスト70のない部分の金属薄
膜40が溶解して、金属リード電極パターン42が形成
できる。しかし、^lの溶解の際発生する水素によって
透明導電膜が還元され、透明電極パターン21が消滅し
てしまうことが見出された。 ^lのエツチング液の濃度を10倍にうすめたり、種々
のエツチング液の検討を行うたが、AIの溶解が水素ガ
スを発生して行われる状況ではこの透明電極のパターン
が消滅する状況は克服できなかった。
Aiming to reduce the size and cost of facsimile sets,
The development of contact-type image sensors using thin-film semiconductor elements is progressing. An example of this is shown in FIG. 2. The sensor unit 2 grows a photodiode row 3, and the photodiode row is composed of, for example, three photodiodes per 1fi, that is, a total of 1728 photodiodes for an A4 size document. has been done. A SELFOC lens array 5 is arranged between the sensor 2 and the original 1 so that the image of the original is focused on the photodiode. The original 1 is illuminated by light from light emitting diode arrays 4 arranged on both sides of the SELFOC lens array. If there are 8 photodiodes per unit, the size of the photodiode is approximately 100μ×100
In the case of 16 pieces per μm and 4 m, the size of the photodiode needs to be about 50 μm x 50 μm. Currently, there is a trend towards higher speed facsimiles1.
It is conceivable that G3 or 04 models will become widely popular in the future, but for that to happen, it is necessary to
The reading speed per scanning line must be about 41 or less, and in order to meet this requirement, development of sensors using amorphous silicon (A-51) is progressing. FIG. 3 shows an example of a sensor using a-3l, and (bl
is a plan view (a sectional view taken along the line XX' of M1). As a sensor having a structure that is activated by a light signal incident on the transparent insulating base [10 from the substrate side, transparent electrodes 21.a to 51 layers 31. An optical device including a photodiode is formed from the metal electrode 41. The transparent electrode 21 has a thickness of 50 mm.
Consisting of 0 to 2000 transparent conductive films, a-3 layers layer 3
1 is a p-layer with a thickness of about 100 mm from the transparent electrode side, a non-doped layer of about 0.5 p-, and a non-doped layer with a thickness of about 500 mm from the transparent electrode side using a known method.
The metal electrode 41 has a thickness of about 1 .mu.m. The transparent electrodes 21 are formed at a rate of 8 or 16 pieces per 1 m and are 100 μm×
100 μm or 50. It consists of a square electrode 22 of cps x50μ- and a lead portion 23, which is obtained by photolithography after depositing a transparent conductive film. a-
The SLMI 31 is continuously formed in a predetermined area covering the entire transparent electrode group, and the metal electrode 41 is used as a common electrode.
In addition, the transparent electrode 2 is placed on top of the transparent electrode group 1131.
1 and is separated by an A-31 layer 31, and is formed by mask evaporation so as not to contact. A metal lead electrode 42 is connected to the lead portion 22 of the transparent electrode, and this metal lead electrode 42 transmits a signal to the terminal of the LS [50] which reads the senna signal obtained from the sensor consisting of 21, 31, and 41 and controls the signal. This pattern is formed by photolithography after vapor deposition. The connection between the pad 51 of the LSI 50 and the metal lead electrode 42 is made by a conductive wire 60 using a beam bonding method. Figure 4 shows the transparent electrode 21 and metal lead electrode 4 of the sensor section.
2, the patterning of the transparent electrode 21 and metal lead electrode 4z is a fine pattern, so it should be done by photolithography. Also, in order to improve the yield rate of 1-St senna, the photolithography process is m
- It is preferable to finish before forming 3l.
In other words (in Figure 81, IT is placed on the front surface of the glass substrate 10).
After depositing O or ITO/Sn double composite film,
A transparent electrode pattern 21 is formed by photolithography. The transparent conductive film is formed by a method known to those skilled in the art such as vapor deposition, sputtering, or thermal CVD. O is formed on the entire surface by a vapor deposition method, and a photoresist pattern 70 for forming a metal pattern is formed on this.O is then etched with a mixture of phosphoric acid and nitric acid in step 21, so that the parts without the resist 70 are etched. The metal thin film 40 is melted to form a metal lead electrode pattern 42. However, it has been found that the transparent conductive film is reduced by the hydrogen generated during the melting of ^l, and the transparent electrode pattern 21 disappears. We diluted the concentration of the etching solution by 10 times and investigated various etching solutions, but in a situation where AI was dissolved by generating hydrogen gas, this transparent electrode pattern disappeared. could not be overcome.

【発明の目的] 本発明は、半導体yI膜を挟んで金属電極と対向する一
列に配置された多数の透明電極より延びる透明電極リー
ド部の端部にそれぞれ接触する金属リード電極のバター
ニングのためのエツチング時に、透明電極リード部の消
滅が起こることのないイメージセンサの製造方法を提供
することを目的とする。 【発明の要点】 本発明によれば、透明絶縁基板上に透明導電膜を被着し
、その透明導電膜表面の一部に接触して金属薄膜を被着
し、次いでその上にフォトレジストパターンを形成して
エツチングにより金属リード電極パターンおよび各金属
リード電極にそれぞれ接触するリード部を備えた透明電
極パターンを形成し、そのあと半導体薄膜および対向金
Eli電極を積層することによって上記の目的が達成さ
れる。
[Object of the Invention] The present invention provides a method for patterning metal lead electrodes that respectively contact the ends of transparent electrode lead portions extending from a large number of transparent electrodes arranged in a row facing metal electrodes with a semiconductor yI film in between. An object of the present invention is to provide a method for manufacturing an image sensor in which the transparent electrode lead portion does not disappear during etching. Summary of the Invention According to the present invention, a transparent conductive film is deposited on a transparent insulating substrate, a metal thin film is deposited in contact with a part of the surface of the transparent conductive film, and then a photoresist pattern is formed on the transparent conductive film. The above objective is achieved by forming and etching a transparent electrode pattern having a metal lead electrode pattern and a lead portion that contacts each metal lead electrode, and then laminating a semiconductor thin film and a counter gold Eli electrode. be done.

【発明の実施例】[Embodiments of the invention]

第1図は本発明の第一の実施例を示すものである。(酋
)は、フォトレジストパターン70を形成するまでの工
程を示す、ガラス基板lOの上にITO。 5n01等の透明導電膜zOを第3図に示した透明電極
群21を形成すべき領域をカバーして形成する。これは
蒸着法、スパッタリング法、2cvo法によって基板全
面に形成した後、エツチングにより他の部分を除去する
か、金属マスクをおいて膜形成することにより可能であ
る0次に金属マスクを用いてAIの蒸着により金属薄膜
40を金属リード電極群42をカバーする領域に形成す
る。ただしその場合、透明電極薄WA20と金属薄膜4
0が重ねあう領域80を有するように形成する。この重
なりあう領域80は、第3図に示す方形電極22の領域
まで及ばないようにしなければならない0次いでこの上
に周知の方法でフォトレジストパターン70を形成する
。 この第1図+a+の状態でエツチングを行う、先ず金属
 (^l)薄膜40のエツチング液であるりん酸と硝酸
の等置部合液を用いてエツチングを行い、次に透明導電
膜20のエツチング液である塩化第二鉄(FeCIs)
と塩酸(ICl )の等置部合液を用いてエツチングを
行う、このエツチング液は、lO倍程度に水で稀釈した
方がエツチング時間が数分の適度の長さになりエツチン
グの制御が容易になる。これにょうで第1図中)に示す
ように方形電極22とリード部23とからなる透明電極
および端部が透明電極リード部23に接触する金属リー
ド電極42とが生ずる。 この場合、金属電極のエツチング後レジストのポストベ
ークと同条件、すなわち120 ℃の温度で再ベータを
行うと、レジストの金属薄膜および透明導電膜への密着
性とカバーリングが強化され、金属リード電極の綱りが
減少することが見出された。これは再ベークにより金属
リード電極の透明導電膜のエツチング液によろサイドエ
ツチングが制御されることによるものと考えられる。 またFsCls とllCl の混合液のみを用いて、
^1と透明導電膜を同時にエンチングすることもできる
。 この場合は、AIの溶解の際に発生する水素が透明電極
21の側面には作用するが、透明電極の上面はレジスト
で被覆されているので、その作用は限定される。この場
合もエツチングの間に1回以上の再ベータを行う方が明
瞭なパターンが得られた。 このあとは、第3図に示した従来例と同様にa−31層
および共通上部金属電極を形成することができる。 第5図は他の実施例の工程を示し、第1図の実施例との
相違は、第5図ialに示すようにガラス基vi1Gの
上に全面に被着された透明導電M20の上の第1図と同
様な領域を占める金属薄膜4oを形成した点である。こ
の上にレジストパターン7oを形成することは第1図の
場合と同様である。このあとのエツチングは上述の実施
例と同様に行うことができ、第5図偽)に示すような構
造が得られる。透明導電B20は厚さが2000人で、
金属薄膜4oの厚さ1pI11に比較して薄いので、エ
ツチング時間は第1図の場合とほとんど変わらない、こ
の実施例は透明導電膜を全面に形成するのでパターニン
グの手数が省略できる利点がある。 上記の実施例では、フォトダイオードの材料としてa−
Stを例示したが、本発明の主旨からいって充電変換材
料としてCdSその他のFi膜材料を用いる場合におい
ても同様の効果があられることは言うまでもない。
FIG. 1 shows a first embodiment of the invention. (Ex) shows the steps up to forming a photoresist pattern 70, in which ITO is placed on a glass substrate IO. A transparent conductive film zO such as 5n01 is formed to cover the area where the transparent electrode group 21 shown in FIG. 3 is to be formed. This is possible by forming the film on the entire surface of the substrate by vapor deposition, sputtering, or 2CVO method, and then removing other parts by etching, or by forming a film using a metal mask. A thin metal film 40 is formed in a region covering the metal lead electrode group 42 by vapor deposition. However, in that case, the transparent electrode thin WA20 and the metal thin film 4
It is formed to have a region 80 where 0's overlap. This overlapping area 80 must not extend to the area of the rectangular electrode 22 shown in FIG. 3.A photoresist pattern 70 is then formed thereon by a well-known method. Etching is performed in the state shown in +a+ in FIG. Ferric chloride (FeCIs) as a liquid
Etching is carried out using a mixture of equidistant parts of etchant and hydrochloric acid (ICl).If this etching solution is diluted with water to about 10 times the etching time, the etching time will be a moderate length of several minutes, making it easier to control the etching. become. As a result, as shown in FIG. 1), a transparent electrode consisting of a rectangular electrode 22 and a lead portion 23 and a metal lead electrode 42 whose end portion is in contact with the transparent electrode lead portion 23 are formed. In this case, if revetating is performed under the same conditions as the post-bake of the resist after etching the metal electrode, that is, at a temperature of 120°C, the adhesion and covering of the resist to the metal thin film and transparent conductive film will be strengthened, and the metal lead electrode It was found that the torsion of This is considered to be because side etching of the transparent conductive film of the metal lead electrode is controlled by the etching solution during re-baking. Also, using only a mixture of FsCls and llCl,
It is also possible to etch ^1 and the transparent conductive film at the same time. In this case, hydrogen generated during the melting of AI acts on the side surfaces of the transparent electrode 21, but since the upper surface of the transparent electrode is covered with resist, its effect is limited. In this case as well, a clearer pattern was obtained by performing re-beta one or more times during etching. After this, the a-31 layer and the common upper metal electrode can be formed in the same manner as in the conventional example shown in FIG. FIG. 5 shows the process of another embodiment, and the difference from the embodiment of FIG. The point is that a metal thin film 4o occupying the same area as in FIG. 1 is formed. Forming a resist pattern 7o thereon is the same as in the case of FIG. The subsequent etching can be carried out in the same manner as in the above embodiment, and a structure as shown in FIG. 5 is obtained. Transparent conductive B20 has a thickness of 2000 mm,
Since it is thinner than the metal thin film 4o, which has a thickness of 1 pI11, the etching time is almost the same as that shown in FIG. 1.This embodiment has the advantage that the process of patterning can be omitted because the transparent conductive film is formed on the entire surface. In the above embodiment, a-
Although St is used as an example, it goes without saying that similar effects can be obtained when using CdS or other Fi film materials as the charge conversion material in view of the gist of the present invention.

【発明の効果】【Effect of the invention】

本発明は、−列に並んで形成される光検出ユニットが多
数に分離された透明電極の上に半導体薄膜、対向電極を
積層してイメージセンサを製造するために、透明電極お
よびそれに接続する金属リード電極の微細なパターニン
グが必要な場合に、透明導電膜の一部の上に重なるよう
に金属薄膜を被着し、それらの上に共通にフォトレジス
トパターンを形成した後、金属リード電極パターンおよ
び透明電極パターンを順次または同時にエツチングする
ものである。これにより金属muのエツチング時には、
少な(とも形成されるべき透明電極の上面はレジストに
よって覆われているため、金属エツチング時に発生ずろ
水素の還元作用による透明電極パターンの消滅が起こら
ず、イメージセンサの良品率を高めることが可能になる
The present invention provides: - In order to manufacture an image sensor by laminating a semiconductor thin film and a counter electrode on a transparent electrode in which photodetection units are separated into a large number of photodetection units formed in a row, a transparent electrode and a metal connected thereto are manufactured. When fine patterning of lead electrodes is required, a metal thin film is deposited so as to overlap a part of the transparent conductive film, and a common photoresist pattern is formed on them, and then the metal lead electrode pattern and The transparent electrode patterns are etched sequentially or simultaneously. As a result, when etching metal mu,
Since the upper surface of the transparent electrode to be formed is covered with resist, the transparent electrode pattern does not disappear due to the reduction action of hydrogen that is generated during metal etching, making it possible to increase the yield rate of image sensors. Become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の工程の一部を順次示す断面
図、第2図は本発明により製造されるイメージセンナの
ファクシミリにおけろ使用状態を示す斜視図、第3図は
イメージセンサの構造の一部を示し、+a+が平面図、
中)が+a+のX−χ”線断面図、第4図は従来の製造
工程の一部を順次示す断面図、第5図は本発明の別の実
施例の工程の一部を順次示す断面図である。 lOニガラス基板、20:透明厚電膜、21:i!!明
電極電極3:透明電極リード部、31: a −5ll
!l、 40:金属薄膜、41:金属電極、42:金属
リード電極、70ニレジスト、80:透明電極と金属リ
ード電極の重なり部。 第1図 第2図 第3図 第4図 第5図
FIG. 1 is a sectional view sequentially showing a part of the process of an embodiment of the present invention, FIG. 2 is a perspective view showing how the image sensor manufactured by the present invention is used in a facsimile, and FIG. 3 is an image A part of the structure of the sensor is shown, +a+ is a plan view,
(middle) is a cross-sectional view taken along the X-χ” line of +a+, FIG. 4 is a cross-sectional view sequentially showing a part of the conventional manufacturing process, and FIG. 5 is a cross-sectional view sequentially showing a part of the process of another embodiment of the present invention. It is a figure. 1O Ni glass substrate, 20: transparent thick electrical film, 21: i!! Bright electrode 3: transparent electrode lead part, 31: a-5ll
! 1, 40: Metal thin film, 41: Metal electrode, 42: Metal lead electrode, 70 resist, 80: Overlapping portion of transparent electrode and metal lead electrode. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1)半導体薄膜を挟んで金属電極と対向する一列に配置
された多数の透明電極より延びる透明電極リード部の端
部にそれぞれ金属リード電極が接触するイメージセンサ
の製造方法であって、透明絶縁基板上に透明導電膜を被
着し、該透明導電膜の表面の一部に接触して金属薄膜を
被着し、次いでその上にフォトレジストパターンを形成
してエッチングにより金属リード電極パターンおよび該
金属リード電極にそれぞれ接触するリード部を備えた透
明電極パターンを形成し、そのあと半導体薄膜および対
向金属電極を積層することを特徴とするイメージセンサ
の製造方法。
1) A method for manufacturing an image sensor in which a metal lead electrode contacts each end of a transparent electrode lead portion extending from a large number of transparent electrodes arranged in a row facing metal electrodes with a semiconductor thin film in between, the method comprising: a transparent insulating substrate; A transparent conductive film is deposited thereon, a metal thin film is deposited in contact with a part of the surface of the transparent conductive film, a photoresist pattern is formed thereon, and a metal lead electrode pattern and the metal are formed by etching. 1. A method of manufacturing an image sensor, comprising forming a transparent electrode pattern having lead portions in contact with respective lead electrodes, and then laminating a semiconductor thin film and a counter metal electrode.
JP59249267A 1984-11-26 1984-11-26 Manufacture of image sensor Pending JPS61127166A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59249267A JPS61127166A (en) 1984-11-26 1984-11-26 Manufacture of image sensor
US06/801,932 US4665008A (en) 1984-11-26 1985-11-26 Method for fabricating thin-film image sensing devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249267A JPS61127166A (en) 1984-11-26 1984-11-26 Manufacture of image sensor

Publications (1)

Publication Number Publication Date
JPS61127166A true JPS61127166A (en) 1986-06-14

Family

ID=17190420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249267A Pending JPS61127166A (en) 1984-11-26 1984-11-26 Manufacture of image sensor

Country Status (1)

Country Link
JP (1) JPS61127166A (en)

Similar Documents

Publication Publication Date Title
US4665008A (en) Method for fabricating thin-film image sensing devices
JPS6154756A (en) Contact type image sensor
JPS61127166A (en) Manufacture of image sensor
JPS5928065B2 (en) Manufacturing method of solid-state image sensor
JPH04153623A (en) Wiring structure
JPH0158711B2 (en)
JPS61217087A (en) Non-linear type resistance element for liquid crystal display unit
JPH0691105B2 (en) Method of manufacturing thin film transistor
JPS62179774A (en) Manufacture of image sensor
JPS61128561A (en) Manufacture of image sensor
JP2755707B2 (en) Method for manufacturing photovoltaic device
JPS62166562A (en) Manufacture of image sensor
JPS62193173A (en) Manufacture of image reading head
KR840001604B1 (en) Method for fabrication a solid - state imaging device
JPS6197875A (en) Manufacture of semiconductor device
JPS61124172A (en) Manufacture of amorphous silicon image sensor
JPS6265480A (en) Thin film solar battery
JPS58155758A (en) Optoelectric transducer and manufacture thereof
JPS62142369A (en) Manufacture of solar battery
JPH09321328A (en) Manufacture of photoelectric converter
JPH04120773A (en) Element structure for thin film solar cell
JPS60242669A (en) Photosensor array device
JPH0793416B2 (en) Light receiving element and manufacturing method thereof
JPS6130070A (en) Photosensor
JPS6130071A (en) Photoelectric conversion element array