JPH0793416B2 - Light receiving element and manufacturing method thereof - Google Patents

Light receiving element and manufacturing method thereof

Info

Publication number
JPH0793416B2
JPH0793416B2 JP62031550A JP3155087A JPH0793416B2 JP H0793416 B2 JPH0793416 B2 JP H0793416B2 JP 62031550 A JP62031550 A JP 62031550A JP 3155087 A JP3155087 A JP 3155087A JP H0793416 B2 JPH0793416 B2 JP H0793416B2
Authority
JP
Japan
Prior art keywords
layer
light
film
metal
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62031550A
Other languages
Japanese (ja)
Other versions
JPS63199458A (en
Inventor
悟 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62031550A priority Critical patent/JPH0793416B2/en
Publication of JPS63199458A publication Critical patent/JPS63199458A/en
Publication of JPH0793416B2 publication Critical patent/JPH0793416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、受光素子とその製造方法に係り、特に、ファ
クシミリなどの画像読取り装置における一次元イメージ
センサに使用して、クロストークの発生を防止して良好
な解像度を有するとともに、歩留まりを向上するのに好
適な受光素子とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light receiving element and a method of manufacturing the same, and more particularly, to a crosstalk occurrence in a one-dimensional image sensor in an image reading apparatus such as a facsimile. The present invention relates to a light-receiving element suitable for preventing and having a good resolution and improving the yield, and a manufacturing method thereof.

〔従来の技術〕[Conventional technology]

従来、一次元イメージセンサに使用される水素化非晶質
シリコンからなる受光素子は、例えば、日経エレクトロ
ニクス(NIKKEI ELECTRONICS)1982年4月28日号第149
頁ないし第161頁に記載されているように、金属/水素
化非晶質シリコン(以下、a−Si:Hという)/インジウ
ムティンオキサイド(Indium Tin Oxide)(以下、ITO
という)からなる構成のものが提案されている。
Conventionally, a light receiving element made of hydrogenated amorphous silicon used for a one-dimensional image sensor is disclosed in, for example, NIKKEI ELECTRONICS, April 28, 1982, Issue 149.
As described on pages 161 to 161, metal / hydrogenated amorphous silicon (hereinafter referred to as a-Si: H) / Indium Tin Oxide (hereinafter referred to as ITO).
That is) is proposed.

すなわち、第2図に示すように、ガラス基板1上にAlま
たはCrからなる金属電極2、a−Si:H膜3、透明電極で
あるITO電極4の順に積層された構成のものが提案され
ている。
That is, as shown in FIG. 2, a structure is proposed in which a metal electrode 2 made of Al or Cr, an a-Si: H film 3, and an ITO electrode 4 which is a transparent electrode are laminated in this order on a glass substrate 1. ing.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記従来技術の実用化に当たっては、第3図に示す如く
配線を保護するために、金属電極2上をSi3N4あるいはS
iO2などで形成された透光性の保護膜5で覆った構成の
ものが使用されている。しかし、この保護膜5で覆うと
下記のように受光素子の特性が大幅に劣化する問題を含
んでいる。
In putting the above-mentioned prior art into practical use, in order to protect the wiring as shown in FIG. 3, the metal electrode 2 is covered with Si 3 N 4 or S.
A structure covered with a transparent protective film 5 formed of iO 2 or the like is used. However, covering with this protective film 5 involves a problem that the characteristics of the light receiving element are significantly deteriorated as described below.

すなわち、一次元イメージセンサが使用される上限の温
度70℃の環境においては、保護膜5を形成する暗所での
電圧と逆方向電流(金属電極2から保護膜5の方向に流
す電流で、この種の受光素子においては従来より使用さ
れている)との特性が、第4図に示す如く保護膜5を形
成する前の逆方向電流6に対して保護膜5を形成した後
の逆方向電流7は約3桁増加している。通常、一次元イ
メージセンサにおける逆方向電流は、70℃で1×10-7A/
cm2以下が望ましいとされているので、保護膜5を形成
したものの受光素子の特性は劣化する結果になってい
る。
That is, in the environment of the upper limit temperature of 70 ° C. in which the one-dimensional image sensor is used, the voltage in the dark place where the protective film 5 is formed and the reverse current (current flowing from the metal electrode 2 to the protective film 5 This type of light receiving element has been used in the past). The characteristic is that, as shown in FIG. 4, the reverse current 6 before the protective film 5 is formed against the reverse current 6 before the protective film 5 is formed. The current 7 has increased by about 3 orders of magnitude. Normally, the reverse current in a one-dimensional image sensor is 1 × 10 -7 A / at 70 ° C.
Since it is desirable that the thickness is cm 2 or less, the characteristics of the light receiving element having the protective film 5 formed are deteriorated.

この特性の劣化は、Si3N4あるいはSiO2の膜形成によ
り、a−Si:H膜3とITO電極4との界面の接合特性が劣
化することに原因があると考えられるが、この劣化は、
第3図に示すa−Si:H膜3を第5図に示すようなSiH4
スのみをグロー放電分解して得られるa−Si:Hの第1層
(以下、i層という)3′と、SiH4ガスとドーピングガ
スであるB2H6ガスとの混合ガスをグロー放電分解して得
られるB添加のa−Si:Hの第2層(以下、P層という)
8とからなる2層構造とすることで解消することが判明
した。
It is considered that the deterioration of the characteristics is caused by the deterioration of the bonding characteristics at the interface between the a-Si: H film 3 and the ITO electrode 4 due to the film formation of Si 3 N 4 or SiO 2. Is
A first layer of a-Si: H (hereinafter referred to as i layer) 3'obtained by glow discharge decomposition of only a SiH 4 gas as shown in FIG. 5 on the a-Si: H film 3 shown in FIG. And a second layer of B-added a-Si: H obtained by glow discharge decomposition of a mixed gas of SiH 4 gas and B 2 H 6 gas as a doping gas (hereinafter referred to as P layer)
It was found that this can be solved by using a two-layer structure composed of 8 and 8.

上記2層構造を第6図を参照して説明する。第6図は、
第5図に示す構造の受光素子における前記第3図に示す
保護膜5形成前の逆方向電流9と、保護膜5形成後の逆
方向電流10との関係を示す図であるか、図に示すように
両者には差がなく、保護膜5形成による特性の劣化はな
い。なお、このときのP層8は、B2H6/SiH4=0.04%体
積%の混合ガスをグロー放電分解して形成したもので、
膜厚は250Åである。
The two-layer structure will be described with reference to FIG. Figure 6 shows
3 is a diagram showing a relationship between a reverse current 9 before formation of the protective film 5 shown in FIG. 3 and a reverse current 10 after formation of the protective film 5 in the light receiving element having the structure shown in FIG. As shown, there is no difference between the two, and there is no deterioration in characteristics due to the formation of the protective film 5. The P layer 8 at this time is formed by glow discharge decomposition of a mixed gas of B 2 H 6 / SiH 4 = 0.04% by volume,
The film thickness is 250Å.

ところが、上記a−Si:Hを第7図の断面図で示す島状に
独立した形状に形成すると、前記第3図に示す透光性の
保護膜5の形成による特性劣化、すなわち、逆方向電流
の増加は前記第5図の場合と同様に解消されるが、保護
膜5の形成後の逆方向電流は、ある一定電圧のもとで経
時的に増加し、第8図に示すように劣化する。
However, when the a-Si: H is formed into an island-shaped independent shape as shown in the sectional view of FIG. 7, characteristic deterioration due to the formation of the translucent protective film 5 shown in FIG. The increase in the current is canceled in the same manner as in the case of FIG. 5, but the reverse current after the formation of the protective film 5 increases with time under a certain constant voltage, and as shown in FIG. to degrade.

すなわち、第8図は、第7図に示すような島状に形成さ
れた光受素子について、暗所で一定電圧5Vを印加した場
合の70℃における前記第3図に示す透光性の保護膜5形
成後の逆方向電流の経時変化を示したものであるが、変
化が大きくてこの特性では実用化は無理である。この特
性の劣化は、第7図に示すようにa−Si:Hが島状に形成
されたことによりa−Si:Hの側面部15にi層3′が露出
し、このi層3′とITO電極4との界面の接合特性が、
側面部15において前記透光性の保護膜5の形成により劣
化し、電流がリークすることに原因があると考えられ
る。このことは以下の事実からも十分に考え得ることで
ある。
That is, FIG. 8 shows the translucent protection shown in FIG. 3 at 70 ° C. when a constant voltage of 5 V is applied to a light receiving element formed in an island shape as shown in FIG. The time course of the reverse current after the formation of the film 5 is shown, but the change is so large that practical application is impossible with this characteristic. This deterioration of the characteristics is caused by the formation of a-Si: H in the shape of an island as shown in FIG. 7, so that the i-layer 3'is exposed at the side surface portion 15 of the a-Si: H. And the joining characteristics of the interface between ITO electrode 4 and
It is considered that the side surface portion 15 is deteriorated due to the formation of the translucent protective film 5 and the current leaks. This is fully conceivable from the following facts.

例えば、a−Si:H3をi層3′のみで構成した場合の保
護膜形成後の逆方向電流の増加は、前記第4図の符号7
で示すように、5V印加時で約2×10-5A/cm2である。一
方、第8図に特性を示す島状に形成されたa−Si:Hの画
素寸法は100μm×150μmで、膜厚は1μmである。従
って、側面部15におけるi層3′の露出部の面積は、a
−Si:Hの表面積の約3%に当たる。前述の逆方向電流の
増加が約2×10-5A/cm2であることから、側面部15では
約6×10-7A/cm2逆方向電流の増加となり、第8図に示
す逆方向電流の経時的に増加した値とほぼ一致する。し
かし、この特性の劣化は、a−Si:Hを島状に形成せずi
層3′とP層8の2層構造とする限り発生はしない。
For example, in the case where a-Si: H3 is composed of the i layer 3'only, the increase in the reverse current after the formation of the protective film is represented by the reference numeral 7 in FIG.
As shown by, the voltage is about 2 × 10 −5 A / cm 2 when 5 V is applied. On the other hand, the pixel size of the island-shaped a-Si: H having the characteristics shown in FIG. 8 is 100 μm × 150 μm, and the film thickness is 1 μm. Therefore, the area of the exposed portion of the i layer 3 ′ on the side surface portion 15 is a
-Corresponds to about 3% of the surface area of Si: H. Since the increase in the reverse current is about 2 × 10 -5 A / cm 2 , the reverse current increases at the side surface portion 15 by about 6 × 10 -7 A / cm 2 , which is shown in FIG. It almost agrees with the value of the directional current increased with time. However, this deterioration of the characteristics does not form a-Si: H in an island shape, and
This does not occur as long as it has a two-layer structure of the layer 3'and the P layer 8.

しかし、a−Si:Hを島状に形成しない場合には、a−S
i:Hにより各画素が電気的に接続され、光を受けた画素
から光を受けていない画素に光電荷が流れ込み、光を受
けていない画素があたかも受光したかのような現象、す
なわち、クロストークを生じることになり、上記受光素
子を使用した一次元イメージセンサの特性、特に解像度
に解像度が劣化する問題点を有していた。
However, when a-Si: H is not formed in an island shape, a-S
Each pixel is electrically connected by i: H, and the photocharge flows from the pixel that receives light to the pixel that does not receive light, and the pixel that does not receive light is as if it received light, that is, crossing. This causes a talk, and there is a problem in that the resolution of the one-dimensional image sensor using the above light receiving element deteriorates, particularly the resolution.

また、前記のようにa−Si:H膜3を金属電極2とITO電
極4とで挾んで構成するものでは、a−Si:H膜3にピン
ホールが発生した場合、該ピンホールを介して金属電極
2とITO電極4とが接続してリークするため、歩留まり
が著しく低下するという問題点も有していた。
In the case where the a-Si: H film 3 is sandwiched between the metal electrode 2 and the ITO electrode 4 as described above, when a pinhole is generated in the a-Si: H film 3, the a-Si: H film 3 passes through the pinhole. As a result, the metal electrode 2 and the ITO electrode 4 are connected to each other and leak, which causes a problem that the yield is remarkably reduced.

本発明は、上記従来技術の問題点に鑑み、ファクシミリ
などの画像読取り装置における一次元イメージセンサに
使用して、クロストークの発生を防止して良好な解像度
を有するとともに、歩留まりを向上することができる受
光素子およびその製造方法を提供することを目的とす
る。
In view of the above-mentioned problems of the prior art, the present invention can be used for a one-dimensional image sensor in an image reading apparatus such as a facsimile machine to prevent occurrence of crosstalk, have a good resolution, and improve the yield. An object of the present invention is to provide a light receiving element that can be manufactured and a manufacturing method thereof.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明の受光素子は、絶縁基
板上に、独立した島状に形成された下部電極となる複数
の金属電極と、該各金属電極を覆うように2層構造の水
素化非晶質シリコン膜とを積層してなる受光素子におい
て、前記水素化非晶質シリコン膜上全面に直接形成され
た金属膜と前記水素化非晶質シリコン膜との界面反応に
より形成された透光性の導体層のうち、前記島状に形成
された各金属電極上の所定領域内における前記金属膜を
除去して形成された透明電極としての光入射用の透光性
導体層と、該光入射用の透光性導体層に隣接する帯状の
領域に前記金属膜をパターニングして形成された該透光
性導体層の引き出し電極となる上部電極とを備え、該上
部電極および前記入射用の透光性導体層の領域を除いて
前記界面反応により形成された透光性の導体層および前
記2層構造の水素化非晶質シリコン膜をエッチング除去
することにより、前記2層構造の水素化非晶質シリコン
膜を前記各金属電極ごとに独立した島状に形成してなる
ことを特徴とする構成にしたものである。
In order to achieve the above-mentioned object, the light receiving element of the present invention comprises: a plurality of metal electrodes which are independent island-shaped lower electrodes formed on an insulating substrate; and a hydrogen having a two-layer structure so as to cover each metal electrode. In a light receiving element formed by laminating a hydrogenated amorphous silicon film, the light-receiving element is formed by an interfacial reaction between a metal film directly formed on the entire surface of the hydrogenated amorphous silicon film and the hydrogenated amorphous silicon film. Among the translucent conductor layers, a translucent conductor layer for light incidence as a transparent electrode formed by removing the metal film in a predetermined region on each metal electrode formed in the island shape, An upper electrode serving as an extraction electrode of the transparent conductive layer formed by patterning the metal film in a strip-shaped region adjacent to the transparent conductive layer for light incidence, the upper electrode and the incident light Except for the region of the translucent conductor layer for By removing the formed translucent conductor layer and the hydrogenated amorphous silicon film having the two-layer structure by etching, the hydrogenated amorphous silicon film having the two-layer structure is independently formed for each metal electrode. The structure is characterized by being formed in an island shape.

また、本発明の受光素子の製造方法は、絶縁基板上に、
独立した島状に形成された下部電極となる複数の金属電
極と、該各金属電極を覆うように2層構造の水素化非晶
質シリコン膜とを積層してなる受光素子の製造方法にお
いて、 (i)前記水素化非晶質シリコン膜上全面に金属膜を直
接形成し、 (ii)該形成した金属膜と前記水素化非晶質シリコン膜
との界面反応により透光性の導体層を形成し、 (iii)該透光性の導体層のうち、前記島状に形成され
た各金属電極上の所定領域内における前記金属膜を除去
して透明電極としての光入射用の透光性導体層を形成
し、 (iv)該光入射用の透光性導体層に隣接する帯状の領域
に、前記金属膜をパターニングすることにより該透光性
導体層の引き出し電極となる上部電極を形成し、 (v)該上部電極および前記光入射用の透光性導体層の
領域を除いて、前記界面反応により形成された透光性の
導体層および前記2層構造の水素化非晶質シリコン膜を
エッチング除去し、前記2層構造の水素化非晶質シリコ
ン膜を前記各金属電極ごとに独立した島状に形成する構
成にしたものである。
In addition, the method for manufacturing the light receiving element of the present invention, on the insulating substrate,
In a method of manufacturing a light-receiving element, which comprises a plurality of metal electrodes each of which is an independent lower electrode and serves as a lower electrode, and a hydrogenated amorphous silicon film having a two-layer structure so as to cover the metal electrodes, (I) A metal film is directly formed on the entire surface of the hydrogenated amorphous silicon film, and (ii) a translucent conductor layer is formed by an interfacial reaction between the formed metal film and the hydrogenated amorphous silicon film. (Iii) of the translucent conductor layer, the metal film in a predetermined region on each of the island-shaped metal electrodes is removed to form a transparent electrode for transmitting light. Forming a conductor layer, and (iv) forming an upper electrode serving as a lead electrode of the light-transmitting conductor layer by patterning the metal film in a band-shaped region adjacent to the light-transmitting light-transmitting conductor layer. (V) Excluding the region of the upper electrode and the light-transmissive conductor layer for light incidence. The translucent conductor layer formed by the interface reaction and the hydrogenated amorphous silicon film having the two-layer structure are removed by etching, and the hydrogenated amorphous silicon film having the two-layer structure is formed for each metal electrode. The structure is such that it is formed in the shape of an independent island.

〔作用〕[Action]

上記のように、前記第3図に示す保護膜5を形成するこ
とによる特性の劣化は、a−Si:Hの構造をi層とP層と
の2層構造にすることにより解消される。一方、a−S
i:Hを島状に形成することで露出し、そのために発生す
るa−Si:Hの側面部の特性劣化は、該側面部と透明電極
であるITOとが接合しなければ発生しないが、透明電極
をITOとする限り、第7図に示すようにa−Si:Hの側面
部とITOとの接合は避けられない。ところが本発明は、
透明電極を前記ITOに変えてa−Si:Hとこのa−Si:H上
に直接形成した金属膜との界面反応によって形成される
透光性導体層とし、該透光性導体層と島状に加工したa
−Si:Hの側面部との接合が発生しないようにしたので、
前記a−Si:Hの形成時に発生するピンホールを介しての
透明電極と基板上に形成された下部電極である金属電極
との間に、リークが発生するのを防止することが可能に
なる。
As described above, the deterioration of the characteristics due to the formation of the protective film 5 shown in FIG. 3 is eliminated by making the a-Si: H structure into a two-layer structure of the i layer and the P layer. On the other hand, a-S
The characteristic deterioration of the side surface portion of a-Si: H that is exposed by forming i: H in the form of islands does not occur unless the side surface portion and ITO, which is a transparent electrode, are joined. As long as ITO is used as the transparent electrode, it is unavoidable to join the side surface of a-Si: H and ITO as shown in FIG. However, the present invention
The transparent electrode is changed to the ITO to form a light-transmissive conductor layer formed by an interfacial reaction between a-Si: H and a metal film directly formed on the a-Si: H, and the light-transmissive conductor layer and the island are formed. Processed into a
-Since the bonding with the side surface of Si: H is prevented,
It is possible to prevent leakage from occurring between the transparent electrode and the metal electrode, which is the lower electrode formed on the substrate, through the pinhole generated when the a-Si: H is formed. .

また、光入射用の透光性導体層の外部への引き出しは、
前記金属膜がパターニングされて前記光入射用の透光性
導体層に隣接する帯状の領域に残されることにより形成
された遮光膜を兼ねた上部電極で行われるので、クロス
トークを防止することができる。
In addition, the extraction of the translucent conductor layer for light incidence to the outside is
Crosstalk can be prevented because the upper electrode also functions as a light shielding film formed by patterning the metal film and leaving it in a strip-shaped region adjacent to the light-transmitting conductive layer. it can.

〔実施例〕〔Example〕

以下、本発明の一実施例の受光素子を、第1図を参照し
て説明する。第1図(a)は平面図、第1図(b)は断
面図を示す。
Hereinafter, a light receiving element according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 (a) is a plan view and FIG. 1 (b) is a sectional view.

第1図に示すように、絶縁性基板1′上には、独立した
島状に形成された下部電極となる複数の金属電極2′が
設けられている。本実施例においては金属電極2′は、
Crを1000Åスパッタリング法で形成し、ホトエッチング
プロセスにより島状に形成されている。
As shown in FIG. 1, a plurality of metal electrodes 2'which are independent island-shaped lower electrodes are provided on an insulating substrate 1 '. In this embodiment, the metal electrode 2'is
Cr is formed by a 1000Å sputtering method, and is formed in an island shape by a photoetching process.

前記絶縁性基板1′を図示しないプラズマCVD装置の反
応室に入れて真空状態で加熱し、SiH4ガスを導入してグ
ロー放電分解法によりa−Si:H膜のi層3′を約1μm
の厚さで形成した後、水素希釈のB2H6ガスを導入して約
250Å膜厚のa−Si:H膜のP層8′を形成する。
'Heating under vacuum were added to a reaction chamber of a plasma CVD device (not shown), by introducing SiH 4 gas glow discharge decomposition method by a-Si: H i layer 3 of the membrane' the insulating substrate 1 of about 1μm to
After a thickness of about by introducing B 2 H 6 gas diluted with hydrogen
A P-layer 8'of a 250-Å-thick a-Si: H film is formed.

つぎに、前記絶縁性基板1′を前記プラズマCVD装置よ
り取り出してi層3′およびP層8′の自然酸化による
酸化膜を除去するため、フッ硝酸水溶液でライトエッチ
ングを行い、その後スパッタリング法によりCr膜を約0.
1μmの厚さで前記絶縁性基板1′におけるa−Si:Hの
P層8′上全面に直接形成する。この場合、前記絶縁性
基板1′の温度は100℃ないし250℃の範囲が望ましい。
Next, the insulating substrate 1'is taken out from the plasma CVD apparatus and light etching is performed with an aqueous solution of hydrofluoric nitric acid in order to remove an oxide film of the i layer 3'and the P layer 8'by natural oxidation. Cr film is about 0.
It is directly formed on the entire surface of the a-Si: H P layer 8'of the insulating substrate 1'in a thickness of 1 .mu.m. In this case, the temperature of the insulating substrate 1'is preferably in the range of 100 ° C to 250 ° C.

上記プロセスによりi層3′およびP層8′と、この上
面の全面に直接形成した金属膜(本実施例においてはCr
膜)との界面反応により、透光性の導体層が形成され
る。
The i layer 3'and the P layer 8'and the metal film (Cr in the present embodiment) formed directly on the entire upper surface by the above process.
The translucent conductor layer is formed by the interfacial reaction with the film).

ついで、Cr膜をホトエッチング法により第1図に斜線で
示す領域13上より除去して光入射用の透光性導体層12を
形成し、同時に第1図に領域13に隣接した帯状で示す領
域に前記Cr膜をパターニングして上部電極11を形成す
る。この上部電極11は、透光性導体層12の引き出し電極
となる領域である。ついで、上部電極11と領域13で示す
透光性導体層12とにホトレジストを積層してエッチング
を行う。このエッチングは、透光性導体層12をフッ硝酸
水溶液で、またa−Si:Hのi層3′およびP層8′をヒ
ドラジン水溶液で行う。これによりi層3′およびP層
8′が独立した島状に形成される。
Then, the Cr film is removed from above the region 13 shown by hatching in FIG. 1 by a photoetching method to form a light-transmitting conductive layer 12 for light incidence, and at the same time, it is shown in FIG. 1 in a band shape adjacent to the region 13. The Cr film is patterned in the region to form the upper electrode 11. The upper electrode 11 is a region to be a lead electrode of the translucent conductor layer 12. Next, a photoresist is laminated on the upper electrode 11 and the transparent conductive layer 12 shown by the region 13, and etching is performed. This etching is performed by using a transparent nitric acid aqueous solution for the transparent conductor layer 12 and a hydrazine aqueous solution for the i-layer 3'and the P layer 8'of a-Si: H. As a result, the i layer 3'and the P layer 8'are formed into independent islands.

このため、i層3′およびP層8′の側面部15と前記従
来のような透明電極との接合がなくなり、i層3′およ
びP層8′を形成する際に発生するピンホールを介して
の前記従来の透明電極(ITO電極)と金属電極2とのリ
ークが発生しない構成にすることが可能になり、歩留ま
りを大幅に向上させることができる。
Therefore, the side surfaces 15 of the i-layer 3'and the P-layer 8'are not bonded to the transparent electrodes as in the conventional case, and the pin holes generated when the i-layer 3'and the P-layer 8'are formed. The conventional transparent electrode (ITO electrode) and the metal electrode 2 can be prevented from leaking, and the yield can be significantly improved.

また、上部電極11が遮光膜を兼ねていることから、クロ
ストークを防止することができる。
Further, since the upper electrode 11 also serves as the light shielding film, crosstalk can be prevented.

本実施例の受光素子を一次元イメージセンサに使用し、
該受光素子の所定部分に厚さ2μmのSi3N4の保護膜を
形成し、暗所で一定電圧5Vを印加した場合の70℃におけ
る該保護膜形成後の逆方向電流の経時変化を実験したと
ころ、経時変化は全く見られず特性の劣化の無いことが
確認された。
Using the light receiving element of this embodiment for a one-dimensional image sensor,
A protective film made of Si 3 N 4 having a thickness of 2 μm was formed on a predetermined portion of the light receiving element, and an experiment was conducted to examine the change with time of the reverse current after the protective film was formed at 70 ° C. when a constant voltage of 5 V was applied. As a result, no change with time was observed and it was confirmed that the characteristics were not deteriorated.

前記の如く本発明は、透明電極としてITOを使用してい
ないので、ITOを使用した場合の問題点であるITO形成時
のa−Si:Hへのダメージ、良質なITOを得ることの困難
性、耐薬品性の弱いことによるITOの溶解などの諸問題
を解消することが可能になる。
As described above, in the present invention, since ITO is not used as the transparent electrode, there are problems when ITO is used, damage to a-Si: H during ITO formation, and difficulty in obtaining high quality ITO. It is possible to solve various problems such as dissolution of ITO due to weak chemical resistance.

さらに、本発明は、a−Si:H膜形成後に、金属膜を積層
し、該金属膜とa−Si:H膜との界面反応により透光性の
導体層を形成し、該導体層の所定領域内の前記金属膜を
除去するのみで光入射用の透光性導体層を形成すること
ができるので、前記従来のようにITOを透明電極として
使用した場合に比べて製造公定を減縮することができ
る。
Furthermore, in the present invention, after forming the a-Si: H film, a metal film is laminated, and a translucent conductor layer is formed by an interfacial reaction between the metal film and the a-Si: H film. Since it is possible to form the light-transmitting conductive layer for light incidence only by removing the metal film in the predetermined region, the official manufacturing limit is reduced as compared with the case where ITO is used as the transparent electrode as in the conventional case. be able to.

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明は、ファクシミリなどの画
像読取り装置における一次元イメージセンサに使用し
て、クロストークの発生を防止して良好な解像度を有す
るとともに、歩留まりを向上することができる効果を奏
する。
As described above, the present invention can be applied to a one-dimensional image sensor in an image reading apparatus such as a facsimile machine to prevent crosstalk from occurring, have a good resolution, and improve the yield. Play.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例に係る受光素子の構成説明図
である。 第2図は従来の受光素子の保護膜形成前の断面図、第3
図は従来の受光素子の保護膜形成後の断面図、第4図は
従来の受光素子の逆方向電流曲線図、第5図は従来のa
−Si:Hからなる2層構造の受光素子を示す断面図、第6
図は第5図に示す従来の受光素子の保護膜形成前後の逆
方向電流曲線図、第7図は従来の島状に加工された受光
素子の断面図、第8図は第7図に示す従来の受光素子の
逆方向電流曲線図である。 1、1′……絶縁性基板、2、2′……金属電極(下部
電極)、3……a−Si:H、3′……a−Si:Hのi層、4
……ITO電極、5……透光性の保護膜、8、8′……a
−Si:HのP層、11……上部電極、12……透光性導体層、
13……光入射用の領域、15……側面部。
FIG. 1 is a configuration explanatory view of a light receiving element according to an embodiment of the present invention. FIG. 2 is a sectional view of a conventional light receiving element before forming a protective film, and FIG.
FIG. 4 is a sectional view of a conventional light receiving element after forming a protective film, FIG. 4 is a reverse current curve diagram of the conventional light receiving element, and FIG.
A cross-sectional view showing a two-layer photodetector made of -Si: H, 6th
5 is a reverse current curve diagram before and after formation of a protective film of the conventional light receiving element shown in FIG. 5, FIG. 7 is a sectional view of a conventional island-shaped light receiving element, and FIG. 8 is shown in FIG. It is a reverse current curve figure of the conventional light receiving element. 1, 1 '... Insulating substrate 2, 2' ... Metal electrode (lower electrode), 3 ... a-Si: H, 3 '... a-Si: H i layer, 4
...... ITO electrode, 5 ...... Transparent protective film, 8, 8 '... a
-Si: H P layer, 11 ... upper electrode, 12 ... translucent conductor layer,
13 ... Area for light incidence, 15 ... Side surface.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】絶縁基板上に、独立した島状に形成された
下部電極となる複数の金属電極と、該各金属電極を覆う
ように2層構造の水素化非晶質シリコン膜とを積層して
なる受光素子において、前記水素化非晶質シリコン膜上
全面に直接形成された金属膜と前記水素化非晶質シリコ
ン膜との界面反応により形成された透光性の導体層のう
ち、前記島状に形成された各金属電極上の所定領域内に
おける前記金属膜を除去して形成された透明電極として
の光入射用の透光性導体層と、該光入射用の透光性導体
層に隣接する帯状の領域に前記金属膜をパターニングし
て形成された該透光性導体層の引き出し電極となる上部
電極とを備え、該上部電極および前記光入射用の透光性
導体層の領域を除いて前記界面反応により形成された透
光性の導体層および前記2層構造の水素化非晶質シリコ
ン膜をエッチング除去することにより、前記2層構造の
水素化非晶質シリコン膜を前記各金属電極ごとに独立し
た島状に形成してなることを特徴とする受光素子。
1. A plurality of metal electrodes to be lower electrodes, which are formed in the form of independent islands, and a hydrogenated amorphous silicon film having a two-layer structure so as to cover each metal electrode are laminated on an insulating substrate. In the light receiving element formed by, among the translucent conductor layers formed by the interfacial reaction between the metal film formed directly on the entire surface of the hydrogenated amorphous silicon film and the hydrogenated amorphous silicon film, A light-transmitting conductor layer as a transparent electrode formed by removing the metal film in a predetermined region on each of the island-shaped metal electrodes, and a light-transmitting conductor. A strip-shaped region adjacent to the layer, the upper electrode serving as an extraction electrode of the transparent conductive layer formed by patterning the metal film, and the upper electrode and the transparent conductive layer for light incidence. Except for the area, the translucent conductor layer and the The hydrogenated amorphous silicon film having the two-layer structure is removed by etching, so that the hydrogenated amorphous silicon film having the two-layer structure is formed in an island shape for each metal electrode. And a light receiving element.
【請求項2】絶縁基板上に、独立した島状に形成された
下部電極となる複数の金属電極と、該各金属電極を覆う
ように2層構造の水素化非晶質シリコン膜とを積層して
なる受光素子の製造方法において、 (i)前記水素化非晶質シリコン膜上全面に金属膜を直
接形成し、 (ii)該形成した金属膜と前記水素非晶質シリコン膜と
の界面反応により透光性の導体層を形成し、 (iii)該透光性の導体層のうち、前記島状に形成され
た各金属電極上の所定領域内における前記金属膜を除去
して透明電極としての光入射用の透光性導体層を形成
し、 (iv)該光入射用の透光性導体層に隣接する帯状の領域
に、前記金属膜をパターニングすることにより該透光性
導体層の引き出し電極となる上部電極を形成し、 (v)該上部電極および前記光入射用の透光性導体層の
領域を除いて、前記界面反応により形成された透光性の
導体層および前記2層構造の水素化非晶質シリコン膜を
エッチング除去し、前記2層構造の水素化非晶質シリコ
ン膜を前記各金属電極ごとに独立した島状に形成する、 ことを特徴とする受光素子の製造方法。
2. A plurality of metal electrodes serving as lower electrodes, which are formed in the shape of independent islands, and a hydrogenated amorphous silicon film having a two-layer structure are laminated on an insulating substrate so as to cover the metal electrodes. (I) a metal film is directly formed on the entire surface of the hydrogenated amorphous silicon film, and (ii) an interface between the formed metal film and the hydrogen amorphous silicon film. A transparent conductive layer is formed by a reaction, and (iii) the transparent electrode is formed by removing the metal film in a predetermined region on each of the island-shaped metal electrodes of the transparent conductive layer. A light-transmissive conductor layer as a light-incident layer is formed, and (iv) the light-transmissive conductor layer is patterned by patterning the metal film in a band-shaped region adjacent to the light-transmissive conductor layer. Forming an upper electrode to be a lead-out electrode of (v) the upper electrode and the light incident transparent electrode. Except the region of the conductive conductor layer, the translucent conductor layer formed by the interfacial reaction and the hydrogenated amorphous silicon film having the two-layer structure are removed by etching to obtain the hydrogenated amorphous film having the two-layer structure. A method for manufacturing a light-receiving element, characterized in that a silicon film is formed in an island shape independently for each metal electrode.
JP62031550A 1987-02-16 1987-02-16 Light receiving element and manufacturing method thereof Expired - Lifetime JPH0793416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62031550A JPH0793416B2 (en) 1987-02-16 1987-02-16 Light receiving element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62031550A JPH0793416B2 (en) 1987-02-16 1987-02-16 Light receiving element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63199458A JPS63199458A (en) 1988-08-17
JPH0793416B2 true JPH0793416B2 (en) 1995-10-09

Family

ID=12334296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62031550A Expired - Lifetime JPH0793416B2 (en) 1987-02-16 1987-02-16 Light receiving element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0793416B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02109341A (en) * 1988-10-19 1990-04-23 Fuji Xerox Co Ltd Manufacture of thin film transistor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204267A (en) * 1983-05-06 1984-11-19 Fuji Xerox Co Ltd Thin film reading device
JPS6164157A (en) * 1984-09-05 1986-04-02 Tokyo Electric Co Ltd Image sensor

Also Published As

Publication number Publication date
JPS63199458A (en) 1988-08-17

Similar Documents

Publication Publication Date Title
US4593152A (en) Photoelectric conversion device
US5233181A (en) Photosensitive element with two layer passivation coating
CN110265509B (en) Photoelectric detection device, preparation method thereof, display panel and display device
JPS59143362A (en) Passivation film
EP0362928A1 (en) Display arrangement provided with diodes and method of manufacturing the display arrangement
US4831429A (en) Transparent photo detector device
JPH0793416B2 (en) Light receiving element and manufacturing method thereof
JPH02143560A (en) Laminar type solid-state image sensing device
JPS6269552A (en) Light receiving element
JPH04153623A (en) Wiring structure
JPH04154168A (en) Manufacture of image sensor
JP2910227B2 (en) Manufacturing method of contact image sensor
JPS6191687A (en) Semiconductor device
JPS63181462A (en) Photodetector and line image sensor using the same
JPS6095980A (en) Photoelectric conversion device
JP3398161B2 (en) Photoelectric conversion device
JP2883370B2 (en) Photovoltaic device
JPS63136578A (en) Photodetector and one-dimensional image sensor using said photodetector
JP3407917B2 (en) Light sensor
JPS63107062A (en) Light receiving element and one-dimensional image sensor applying the same
JPH065726B2 (en) Photoelectric conversion element array
JPS61229370A (en) Manufacture of photo sensor element
JPS60224285A (en) Light sensitive element
JPS61203666A (en) Manufacture of photo-diode
JPS6211263A (en) Image sensor