JPS58215795A - Non-volatile memory device - Google Patents

Non-volatile memory device

Info

Publication number
JPS58215795A
JPS58215795A JP57098308A JP9830882A JPS58215795A JP S58215795 A JPS58215795 A JP S58215795A JP 57098308 A JP57098308 A JP 57098308A JP 9830882 A JP9830882 A JP 9830882A JP S58215795 A JPS58215795 A JP S58215795A
Authority
JP
Japan
Prior art keywords
location
program
memory
electrode
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57098308A
Other languages
Japanese (ja)
Inventor
Noriyuki Tanaka
宣幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57098308A priority Critical patent/JPS58215795A/en
Publication of JPS58215795A publication Critical patent/JPS58215795A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
    • G11C16/3495Circuits or methods to detect or delay wearout of nonvolatile EPROM or EEPROM memory devices, e.g. by counting numbers of erase or reprogram cycles, by using multiple memory areas serially or cyclically
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles

Abstract

PURPOSE:To attain high reliability, by using a part of location of a memory as an exclusive location storing the number of times of write to the said memory device for confirming the number of times of program. CONSTITUTION:An exclusive location 2 in all block number 1 of a storage area is allocated to store the number of times of program of said memory and the number of bits of the location 2 corresponds to the limit value of the number of times of program of said memory. Further, every time the program write to said memory takes place, the location 2 is read out, the stored value is counted up, and the counted-up value is stored in the location again. Then, the program is written in the storage area other than the location 2.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は不揮発性メモリ装置、特に電気的にプログラム
可能な半導体不揮発性メモリ装置に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to non-volatile memory devices, and more particularly to electrically programmable semiconductor non-volatile memory devices.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体不揮発性メモリはMO8形FETを利用して蓄積
電荷の量により2値情報を記憶させるようにしたもので
、電源電圧を印加しなくても記憶内容を保持できるとい
う特徴を有する。
Semiconductor nonvolatile memory uses MO8 type FETs to store binary information depending on the amount of accumulated charge, and has the characteristic that stored contents can be retained without applying a power supply voltage.

かかる不揮発性メモリには種々のものがあるが、今まで
のところ、いわゆるUV −EPROM (Ul t 
raViolet−Erasabls & Progr
amable ROM)が多く使用されている。このU
V−EPROMは記憶内容を消去するのに紫外線を照射
して行うものであるが、書込み、消去に際しては回路か
ら取外さなければならないという不都合がある。
There are various types of such non-volatile memory, but so far the so-called UV-EPROM (Ul t
raViolet-Erasabls & Progr
amable ROM) are widely used. This U
V-EPROM erases its stored contents by irradiating it with ultraviolet rays, but it has the disadvantage that it must be removed from the circuit for writing and erasing.

そこで、最近脚光を浴びているのが、Elli:PRO
M(Electrleally FJrasable 
& ProgramableROM )である。このE
F、FROMは実装状態のまま別途設けた書込み、消去
装置により自由に消去、書込みを行うことができるとい
う長所を有しているため、記憶内容の変更が頻発するよ
うなシステム、例えば金銭登録機などには最適である。
Therefore, Elli:PRO has recently been in the spotlight.
M(Electrally FJrasable
& Programmable ROM). This E
F, FROM has the advantage that it can be freely erased and written to using a separate writing and erasing device while it is mounted, so it is suitable for systems where the memory contents are frequently changed, such as cash register machines. It is ideal for such things.

一方、lPROMは通常のスタティックRAMと組み合
せて構成される不揮発性RAMにも用いられる。この不
揮発性RA用同容量のスタティックRAMとEEPRO
Mとで構成され、電源投入中において通常のRAMとし
て動作させ、電源のしゃ断直前にスタティックRAMに
格納されている内容を−HEI1mFROMへ移してそ
のit保持しておき、電源の再投入後にEEPROM側
から再びスタティックRAMへ戻すようKして不揮発性
を確保するものである。
On the other hand, lPROM is also used as a nonvolatile RAM configured in combination with a normal static RAM. Static RAM and EEPRO of the same capacity for this non-volatile RA
It operates as a normal RAM while the power is turned on, and just before the power is turned off, the contents stored in the static RAM are transferred to the -HEI1mFROM and retained there, and after the power is turned on again, the contents stored in the static RAM are transferred to the EEPROM side. This is to ensure non-volatility by returning the data to static RAM.

かかるEEPROMが有する問題点は、書込みに際して
高電圧を印加する必要があるため、記憶内容の変更、す
なわちプログラム回数が制限されることである。現在の
ところ、プログラム回数の限度は一般に1000〜10
000回程度であるとされている。使用に際してはこの
制限回数を絶対に守らなければならない。限度を越えた
場合の記憶内容はその信頼性において全く保証の限りで
はないからである。
A problem with such an EEPROM is that it is necessary to apply a high voltage during writing, which limits the number of times the stored content can be changed, that is, programmed. Currently, the limit for the number of programs is generally 1000 to 10
It is said to be about 000 times. This limit must be strictly observed when using the product. This is because the reliability of the stored contents cannot be guaranteed if the limit is exceeded.

ここで、EEPROMの動作原理ならびにプログラム回
数が制限される理由について説明する。第1図は代表的
なEEPROMの1セルについての断面図であり、(a
)はプログラムの書込み時の状態、(b)は消去時の状
態をそれぞれ示している。第1図において、P形81 
基板lO上には第1層ポリシリコンの第1電極11、第
2層ポリシリコンの70−ティングゲート12、第3層
ポリシリコンの第2電極(書込み、消去用)がSiO□
絶縁層14とともに設けられている。フローテイングゲ
ーH2は第1電極11と第2電極13との間にフローテ
ィング(す彦わち、浮遊)状態で配置されている。
Here, the operating principle of the EEPROM and the reason why the number of programs can be limited will be explained. FIG. 1 is a cross-sectional view of one cell of a typical EEPROM, and (a
) shows the state when writing the program, and (b) shows the state when erasing. In Figure 1, P type 81
On the substrate IO are a first electrode 11 made of first layer polysilicon, a 70-ring gate 12 made of second layer polysilicon, and a second electrode (for writing and erasing) made of third layer polysilicon.
It is provided together with the insulating layer 14. The floating game H2 is placed between the first electrode 11 and the second electrode 13 in a floating state.

プログラムする場合(第1図(a)参照)、第1電極1
1を0〔v〕又はアース電位に固定し、第2電極13に
正の高電位子■を印加する。このとき、フローテイング
ゲー)12の電位も第2電極13との静電結合により正
の高電位子Vまで上昇する。すると、フローティングゲ
ート12と第1電極11との間に高電界が発生し、トン
ネル効果により第1電極11からフローティングゲート
12に向って電子が移動し、その電子は70−テイング
ゲー)12に補獲される。
When programming (see FIG. 1(a)), the first electrode 1
1 is fixed at 0 [V] or the ground potential, and a positive high potential voltage (2) is applied to the second electrode 13. At this time, the potential of the floating gate 12 also rises to the positive high potential V due to the electrostatic coupling with the second electrode 13. Then, a high electric field is generated between the floating gate 12 and the first electrode 11, and electrons move from the first electrode 11 toward the floating gate 12 due to the tunnel effect, and the electrons are captured by the be done.

電子が十分に補獲された状態で第2電極13の電位を0
[v]に戻し、プログラム動作を終了する。この状態で
はフローティングゲート12の電位は負の電位となって
いる。電子を補獲しているからである。
When the electrons are sufficiently captured, the potential of the second electrode 13 is reduced to 0.
Return to [v] and end the program operation. In this state, the potential of the floating gate 12 is negative. This is because electrons are captured.

次に、消去する場合(第1図(b)参照)について述べ
る。まず、このセルはすでにプログラムされ、フローテ
ィングゲート12には電子が補獲されているものとする
。第1電極11を0 [V]に固定し、フローティング
ゲート12を0〔v〕とし、第2電極13に+Vの電圧
を印加する。すると、フローティングゲート12と第2
電極13との間に高電界が発生し、フローテイングゲー
H2に補獲されていた電子はトンネル効果によりS1絶
縁層14を抜けて第2電極13へ追い出される。捕獲電
子が存在しなくなった状態で消去動作は終了し、第2電
極13を0〔v〕に戻す。
Next, the case of erasing (see FIG. 1(b)) will be described. First, it is assumed that this cell has already been programmed and the floating gate 12 has captured electrons. The first electrode 11 is fixed at 0 [V], the floating gate 12 is set at 0 [V], and a voltage of +V is applied to the second electrode 13. Then, the floating gate 12 and the second
A high electric field is generated between the electrode 13 and the floating game H2, and the electrons captured by the floating game H2 are expelled through the S1 insulating layer 14 to the second electrode 13 due to the tunnel effect. The erasing operation ends when there are no captured electrons, and the voltage of the second electrode 13 is returned to 0 [V].

以上かられかるように、フローティングゲート12に電
子が補獲されて負の電位になっている状態がプログラム
状態であり、その逆が消去状態である。これら2つの状
態がメモリ外部での信号論理″′1”、′0″に対応す
る。ただし、プログラム状態が論理“1”となるか、消
去状態がeIO”となるかは一義的には定まらない。周
辺装置との関係で決まるものだからである。
As can be seen from the above, the state in which the floating gate 12 captures electrons and has a negative potential is the programmed state, and the opposite is the erased state. These two states correspond to the signal logic "'1" and "0" outside the memory.However, it is not univocally determined whether the program state is the logic "1" or the erase state is the logic "eIO". do not have. This is because it is determined by the relationship with peripheral devices.

以上のEEPROMにおいて、プログラム回数が制限さ
れる原因はプログラムに際して第2電極13に高電圧を
印加し、トンネル効果により第1電極11からフローテ
イングゲー)12に電子を移動させることにある。つま
り、電子は第1電極11とフローティングゲート12間
の810□絶縁層を突抜けて移動するためにストレスが
加わり、絶縁層が劣化してしまうからである。なお、既
に消去状態にあるセルに書込動作を行ってもセルにはそ
れケ1どのストレスは加わらないので劣化の発生割合は
きわめて少ない。
In the EEPROM described above, the reason why the number of programs is limited is that a high voltage is applied to the second electrode 13 during programming, and electrons are moved from the first electrode 11 to the floating gate 12 due to the tunnel effect. In other words, the electrons pass through the 810□ insulating layer between the first electrode 11 and the floating gate 12 and move, causing stress and deteriorating the insulating layer. Note that even if a write operation is performed on a cell that is already in an erased state, no stress is applied to the cell, so the rate of occurrence of deterioration is extremely low.

このようなEEPROMをプログラムの変更がひんばん
に行われるシステムに使用した場合に記憶同容を消失す
るおそれがあることは先に述べた通りである。従来では
システムの使用期間等から適当に判断し、しかるべき時
期にEEPROMを交換するという対策を講じていた。
As mentioned above, if such an EEPROM is used in a system where programs are frequently changed, there is a risk that the memory contents will be lost. Conventionally, measures have been taken to replace the EEPROM at an appropriate time based on an appropriate judgment based on the period of use of the system.

しかし、このような使い方には信頼性という面で不安が
残り、妥当なものではない。
However, this kind of usage leaves concerns about reliability and is not appropriate.

[発明の目的] そこで、本発明はFEPROMにおいて当該メモリのプ
ログラム回数を確認することができ、それによって高信
頼性を確保し、うる不揮発性メモリ装置を提供すること
を目的とする。
[Object of the Invention] Therefore, an object of the present invention is to provide a nonvolatile memory device that can confirm the number of times the memory is programmed in a FEPROM, thereby ensuring high reliability.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明による不揮発性メモ
リ装置は、当該メモリ装置への書込み回数を順次記憶す
るメモリセルで構成されるロケーションを設け、このロ
ケーションの格納値を知ることにより当該メモリの使用
限界を知りうるようにした点に特徴を有する。
In order to achieve the above object, a nonvolatile memory device according to the present invention is provided with a location composed of memory cells that sequentially stores the number of writes to the memory device, and by knowing the stored value of this location, the nonvolatile memory device according to the present invention The feature is that the usage limit can be known.

〔発明の効果〕〔Effect of the invention〕

かかる構成を有する本発明によれば、当該メモリ装置の
使用限界を正確かつ確実に知ることができるため、プロ
グラム変更をひんばんに行うようなシステムにおいて記
憶内容を消失してしまうようなことを防止することがで
き、信頼性を向上しうる。また、従来のような予測によ
る判断とは異なり、確定に書込回数を知りうるので、未
だ余裕のあるものを交換してしまうという不経済を抑制
することができる。
According to the present invention having such a configuration, it is possible to accurately and reliably know the usage limit of the memory device, thereby preventing the loss of stored contents in a system where programs are frequently changed. can improve reliability. Furthermore, unlike conventional judgments based on predictions, the number of writes can be known with certainty, so it is possible to suppress the uneconomical situation of replacing items that still have room.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示する実施例に基づいて詳述する。第
2図は本発明によるメモリ装置であって、EEFROM
単独の場合の実施例を示すブロック図である。
Hereinafter, the present invention will be described in detail based on illustrated embodiments. FIG. 2 shows a memory device according to the present invention, in which an EEFROM
FIG. 2 is a block diagram showing an example in the case of a single device.

第2図において、1は記憶エリアの全ブロン°り数を示
しており、その中の特定ロケーション(以下、専用ロケ
ーション)2が尚該メモリのプログ □ラム回数を格納
しておくために割当てられている。
In Fig. 2, 1 indicates the total number of blocks in the memory area, and a specific location (hereinafter referred to as a dedicated location) 2 is allocated to store the number of programs in the memory. ing.

専用ロケーション2のビット数は当該メモリのプログラ
ム回数限度値に対応したものとし、対応するメモリセル
を割当てて専用ロケーション2を構成する。
The number of bits in the dedicated location 2 corresponds to the programming frequency limit of the memory, and the dedicated location 2 is configured by allocating the corresponding memory cells.

次にプログラム回数の計数動作を説明する。まず、予め
専用ロケーション2を初期値(例えば、’0”  )に
セットする。それ以後、当該メモリへのプログラムの書
込みが発生するごとに専用ロケーション2を読出してそ
の格納値をカウントアツプ(例えば、+1)し、カウン
トアツプされた値を再度専用ロケーション2に格納する
。次いで、専用ロケーション2以外の記憶エリアにプロ
グラムを書込む。なお、カウントアツプを先にするか、
プログラムの書込みを先にするか設計上の問題である。
Next, the operation of counting the number of programs will be explained. First, set the dedicated location 2 to an initial value (for example, '0') in advance. From then on, every time a program is written to the memory, the dedicated location 2 is read and the stored value is counted up (for example, +1) and stores the counted up value again in dedicated location 2. Next, write the program to a storage area other than dedicated location 2. Note that whether to count up first or
It is a design problem to write the program first.

第3図は通常のRAMとEEPROMを組み合せてなる
不揮発性RAMに適用した例を示すブロック図である。
FIG. 3 is a block diagram showing an example in which the present invention is applied to a nonvolatile RAM that is a combination of a normal RAM and an EEPROM.

第2図において、3はRAMを示しており、EEPRO
Mについては第2図の符号を引用する。まず、専用ロケ
ーション2を予め初期値(例えば、″0”)にセットし
ておく。RAM3は通常のシステム動作において各種情
報が書込まれたり、読出されたりするもので、例えばシ
ステムの電源OFF時にそのRAM3の内容をEEPR
OM側にストアして保持する。
In Fig. 2, 3 indicates RAM, and EEPRO
Regarding M, the reference numerals in FIG. 2 are quoted. First, the dedicated location 2 is set in advance to an initial value (for example, "0"). RAM3 is used to write and read various information during normal system operation.For example, when the system power is turned off, the contents of RAM3 are written to and read from the EEPR.
Store and retain on the OM side.

いま、RAM3からその格納内容をEEPROMにスト
アしようとする場合、そのストアする直前にRAM3 
に設けられた専用ロケーション4を読出す。この専用ロ
ケーション4はEEPROMの専用ロケーション2と対
応するものである。読出された専用ロケーション4の内
容をカウントアツプしたのち再度専用ロケーション4に
書込む。この専用ロケーション4が更新されたのち、R
AM3の内容を記憶エリア1にストアする。このとき専
用ロケーション4の内容も専用ロケーション2にストア
する。
Now, if you want to store the stored contents from RAM3 to EEPROM, immediately before storing
Read the dedicated location 4 provided in . This dedicated location 4 corresponds to dedicated location 2 of the EEPROM. After counting up the read contents of the dedicated location 4, the contents are written to the dedicated location 4 again. After this dedicated location 4 is updated, R
Store the contents of AM3 in storage area 1. At this time, the contents of dedicated location 4 are also stored in dedicated location 2.

次に、再びRAM3を使用する場合には、EEPROM
の記憶エリア1および専用ロケーション2の内容をそっ
くりその一!tRAM3および専用ロケーション4に書
込む(これをリコールという。)。
Next, when using RAM3 again, EEPROM
The contents of storage area 1 and dedicated location 2 are exactly the same! Write to tRAM3 and dedicated location 4 (this is called recall).

このようにして、尚該EEPROMのプログラム回数は
必ず記憶され、しかも不揮発状態で保持されるから、使
用限度を正確かつ確実に知ることができる。その結果、
重要な情報を消失するようなことを防止することができ
る。
In this way, the number of times the EEPROM is programmed is always stored and held in a non-volatile state, so the usage limit can be known accurately and reliably. the result,
It is possible to prevent loss of important information.

〔発明の変形例〕[Modified example of the invention]

上述した実施例では、プログラムの書込み発生毎に専用
ロケーション2または4の内容を1インクリメントする
ことで更新するものとしたが、予め初期値として当該F
iEPROMに保証される最大プログラム回数をプリセ
ットしておき、プログラムの変更毎にその内容を1デク
リメントするようにしてもよい。そのようにした場合、
当該EEPROMは残り何回プログラムの変更が可能で
あるかを知ることができる。オた、規定プログラム回数
に達した場合に、何らかの表示(例えば、CRTディス
プレイ、ランプ表示等)を行なって知らしめるようにし
たり、情報の消失を積極的に防止するためプログラムの
変更を禁止するようにしてもよい。
In the embodiment described above, the contents of the dedicated location 2 or 4 are updated by incrementing the contents by 1 each time a program is written.
The maximum number of programs guaranteed in the iEPROM may be preset, and the content may be decremented by 1 each time the program is changed. If you do so,
The EEPROM can know how many times the program can be changed remaining. Additionally, when the specified number of programs has been reached, some type of display (for example, CRT display, lamp display, etc.) may be displayed to notify the user, or changes to the program may be prohibited in order to proactively prevent the loss of information. You may also do so.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なEEPROMの1セルについての断面
図で、(a)はプログラムの書込み状態、(b)は消去
状態を示す図、 第2図は本発明によるメモリ装置の実施例を示すブロッ
ク図、 第3図は他の実施例を示すブロック図である。 1・・・記憶エリア、2・・・専用ロケーション、3・
・・RAM、4・・・専用ロケーション。 出願人代理人  猪  股    清
FIG. 1 is a cross-sectional view of one cell of a general EEPROM, in which (a) shows a program write state, (b) shows an erase state, and FIG. 2 shows an embodiment of a memory device according to the present invention. Block Diagram FIG. 3 is a block diagram showing another embodiment. 1...Storage area, 2...Dedicated location, 3.
...RAM, 4... Dedicated location. Applicant's agent Kiyoshi Inomata

Claims (1)

【特許請求の範囲】[Claims] 電気的にプログラム可能な不揮発性メモリを用いた装置
において、上記メモリの一部ロケーションを尚該メモリ
装置への書込み発生回数を記憶する専用ロケーションと
して用いることを特徴とする不揮発性メモリ装置。
A non-volatile memory device using electrically programmable non-volatile memory, characterized in that some locations in the memory are used as dedicated locations for storing the number of times writing to the memory device has occurred.
JP57098308A 1982-06-08 1982-06-08 Non-volatile memory device Pending JPS58215795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098308A JPS58215795A (en) 1982-06-08 1982-06-08 Non-volatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098308A JPS58215795A (en) 1982-06-08 1982-06-08 Non-volatile memory device

Publications (1)

Publication Number Publication Date
JPS58215795A true JPS58215795A (en) 1983-12-15

Family

ID=14216291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098308A Pending JPS58215795A (en) 1982-06-08 1982-06-08 Non-volatile memory device

Country Status (1)

Country Link
JP (1) JPS58215795A (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151697A (en) * 1984-08-21 1986-03-14 Meidensha Electric Mfg Co Ltd Data storing in nonvolatile memory
JPS6159692A (en) * 1984-08-29 1986-03-27 Omron Tateisi Electronics Co Memory card system
JPS6252796A (en) * 1985-09-02 1987-03-07 Canon Inc Memory access controller
JPS62145600A (en) * 1985-12-20 1987-06-29 Fujitsu Ltd Memory device
JPH04248646A (en) * 1990-12-28 1992-09-04 Internatl Business Mach Corp <Ibm> Durable control for solid file
US5268870A (en) * 1988-06-08 1993-12-07 Eliyahou Harari Flash EEPROM system and intelligent programming and erasing methods therefor
US5544119A (en) * 1992-10-30 1996-08-06 Intel Corporation Method for assuring that an erase process for a memory array has been properly completed
US5544356A (en) * 1990-12-31 1996-08-06 Intel Corporation Block-erasable non-volatile semiconductor memory which tracks and stores the total number of write/erase cycles for each block
US5554553A (en) * 1988-06-08 1996-09-10 Harari; Eliyahou Highly compact EPROM and flash EEPROM devices
US5602987A (en) * 1989-04-13 1997-02-11 Sandisk Corporation Flash EEprom system
US5630093A (en) * 1990-12-31 1997-05-13 Intel Corporation Disk emulation for a non-volatile semiconductor memory utilizing a mapping table
US5765175A (en) * 1994-08-26 1998-06-09 Intel Corporation System and method for removing deleted entries in file systems based on write-once or erase-slowly media
US5838614A (en) * 1995-07-31 1998-11-17 Lexar Microsystems, Inc. Identification and verification of a sector within a block of mass storage flash memory
US5907856A (en) * 1995-07-31 1999-05-25 Lexar Media, Inc. Moving sectors within a block of information in a flash memory mass storage architecture
US5930815A (en) * 1995-07-31 1999-07-27 Lexar Media, Inc. Moving sequential sectors within a block of information in a flash memory mass storage architecture
US5928370A (en) * 1997-02-05 1999-07-27 Lexar Media, Inc. Method and apparatus for verifying erasure of memory blocks within a non-volatile memory structure
US6034897A (en) * 1999-04-01 2000-03-07 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6076137A (en) * 1997-12-11 2000-06-13 Lexar Media, Inc. Method and apparatus for storing location identification information within non-volatile memory devices
US6081878A (en) * 1997-03-31 2000-06-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6081447A (en) * 1991-09-13 2000-06-27 Western Digital Corporation Wear leveling techniques for flash EEPROM systems
US6115785A (en) * 1995-07-31 2000-09-05 Lexar Media, Inc. Direct logical block addressing flash memory mass storage architecture
US6122195A (en) * 1997-03-31 2000-09-19 Lexar Media, Inc. Method and apparatus for decreasing block write operation times performed on nonvolatile memory
US6125435A (en) * 1995-09-13 2000-09-26 Lexar Media, Inc. Alignment of cluster address to block addresses within a semiconductor non-volatile mass storage memory
US6141249A (en) * 1999-04-01 2000-10-31 Lexar Media, Inc. Organization of blocks within a nonvolatile memory unit to effectively decrease sector write operation time
US6262918B1 (en) 1999-04-01 2001-07-17 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6374337B1 (en) 1998-11-17 2002-04-16 Lexar Media, Inc. Data pipelining method and apparatus for memory control circuit
US6411546B1 (en) 1997-03-31 2002-06-25 Lexar Media, Inc. Nonvolatile memory using flexible erasing methods and method and system for using same
US6462992B2 (en) 1989-04-13 2002-10-08 Sandisk Corporation Flash EEprom system
US6567307B1 (en) 2000-07-21 2003-05-20 Lexar Media, Inc. Block management for mass storage
US6728851B1 (en) 1995-07-31 2004-04-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6757800B1 (en) 1995-07-31 2004-06-29 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6801979B1 (en) 1995-07-31 2004-10-05 Lexar Media, Inc. Method and apparatus for memory control circuit
US6813678B1 (en) 1998-01-22 2004-11-02 Lexar Media, Inc. Flash memory system
US6898662B2 (en) 2001-09-28 2005-05-24 Lexar Media, Inc. Memory system sectors
US7120729B2 (en) 2002-10-28 2006-10-10 Sandisk Corporation Automated wear leveling in non-volatile storage systems
US9213606B2 (en) 2002-02-22 2015-12-15 Micron Technology, Inc. Image rescue
US9576154B2 (en) 2004-04-30 2017-02-21 Micron Technology, Inc. Methods of operating storage systems including using a key to determine whether a password can be changed
CN111370048A (en) * 2018-12-25 2020-07-03 北京兆易创新科技股份有限公司 Method and device for processing programming state of nonvolatile memory

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121427A (en) * 1977-03-31 1978-10-23 Toshiba Corp Electronic computer
JPS5564698A (en) * 1978-11-09 1980-05-15 Fujitsu Ltd Information saving system
JPS55143630A (en) * 1979-04-26 1980-11-10 Postalia Gmbh Electrically controlled postage device
JPS5671885A (en) * 1979-11-15 1981-06-15 Nec Corp Semiconductor memory
JPS57135498A (en) * 1981-02-16 1982-08-21 Nec Corp Semiconductor memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121427A (en) * 1977-03-31 1978-10-23 Toshiba Corp Electronic computer
JPS5564698A (en) * 1978-11-09 1980-05-15 Fujitsu Ltd Information saving system
JPS55143630A (en) * 1979-04-26 1980-11-10 Postalia Gmbh Electrically controlled postage device
JPS5671885A (en) * 1979-11-15 1981-06-15 Nec Corp Semiconductor memory
JPS57135498A (en) * 1981-02-16 1982-08-21 Nec Corp Semiconductor memory

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151697A (en) * 1984-08-21 1986-03-14 Meidensha Electric Mfg Co Ltd Data storing in nonvolatile memory
JPS6159692A (en) * 1984-08-29 1986-03-27 Omron Tateisi Electronics Co Memory card system
JPS6252796A (en) * 1985-09-02 1987-03-07 Canon Inc Memory access controller
JPS62145600A (en) * 1985-12-20 1987-06-29 Fujitsu Ltd Memory device
US5909390A (en) * 1988-06-08 1999-06-01 Harari; Eliyahou Techniques of programming and erasing an array of multi-state flash EEPROM cells including comparing the states of the cells to desired values
US5835415A (en) * 1988-06-08 1998-11-10 Harari; Eliyahou Flash EEPROM memory systems and methods of using them
US5434825A (en) * 1988-06-08 1995-07-18 Harari; Eliyahou Flash EEPROM system cell array with more than two storage states per memory cell
US5544118A (en) * 1988-06-08 1996-08-06 Harari; Eliyahou Flash EEPROM system cell array with defect management including an error correction scheme
US5268870A (en) * 1988-06-08 1993-12-07 Eliyahou Harari Flash EEPROM system and intelligent programming and erasing methods therefor
US5862081A (en) * 1988-06-08 1999-01-19 Harari; Eliyahou Multi-state flash EEPROM system with defect management including an error correction scheme
US5554553A (en) * 1988-06-08 1996-09-10 Harari; Eliyahou Highly compact EPROM and flash EEPROM devices
US5568439A (en) * 1988-06-08 1996-10-22 Harari; Eliyahou Flash EEPROM system which maintains individual memory block cycle counts
US5583812A (en) * 1988-06-08 1996-12-10 Harari; Eliyahou Flash EEPROM system cell array with more than two storage states per memory cell
US5963480A (en) * 1988-06-08 1999-10-05 Harari; Eliyahou Highly compact EPROM and flash EEPROM devices
US5712819A (en) * 1988-06-08 1998-01-27 Harari; Eliyahou Flash EEPROM system with storage of sector characteristic information within the sector
US5642312A (en) * 1988-06-08 1997-06-24 Harari; Eliyahou Flash EEPROM system cell array with more than two storage states per memory cell
US5602987A (en) * 1989-04-13 1997-02-11 Sandisk Corporation Flash EEprom system
US5719808A (en) * 1989-04-13 1998-02-17 Sandisk Corporation Flash EEPROM system
US6373747B1 (en) 1989-04-13 2002-04-16 Sandisk Corporation Flash EEprom system
US8040727B1 (en) 1989-04-13 2011-10-18 Sandisk Corporation Flash EEprom system with overhead data stored in user data sectors
US7460399B1 (en) 1989-04-13 2008-12-02 Sandisk Corporation Flash EEprom system
US6462992B2 (en) 1989-04-13 2002-10-08 Sandisk Corporation Flash EEprom system
US5999446A (en) * 1989-04-13 1999-12-07 Sandisk Corporation Multi-state flash EEprom system with selective multi-sector erase
US5936971A (en) * 1989-04-13 1999-08-10 Sandisk Corporation Multi-state flash EEprom system with cache memory
JPH04248646A (en) * 1990-12-28 1992-09-04 Internatl Business Mach Corp <Ibm> Durable control for solid file
US5630093A (en) * 1990-12-31 1997-05-13 Intel Corporation Disk emulation for a non-volatile semiconductor memory utilizing a mapping table
US5592669A (en) * 1990-12-31 1997-01-07 Intel Corporation File structure for a non-volatile block-erasable semiconductor flash memory
US5544356A (en) * 1990-12-31 1996-08-06 Intel Corporation Block-erasable non-volatile semiconductor memory which tracks and stores the total number of write/erase cycles for each block
US6850443B2 (en) 1991-09-13 2005-02-01 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US7353325B2 (en) 1991-09-13 2008-04-01 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US6594183B1 (en) 1991-09-13 2003-07-15 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US6230233B1 (en) 1991-09-13 2001-05-08 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US6081447A (en) * 1991-09-13 2000-06-27 Western Digital Corporation Wear leveling techniques for flash EEPROM systems
US5544119A (en) * 1992-10-30 1996-08-06 Intel Corporation Method for assuring that an erase process for a memory array has been properly completed
US5765175A (en) * 1994-08-26 1998-06-09 Intel Corporation System and method for removing deleted entries in file systems based on write-once or erase-slowly media
US6115785A (en) * 1995-07-31 2000-09-05 Lexar Media, Inc. Direct logical block addressing flash memory mass storage architecture
US6223308B1 (en) 1995-07-31 2001-04-24 Lexar Media, Inc. Identification and verification of a sector within a block of mass STO rage flash memory
US6128695A (en) * 1995-07-31 2000-10-03 Lexar Media, Inc. Identification and verification of a sector within a block of mass storage flash memory
US5838614A (en) * 1995-07-31 1998-11-17 Lexar Microsystems, Inc. Identification and verification of a sector within a block of mass storage flash memory
US5907856A (en) * 1995-07-31 1999-05-25 Lexar Media, Inc. Moving sectors within a block of information in a flash memory mass storage architecture
US6145051A (en) * 1995-07-31 2000-11-07 Lexar Media, Inc. Moving sectors within a block of information in a flash memory mass storage architecture
US6172906B1 (en) 1995-07-31 2001-01-09 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6728851B1 (en) 1995-07-31 2004-04-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US5930815A (en) * 1995-07-31 1999-07-27 Lexar Media, Inc. Moving sequential sectors within a block of information in a flash memory mass storage architecture
US6912618B2 (en) 1995-07-31 2005-06-28 Lexar Media, Inc. Direct logical block addressing flash memory mass storage architecture
US6393513B2 (en) 1995-07-31 2002-05-21 Lexar Media, Inc. Identification and verification of a sector within a block of mass storage flash memory
US6801979B1 (en) 1995-07-31 2004-10-05 Lexar Media, Inc. Method and apparatus for memory control circuit
US6757800B1 (en) 1995-07-31 2004-06-29 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6125435A (en) * 1995-09-13 2000-09-26 Lexar Media, Inc. Alignment of cluster address to block addresses within a semiconductor non-volatile mass storage memory
US5928370A (en) * 1997-02-05 1999-07-27 Lexar Media, Inc. Method and apparatus for verifying erasure of memory blocks within a non-volatile memory structure
US6587382B1 (en) 1997-03-31 2003-07-01 Lexar Media, Inc. Nonvolatile memory using flexible erasing methods and method and system for using same
US6122195A (en) * 1997-03-31 2000-09-19 Lexar Media, Inc. Method and apparatus for decreasing block write operation times performed on nonvolatile memory
US6411546B1 (en) 1997-03-31 2002-06-25 Lexar Media, Inc. Nonvolatile memory using flexible erasing methods and method and system for using same
US6081878A (en) * 1997-03-31 2000-06-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6327639B1 (en) 1997-12-11 2001-12-04 Lexar Media, Inc. Method and apparatus for storing location identification information within non-volatile memory devices
US6076137A (en) * 1997-12-11 2000-06-13 Lexar Media, Inc. Method and apparatus for storing location identification information within non-volatile memory devices
US6813678B1 (en) 1998-01-22 2004-11-02 Lexar Media, Inc. Flash memory system
US6374337B1 (en) 1998-11-17 2002-04-16 Lexar Media, Inc. Data pipelining method and apparatus for memory control circuit
US6141249A (en) * 1999-04-01 2000-10-31 Lexar Media, Inc. Organization of blocks within a nonvolatile memory unit to effectively decrease sector write operation time
US6262918B1 (en) 1999-04-01 2001-07-17 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6034897A (en) * 1999-04-01 2000-03-07 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6134151A (en) * 1999-04-01 2000-10-17 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6567307B1 (en) 2000-07-21 2003-05-20 Lexar Media, Inc. Block management for mass storage
US6898662B2 (en) 2001-09-28 2005-05-24 Lexar Media, Inc. Memory system sectors
US9213606B2 (en) 2002-02-22 2015-12-15 Micron Technology, Inc. Image rescue
US7120729B2 (en) 2002-10-28 2006-10-10 Sandisk Corporation Automated wear leveling in non-volatile storage systems
US7552272B2 (en) 2002-10-28 2009-06-23 Sandisk Corporation Automated wear leveling in non-volatile storage systems
US9576154B2 (en) 2004-04-30 2017-02-21 Micron Technology, Inc. Methods of operating storage systems including using a key to determine whether a password can be changed
US10049207B2 (en) 2004-04-30 2018-08-14 Micron Technology, Inc. Methods of operating storage systems including encrypting a key salt
CN111370048A (en) * 2018-12-25 2020-07-03 北京兆易创新科技股份有限公司 Method and device for processing programming state of nonvolatile memory

Similar Documents

Publication Publication Date Title
JPS58215795A (en) Non-volatile memory device
JPS58215794A (en) Non-volatile memory device
US8797798B2 (en) Flash EEPROM system with simultaneous multiple data sector programming and storage of physical block characteristics in other designated blocks
US5930167A (en) Multi-state non-volatile flash memory capable of being its own two state write cache
KR100896698B1 (en) Techniques for operating non-volatile memory systems with data sectors having different sizes than the sizes of the pages and/or blocks of the memory
US7155559B1 (en) Flash memory architecture with separate storage of overhead and user data
US20050050261A1 (en) High density flash memory with high speed cache data interface
EP0973095A1 (en) A single chip embedded microcontroller with flash eprom and error check and correction system
JP5603448B2 (en) Semiconductor device
US5455800A (en) Apparatus and a method for improving the program and erase performance of a flash EEPROM memory array
US7228377B2 (en) Semiconductor integrated circuit device, IC card, and mobile terminal
JP3796063B2 (en) Non-volatile memory writing circuit
JPH01220300A (en) Nonvolatile semiconductor memory