JPS58215794A - Non-volatile memory device - Google Patents

Non-volatile memory device

Info

Publication number
JPS58215794A
JPS58215794A JP57098307A JP9830782A JPS58215794A JP S58215794 A JPS58215794 A JP S58215794A JP 57098307 A JP57098307 A JP 57098307A JP 9830782 A JP9830782 A JP 9830782A JP S58215794 A JPS58215794 A JP S58215794A
Authority
JP
Japan
Prior art keywords
block
program
memory
unit block
memory device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57098307A
Other languages
Japanese (ja)
Other versions
JPH0552000B2 (en
Inventor
Noriyuki Tanaka
宣幸 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP57098307A priority Critical patent/JPS58215794A/en
Publication of JPS58215794A publication Critical patent/JPS58215794A/en
Publication of JPH0552000B2 publication Critical patent/JPH0552000B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles
    • G11C16/3495Circuits or methods to detect or delay wearout of nonvolatile EPROM or EEPROM memory devices, e.g. by counting numbers of erase or reprogram cycles, by using multiple memory areas serially or cyclically
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/349Arrangements for evaluating degradation, retention or wearout, e.g. by counting erase cycles

Abstract

PURPOSE:To decrease the number of times of replacement of a memory and to improve the reliability, by splitting a non-volatile memory having a storage capacity of plural times of that of a system to each block and providing an exclusive location of the number of times of write for each unit block. CONSTITUTION:A storage area of an EEPROM having a capacity >=2 times the capacity requested to the system is splitted to blocks 1 and 2, and the direction of split is taken in the direction of word arrangement. Exclusive locations 3, 4 to store the number of times of program write to the corresponding memory are allocated to the blocks 1, 2 respectively, and the number of bits of each location corresponds to the limit value of the number of times of program write of the corresponding memory. When the number of times of program write of the block 1 reaches a specified value, the block is used switchingly. Whether or not the number of times of write reaches the specified value is discriminated with a count value stored to the locations 3, 4.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は不揮鏑性メモリ装置、特に電気的にプログラム
可能な半導体不揮発生メモリ装置に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to non-volatile memory devices, and more particularly to electrically programmable semiconductor non-volatile memory devices.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体不揮発性メモリはMO8形FETを利用して蓄積
電荷の量により2値情報を記憶させるようにしたもので
、電源心圧を印加しなくても記憶内容を保持できるとい
う特徴を有する。
Semiconductor nonvolatile memory uses MO8 type FETs to store binary information depending on the amount of accumulated charge, and has the characteristic that stored contents can be retained without applying power source heart pressure.

かかる不揮発性メモリには種々のものがあるが。There are various types of such nonvolatile memory.

今までのところ、いわゆるUV−EPROM (Ult
ra Vlolet−Erasable &+’Pro
gramable ROM)が多く使用されている0こ
の[JV−EPROMは記憶内容を消去するのに紫外線
を照射して行うものであるが、僅込み、消去に際しては
回路から朋外さなければならないという不都合がある。
So far, so-called UV-EPROM (Ult
ra Vlolet-Erasable &+'Pro
gramable ROM) is often used in this [JV-EPROM], memory contents are erased by irradiation with ultraviolet rays, but this has the disadvantage of having to be removed from the circuit for erasing. be.

そこで最近脚光を浴びているのがEEFROM(Ele
ctrically Erasable & Prog
ramableROM )である。このKEPROMは
実装の状態のまま別途設けた曹込み、消去装置によシ自
由に消去書込みを行うことができるという長所を有して
いるため、記憶内容の変更が頻発するようなシステム、
例えば金銭登録機などには最適である。
EEFROM (ELE) has recently been in the spotlight.
Critically Erasable & Prog
ramableROM). This KEPROM has the advantage of being able to be freely erased and written to using a separately provided eraser and eraser while it is in the mounted state, so it is suitable for systems where the memory contents are frequently changed.
For example, it is ideal for cash registers.

一方、EEFROM は通常のスタティックRAMと組
み合わせて構成される不揮発性RAMにも用いられる。
On the other hand, EEFROM is also used as a non-volatile RAM configured in combination with a normal static RAM.

この不揮発性RAMは同容量のスタティックRAMとE
EPROMとで構成され、′電源投入中において通常の
RAMとして動作させ、′電源のしゃ断面前にスタティ
ックRA、 Mに格納されている内容を−fiEFPR
OMへ移してそのまま保持しておべ、電源の再投入後に
E EPROM側から再びスタティックRAMへ戻すよ
うにして不揮発性を確保するものである。
This non-volatile RAM has the same capacity as static RAM.
It is composed of an EPROM and operates as a normal RAM while the power is turned on, and the contents stored in the static RA and M are transferred to the -fiEFPR before the power is turned off.
The data can be transferred to the OM and held as is, and after the power is turned on again, it can be returned from the EEPROM side to the static RAM to ensure non-volatility.

かかるF2EFROMが有する問題点は、書込みに際し
て高′疏圧を印加する必要があるため記憶内容の変更、
すなわちプログラム回数が制限されることである。現在
のところ、プログラム回数の限度は一般に1000〜1
0000回程度であるとされている。
The problem with such F2EFROM is that it is necessary to apply high pressure when writing, so it is difficult to change the stored contents.
In other words, the number of times the program can be performed is limited. Currently, the limit for the number of programs is generally 1000 to 1
It is said to be about 0,000 times.

使用に際してはこの制限回数を絶対に守らなければなら
ない。限度を越えた場合の記憶内容はその信頼性におい
て全く保証の限シではないからである0 ここで、EEPROMの動作原理ならびにプログラム回
数が制限される理由について説明する。第1図は・代表
的なEEPROMの1セルについての断面図であり、(
a)はプログラムの書込時の状態、(b)は消去時の状
態をそれぞれ示している。第1図において、P形St基
板IO上には第1層ポリシリコンの第1成極11、第2
層ポリシリコンのフローティングゲート12、第3層ポ
リシリコンの第2電極(書込み、消去用)がStO,絶
縁層14とともに設けられている。フローティングゲー
ト12は第1′蹴極11と第2′[を極13との間にフ
ローティング(すなわち、浮遊)状態で配置されている
This limit must be strictly observed when using the product. This is because there is no guarantee of the reliability of the stored contents if the limit is exceeded.Here, the operating principle of the EEPROM and the reason why the number of programs can be limited will be explained. Figure 1 is a cross-sectional view of one cell of a typical EEPROM.
(a) shows the state when writing a program, and (b) shows the state when erasing. In FIG. 1, on a P-type St substrate IO, there are a first polarization 11 of the first layer polysilicon, a second polarization 11 of the first layer polysilicon,
A floating gate 12 made of layer polysilicon and a second electrode (for writing and erasing) made of third layer polysilicon are provided together with StO and an insulating layer 14. The floating gate 12 is arranged in a floating state between the first kicking pole 11 and the second kicking pole 13.

プログラムする場合(第1図(a)参照)、第1′電極
11を0(V:)又はアース電位に固定し、第2電41
@、t3に正の旨′岐位十Vを印加する。このとき フ
ローティングゲート17の′I戎位も第2′1E極13
との静電結合により正の畠ti’t;位十Vまで上昇す
る。すると、フローティングゲート12と第1電極11
との間に高電界が発生し、トンネル効果により第1電極
11からフローティングゲート12に向って電子が移動
し、その電子はフローティングゲート12に補獲される
。電子が十分に補獲された状態で第2電極13の電位1
o(V〕に戻し、プログラム動作を終了する。この状態
ではフローティングゲート12の電位は負の電位となっ
ている。電子を補獲しているからである。
When programming (see FIG. 1(a)), the first electrode 11 is fixed at 0 (V:) or ground potential, and the second electrode 41
A positive voltage of 10 V is applied to t3. At this time, the 'I' position of the floating gate 17 is also the 2'1E pole 13.
Due to the electrostatic coupling with the positive voltage, the voltage rises to about 10 V. Then, the floating gate 12 and the first electrode 11
A high electric field is generated between the first electrode 11 and the floating gate 12, and electrons move from the first electrode 11 toward the floating gate 12 due to the tunnel effect, and the electrons are captured by the floating gate 12. When the electrons are sufficiently captured, the potential of the second electrode 13 is 1.
o (V) and completes the programming operation. In this state, the potential of the floating gate 12 is a negative potential because electrons are being captured.

次に、消去する場合(第1図(b)参照)について述べ
る。まず、このセルはすでにプログラムされ、フローテ
ィングゲート12には電子が補獲されているものとする
。第1離極11を0〔v〕に固定し、フローティングゲ
ート12をo(V)とし、第2電極13に+Vの電圧を
印加する。すると、フローティングゲ−)12と第2眠
極13との間に高電界が発生し、フローティングゲート
12に補獲されていた電子はトンネル効果によりSI絶
縁層14を抜けて第2電極13へ追い出される。捕獲電
子が存在しなくなった状態で消去動作は終了【7、第2
電極13を0〔v〕に戻す。
Next, the case of erasing (see FIG. 1(b)) will be described. First, it is assumed that this cell has already been programmed and the floating gate 12 has captured electrons. The first polarization 11 is fixed at 0 [V], the floating gate 12 is set to o (V), and a voltage of +V is applied to the second electrode 13. Then, a high electric field is generated between the floating gate 12 and the second sleeping electrode 13, and the electrons captured by the floating gate 12 are expelled through the SI insulating layer 14 to the second electrode 13 due to the tunnel effect. It will be done. The erase operation ends when there are no captured electrons [7.
Return the electrode 13 to 0 [V].

以上かられかるように、フローティングゲート12に電
子が補獲されて負の電位になっている状態がプログラム
状態であり、その逆が消去状態である。これら2つの状
態がメモリ外部での信号論理型1“、′0“に対応する
。ただし、プログラム状態が論理型1“となるか、消去
状態が10“となるかは一義的には定まらない。周辺装
置との関係で決まるものだからである。
As can be seen from the above, the state in which the floating gate 12 captures electrons and has a negative potential is the programmed state, and the opposite is the erased state. These two states correspond to signal logic types 1", '0" outside the memory. However, it is not univocally determined whether the programmed state is the logic type 1'' or the erased state is the logical type 10''. This is because it is determined by the relationship with peripheral devices.

以上のEEPROMにおいて、プログラム回数が制限さ
れる原因はグログラムに際して第2電極13に高電圧を
印加し、トンネル効果により第1Ill、極11からフ
ローティングゲート12に電子を移動させることにある
。つまり、電子は第1′電極11とフローティングゲー
)12間のSin、絶縁層を突抜けて移動するためにス
トレスが加わり、絶縁層が劣化しまうからである。なお
、誹に消去状態にあるセルに消去動作を加えたり、既に
書込状態にあるセルに引込動作を行ってもセルにはそれ
ほどのストレスは加わらないので劣化の発生割合はきわ
めて少ない。
In the EEPROM described above, the reason why the number of programs is limited is that a high voltage is applied to the second electrode 13 during programming, and electrons are moved from the first electrode 11 to the floating gate 12 by a tunnel effect. In other words, the electrons pass through the insulating layer between the first electrode 11 and the floating gate 12, causing stress and deteriorating the insulating layer. Note that even if an erase operation is performed on a cell that is in an erased state, or a pull-in operation is performed on a cell that is already in a written state, no significant stress is applied to the cell, so the rate of occurrence of deterioration is extremely low.

このよりなEEPROMをプログラムの変更がひんばん
に行われるシステムに使用した場合に記憶内容を消失す
るおそれがあることは先に述べた通りである。従来では
システムの使用期間等から適当に判断し、しかるべき時
期にEEFROMを交換するという対策を講じていた0
しかし、このような使い方には信頼性という面で不安が
残り、妥轟々ものではない−すなわち、システムがユー
ザに出荷された後の部品の交換は好ましいことでは左く
、場合によっては交換が困難りこともありうる。
As mentioned above, if this flexible EEPROM is used in a system where programs are frequently changed, there is a risk that the stored contents may be lost. In the past, measures were taken to replace the EEFROM at an appropriate time based on the usage period of the system.
However, such usage leaves concerns about reliability and is not acceptable - replacing parts after the system has been shipped to the user is not desirable and may be difficult in some cases. It is also possible.

また、交換に要する手間、費用も高額なものとなる。Moreover, the labor and cost required for replacement are expensive.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は不揮発性メモリの交換回数を極力減少
し、信頼性を向上しつるメモリ装置を提供することを目
的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a memory device that reduces the number of times nonvolatile memory is replaced as much as possible and improves reliability.

〔発明の概侠〕[Overview of the invention]

上記目的を達成するために1本発明によるメモリ装置は
、当該メモリが用いられるシステムに必要とされる記憶
容量の複数倍の記憶容量を有する不揮発性メモリを用意
し、このメモリを前記必要記憶容礒ごとのブロックに記
憶エリアを分割し、−の単位ブロックが当該メモリに規
定された所定のプログラム書込回数に達しだとき他の単
位ブロックに順次切換えるようにし、プログラム書込回
数に達したことを知るために各単位ブロックに当該単位
ブロックへのプログラム書込回数を記憶する専用ロケー
ションが設けられている点に特徴を有する。
In order to achieve the above object, a memory device according to the present invention prepares a non-volatile memory having a storage capacity multiple times the storage capacity required for the system in which the memory is used, and converts this memory into the required storage capacity. The storage area is divided into blocks for each unit, and when the - unit block reaches a predetermined number of program writes specified in the memory, it is sequentially switched to other unit blocks, and the number of program writes is reached. The system is characterized in that each unit block is provided with a dedicated location for storing the number of times a program has been written to the unit block.

〔発明の効果〕〔Effect of the invention〕

かかる構成を有する本発明によれば、プログラム書込回
数が限定回数に瞳するごとにメモリチップを交換する必
要がなく、また各専用ロケーションにより限定回数を知
ることができるので記憶内容を消失するようなことがな
く信頼性を確保しうる。
According to the present invention having such a configuration, there is no need to replace the memory chip every time the number of program writes reaches a limited number of times, and since the limited number of times can be known from each dedicated location, it is possible to erase the stored contents. Reliability can be ensured without any problems.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示する実施例に基づいて詳述する。 Hereinafter, the present invention will be described in detail based on illustrated embodiments.

まず、前提として、最近の半導体メモリはEgPROM
に限らず、1チップ当りの容量が急激に増加してきてお
り、チップ当りの価格はtt’tレベルではチップ当り
の記憶容量に比例するものではなく、小容肴でも人容は
でもチップ当りの単価はさほど大きな差はない0したが
って、システムに必要とされる容量よりも入手できるE
EPROMの1チツプ尚りの容量がはるかに大きなこと
はよくあることである0そこで、このような余った容量
を有効に利用することをも可能としたものである。
First, as a premise, recent semiconductor memory is EgPROM.
Not only that, but the capacity per chip has been increasing rapidly, and the price per chip is not proportional to the storage capacity per chip at the TT'T level, and the price per chip is not proportional to the storage capacity per chip. There is not much difference in unit price. Therefore, the available E
It is common for the capacity of one EPROM chip to be much larger. Therefore, it is possible to effectively utilize such extra capacity.

第2図はシステムに要求される各紙の2倍以上の芥潰を
有するEEPROMを用いた場合の例である。記憶エリ
アは第1のブロック1と第2のブロック2とに分割され
ている。分割方向は語方向に2分割とする。しだがって
、単位プロ°ツクである第1のブロック1、第2のブロ
ック2はそれぞれシステムに要求される単位容量以上の
容量を有している。
FIG. 2 shows an example in which an EEPROM having a crushing capacity of more than twice that of each paper required for the system is used. The storage area is divided into a first block 1 and a second block 2. The division direction is two divisions in the word direction. Therefore, the first block 1 and the second block 2, which are unit blocks, each have a capacity greater than the unit capacity required for the system.

第1、第2のブロック1.2にはそれぞれ当該メモリに
対するプログラム書込回数を格納しておくだめの専用ロ
ケーション3.4が割当てられている。専用ロケーショ
ン3.4のビット数は当該メモリのプログラム書込回数
の限度値に対応する数とし、対応するメモリセルを割当
てて専用ロケーション3.4をそれぞれ構成する0 次に動作を説明する。まず、要約すれば、最初に第1の
ブロック1を用い、そのプログラム書込回数が規定値に
達すると、切換えて第2のブロック2を使用する。第2
のブロック2のプログラム書込回数が規定値に達すると
、当該EEPROMは交換しなければならない。
Each of the first and second blocks 1.2 is assigned a dedicated location 3.4 for storing the number of times the program has been written to the memory. The number of bits in the dedicated location 3.4 is set to be the number corresponding to the limit value of the number of times the program can be written to the memory, and the corresponding memory cells are allocated to configure the dedicated location 3.4.The operation will now be described. First, to summarize, first block 1 is used, and when the number of program writes reaches a specified value, it is switched to use second block 2. Second
When the number of program writes in block 2 reaches a specified value, the EEPROM must be replaced.

プログラム語込回数が規定値に達したか否かは専用ロケ
ーション3.4に格納されたカウント値により知ること
ができる。すなわち、予め専用ロケーション3に初期値
(例えば兎0“)をセットしておく。それ以後、第1ブ
ロツク1へのプログラムの書込みが発生するごとに専用
ロケーション2を読出してその格納値を1インクリメン
トし、その1直を再び専用ロケーション3に格納する。
Whether or not the number of times the program has been written has reached a specified value can be determined from the count value stored in the dedicated location 3.4. That is, an initial value (for example, "0") is set in the dedicated location 3 in advance. After that, every time a program is written to the first block 1, the dedicated location 2 is read and the stored value is incremented by 1. Then, the first shift is stored again in the dedicated location 3.

次いで、専用ロケーション3以外の記憶エリアにプログ
ラムを書込む。なお、インクリメント動作を先にするか
、′鋳込みを先((するかは設計上の問題である。
Next, the program is written to a storage area other than dedicated location 3. It should be noted that it is a design issue whether to perform the increment operation first or the casting operation first.

ところで、EEPROMfC1d1語単位で消去、書込
み(つまり、内容変更)が可能な第1のタイプと、消去
は全語でしかできず書込みのみ1鎖車位に可能な第2の
タイプとがある。
By the way, there is a first type in which EEPROMfC1d can be erased and written (that is, content can be changed) in units of one word, and a second type in which erasing can be performed only in whole words and writing can only be done in one chain position.

第1のタイプのEEPROMの場合、例えば第1のブロ
ック1の使用中における未使用領域である第2のブロッ
ク2は1鎖車位で内容変更できるため全く劣化されない
、したがって、例えば当該EEPROMに規定されるプ
ログラム回数が5000回とすると、第1のブロック1
で5000回、第2のブロック2で5000回の合計1
0000回のプログラム変更が可能となる。
In the case of the first type of EEPROM, for example, the second block 2, which is an unused area while the first block 1 is in use, is not deteriorated at all because the contents can be changed at the first chain position. Assuming that the number of programs to be executed is 5000, the first block 1
5000 times in the second block 2, total 1
The program can be changed 0000 times.

第2のタイプのEEPROMの場合、書込み時において
は1鎖車位で行われるため劣化は生じないが、消去時に
は全語(すなわち、第1、第2の両ブロック1.2同時
に)行われるため、未使用領域である第2のブロック2
も消去動作が行われるので厳密にいえば若干の劣化はあ
りうる。しかし消去時の劣化J/′i書込み時の劣化に
比べて著しく少ないものである。例えば、当該EEFR
OMに規定されるプログラム回数が5000回とすると
、第1のブロック1で5000回、第2のブロック2で
は第1のブロック1での消去動作を考慮して4000回
とすると、合計9000回のプログラム変更が可能とな
る。
In the case of the second type of EEPROM, when writing is performed at the 1st chain position, no deterioration occurs, but when erasing, all words are written (that is, both the first and second blocks 1.2 at the same time). Second block 2 which is unused area
Strictly speaking, there may be some deterioration since the erase operation is also performed. However, the deterioration during erasing J/'i is significantly less than the deterioration during writing. For example, the EEFR
Assuming that the number of programs specified in the OM is 5,000, the first block 1 is programmed 5,000 times, and the second block 2 is programmed 4,000 times considering the erase operation in the first block 1, for a total of 9,000 times. Program changes are possible.

第3図は通常のRAMとEEFROMとを組み合せて構
成した不揮発性RAMに本発明を適用した例を示すブロ
ック図である。第3図において、5はRAMを示してお
り、第1のブロック6と第2のブロック7に分割されて
おり、各ブロック6゜7はEEPROM+7)第1ブロ
ツク1、第2ブロツク2にそれぞれ対応する記憶容量を
有しているものとする。また各ブロック6.7にはそれ
ぞれ専用ロケーション8.9が設けられている。RA 
M 5 F1通常のシステム動作において、各種情報が
書込まれたり、読出されたりするもので、例えばシステ
ムの′電源OFF時にRAM5からその内容をEEPR
OM側ヘスドアして保持する。
FIG. 3 is a block diagram showing an example in which the present invention is applied to a nonvolatile RAM constructed by combining a normal RAM and an EEFROM. In FIG. 3, 5 indicates a RAM, which is divided into a first block 6 and a second block 7, each block 6 and 7 corresponding to the EEPROM+7) first block 1 and second block 2, respectively. It is assumed that the storage capacity is as follows. Each block 6.7 is also provided with a dedicated location 8.9. R.A.
M5 F1 In normal system operation, various information is written and read. For example, when the system's power is turned off, the contents are transferred from RAM5 to EEPR.
Close the door to the OM side and hold.

まず、第1のブロック6と1との関係で使用するものと
する。専用ロケーション8には予め初期値(例えば%0
 ’)にセットされる。いま、RAM5からその格納内
容をEEPROM側ヘスドアしようとする場合、そのス
トアする直前にRAM5の専用ロケーション8を読み出
す。読出された一専用ロケーション8の内容を1インク
リメントしたのち再度専用ロケーション8に書込む。専
用ロケーション8の更新されたら、RAM5の内容をE
EFROMの第1ブロツク1へそっくり書込む0このと
き、専用ロケーション8の内容も専用ロケーション3に
博込まれることはいうまでもない。
First, it is assumed that the first blocks 6 and 1 are used in relation to each other. Dedicated location 8 has an initial value (for example, %0
') is set. Now, when attempting to store the stored contents from the RAM 5 to the EEPROM side, the dedicated location 8 of the RAM 5 is read out immediately before the storage. The contents of the read exclusive location 8 are incremented by 1 and then written to the exclusive location 8 again. When dedicated location 8 is updated, the contents of RAM 5 are
It goes without saying that the contents of the dedicated location 8 are also written to the dedicated location 3 at this time.

次に、再びRAM5を使用する場合には、EEPROM
の格納内容をそっくりそのままRAM5側に書込む(リ
コールという。)。
Next, when using RAM5 again, EEPROM
The stored contents are written in their entirety to the RAM 5 side (referred to as recall).

このようなプログラムの変更動作が規定回数に達すると
、次に使用される領域が第1のブロック6.1の関係か
ら7.2の関係に切換えられ、上述と同様の動作が行わ
れる0 以上の不揮発性RAMについても、使用されるEEPR
OMが消去、甫込みに関して前述した第1のタイプ、第
2のタイプの場合を考1ばしなければならない。第1の
タイプについては消去、書込みが1鎖車位で行われるの
で未使用領域の劣化は生じないから考えなくてよい。第
2のタイプの場合、若干の劣化があるが、プログラム回
数の限度値を少な目に設定すれば問題は々い。最も問題
となるのは、消去、書込みのいずれも全語で行われるよ
うな場合である。そのような場合にはRAM5の未使用
領域である第2のブロック6の全てに値嘔0“を書込ん
でおき、ストア時にこの′0#を曹込むようにしておく
ことで劣化を抑制することができる。
When such a program change operation reaches a predetermined number of times, the area to be used next is switched from the relationship of the first block 6.1 to the relationship of 7.2, and the same operation as described above is performed. Also for non-volatile RAM, the EEPR used is
The cases where the OM is of the first type or the second type described above regarding erasure and transfer must be considered. Regarding the first type, since erasing and writing are performed at the first chain wheel level, no deterioration of unused areas occurs, so there is no need to consider this. In the case of the second type, there is some deterioration, but if the limit value of the number of programs is set to a small value, the problem is solved. The most problematic situation occurs when erasing and writing are performed using all words. In such a case, deterioration can be suppressed by writing the value 0" into the entire second block 6, which is an unused area of the RAM 5, and saving this 0# when storing. can.

〔発明の変形例〕[Modified example of the invention]

(1)上述した各実施例ではプログラムの1寸込み発生
毎に専用ロケーション3,4又は8.9の内容を順次1
インクリメントすることで更新するものとしたが、予め
初期値として当該EEPROMに保証される最大プログ
ラム回数をプリセットしておき、プログラムの変更毎に
その内容を1デクリメントするようにしてもよい。その
ようにした場合、当該EEPROMは残り例回プログラ
ム変更が可能かを知ることができる0また規定プログラ
ム回数に達した場合に何らかの表示(例えば、CRTデ
イスプレイ、ランプに表示する等)を行なって知らしめ
るようにしたり、情報の消失を積極的に防止するために
プログラムの変更を禁止するようにしてもよい。
(1) In each of the embodiments described above, the contents of dedicated locations 3, 4, or 8.9 are sequentially changed to
Although the update is performed by incrementing, the maximum number of programs guaranteed for the EEPROM may be preset as an initial value, and the content may be decremented by 1 each time the program is changed. If this is done, the EEPROM will be able to tell whether the program can be changed for the remaining number of times.Also, when the specified number of programs has been reached, some kind of display (for example, display on the CRT display or lamp) will be displayed to let you know. Alternatively, changes to the program may be prohibited in order to proactively prevent the loss of information.

(2)  EE P ROMは2分割するものとして説
明したが、記憶すべき情報とEEPROMIチップ当知
容量との関知容量り、さらに3分割、4分割と複数に分
割してもよい。その場合には上記した実施例の構成を分
割数に応じて増加させればよい0(3)マた、E Fl
:P ROMは1チツプであるとの前提で説明したが、
それぞれ独立したEgPROMを複数用い、各チップを
本発明にいうブロックと対応させて構成してもよい。そ
の場合には、消去、書込みを単独にすることができるの
で、未使用領域の劣化を防止することが可能となる。
(2) Although the EE P ROM has been described as being divided into two parts, it may be further divided into three or four parts depending on the information to be stored and the storage capacity of the EEPROMI chip. In that case, the configuration of the above embodiment may be increased according to the number of divisions.
:The explanation was based on the assumption that P ROM is one chip, but
A plurality of independent EgPROMs may be used, and each chip may correspond to a block according to the present invention. In that case, since erasing and writing can be performed independently, it is possible to prevent unused areas from deteriorating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的な[FROMの1セルについての断面図
で、(a)はプログラムの書込状態、(b)は消去状態
を示す図、 第2図は本発明によるメモリ装置の実施例を示すブロッ
ク図、 第3図は他の実施例を示すブロック図である。 1・・・第1のブロック、2・・・第2のブロック、3
・・・専用ロケーション、4・・・専用ロケーション、
5・・・RAM、6・・・第1のブロック、7・・・第
2のブロック、8・・・専用ロケーション、9・・・専
用ロケーション。
FIG. 1 is a cross-sectional view of one cell of a typical FROM, in which (a) shows the program write state and (b) shows the erase state. FIG. 2 shows an embodiment of the memory device according to the present invention. FIG. 3 is a block diagram showing another embodiment. 1...first block, 2...second block, 3
... Dedicated location, 4... Dedicated location,
5... RAM, 6... First block, 7... Second block, 8... Dedicated location, 9... Dedicated location.

Claims (1)

【特許請求の範囲】[Claims] 眠気的にプログラム可能な不揮発性メモリ装置において
、当該メモリ装置が用いられるシステムに必要な記憶容
置を有する単位ブロックの記憶エリアを複数備え、−の
単位ブロックが当該メモリ装置に規定されたプログラム
書込回数に達したとき他の単位ブロックに順次切換える
ようにし、各単位ブロックには当該単位ブロックへのプ
ログラム書込回数を記憶する専用ロケーションが設ケラ
れていることを特徴とする不揮発性メモリ装置。
A programmable non-volatile memory device includes a plurality of unit block storage areas each having a storage capacity necessary for a system in which the memory device is used, and a - unit block stores a program program defined in the memory device. A non-volatile memory device characterized in that when the number of times a program has been written to the unit block is reached, the unit block is sequentially switched to another unit block, and each unit block is provided with a dedicated location for storing the number of times the program has been written to the unit block. .
JP57098307A 1982-06-08 1982-06-08 Non-volatile memory device Granted JPS58215794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57098307A JPS58215794A (en) 1982-06-08 1982-06-08 Non-volatile memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57098307A JPS58215794A (en) 1982-06-08 1982-06-08 Non-volatile memory device

Publications (2)

Publication Number Publication Date
JPS58215794A true JPS58215794A (en) 1983-12-15
JPH0552000B2 JPH0552000B2 (en) 1993-08-04

Family

ID=14216264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57098307A Granted JPS58215794A (en) 1982-06-08 1982-06-08 Non-volatile memory device

Country Status (1)

Country Link
JP (1) JPS58215794A (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230250A (en) * 1984-04-27 1985-11-15 Meidensha Electric Mfg Co Ltd Data processing system of nonvolatile memory
JPS61258462A (en) * 1986-05-23 1986-11-15 Hitachi Ltd Assembly of electronic component parts
JPS61265869A (en) * 1985-05-14 1986-11-25 ザイコ−ル・インコ−ポレ−テツド Electrically alterable non-volatile memory
JPS62135984A (en) * 1985-12-09 1987-06-18 Matsushita Electric Ind Co Ltd Ic card
JPS62136880A (en) * 1985-12-11 1987-06-19 Fujitsu Ltd Semiconductor memory device and manufacture of the same
JPS62283497A (en) * 1986-05-31 1987-12-09 Canon Inc Management system for of number of times of writing programmable read only memory
JPS62283496A (en) * 1986-05-31 1987-12-09 Canon Inc Management system for of number of times of writing programmable read only memory
JPS6324796U (en) * 1986-07-30 1988-02-18
JPS63181190A (en) * 1987-01-23 1988-07-26 Nippon Telegr & Teleph Corp <Ntt> Information storage method
JPS63234500A (en) * 1987-03-20 1988-09-29 Omron Tateisi Electronics Co Data protection system
JPS63292496A (en) * 1987-05-25 1988-11-29 Seiko Instr & Electronics Ltd Semiconductor nonvolatile memory device
FR2620246A1 (en) * 1987-03-31 1989-03-10 Smh Alcatel NON-VOLATILE MEMORY WITH LOW WRITING RATES AND POSTAGE MACHINE BY APPLYING
JPH03181716A (en) * 1989-12-08 1991-08-07 Sanyo Electric Co Ltd Electronically controlled apparatus
EP0455238A2 (en) * 1990-05-02 1991-11-06 DeTeMobil Deutsche Telekom MobilNet GmbH Method for increasing the utilisation period of information carriers with EEPROM
EP0544252A2 (en) * 1991-11-28 1993-06-02 Fujitsu Limited Data management system for programming-limited type semiconductor memory and IC memory card having the data management system
US5268870A (en) * 1988-06-08 1993-12-07 Eliyahou Harari Flash EEPROM system and intelligent programming and erasing methods therefor
JPH0670119A (en) * 1992-06-12 1994-03-11 Ricoh Co Ltd Facsimile equipment
JPH06302194A (en) * 1993-01-20 1994-10-28 Canon Inc Information processor
JPH06338195A (en) * 1993-05-31 1994-12-06 Nec Corp Device for managing number of writing times of electrically erasable nonvolatile memory
FR2712412A1 (en) * 1993-11-12 1995-05-19 Peugeot Safeguarding data in EEPROM microprocessor circuit in motor vehicle
US5544356A (en) * 1990-12-31 1996-08-06 Intel Corporation Block-erasable non-volatile semiconductor memory which tracks and stores the total number of write/erase cycles for each block
US5544119A (en) * 1992-10-30 1996-08-06 Intel Corporation Method for assuring that an erase process for a memory array has been properly completed
US5559956A (en) * 1992-01-10 1996-09-24 Kabushiki Kaisha Toshiba Storage system with a flash memory module
JPH08314807A (en) * 1995-05-19 1996-11-29 Fuji Xerox Co Ltd Control method for eeprom
US5602987A (en) * 1989-04-13 1997-02-11 Sandisk Corporation Flash EEprom system
US5630093A (en) * 1990-12-31 1997-05-13 Intel Corporation Disk emulation for a non-volatile semiconductor memory utilizing a mapping table
JPH1063582A (en) * 1996-08-26 1998-03-06 Jatco Corp Controller for vehicle
US5765175A (en) * 1994-08-26 1998-06-09 Intel Corporation System and method for removing deleted entries in file systems based on write-once or erase-slowly media
US5838614A (en) * 1995-07-31 1998-11-17 Lexar Microsystems, Inc. Identification and verification of a sector within a block of mass storage flash memory
US5907856A (en) * 1995-07-31 1999-05-25 Lexar Media, Inc. Moving sectors within a block of information in a flash memory mass storage architecture
JPH11190877A (en) * 1997-12-26 1999-07-13 Fuji Photo Optical Co Ltd Method for storing number of operating times of camera
US5930815A (en) * 1995-07-31 1999-07-27 Lexar Media, Inc. Moving sequential sectors within a block of information in a flash memory mass storage architecture
US5928370A (en) * 1997-02-05 1999-07-27 Lexar Media, Inc. Method and apparatus for verifying erasure of memory blocks within a non-volatile memory structure
US5963480A (en) * 1988-06-08 1999-10-05 Harari; Eliyahou Highly compact EPROM and flash EEPROM devices
JPH11274438A (en) * 1998-03-18 1999-10-08 Ricoh Co Ltd Non-volatile semiconductor storage device and its manufacture
JPH11296439A (en) * 1998-04-08 1999-10-29 Toshiba Corp Semiconductor device
US6034897A (en) * 1999-04-01 2000-03-07 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6076137A (en) * 1997-12-11 2000-06-13 Lexar Media, Inc. Method and apparatus for storing location identification information within non-volatile memory devices
US6081447A (en) * 1991-09-13 2000-06-27 Western Digital Corporation Wear leveling techniques for flash EEPROM systems
US6081878A (en) * 1997-03-31 2000-06-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6115785A (en) * 1995-07-31 2000-09-05 Lexar Media, Inc. Direct logical block addressing flash memory mass storage architecture
US6122195A (en) * 1997-03-31 2000-09-19 Lexar Media, Inc. Method and apparatus for decreasing block write operation times performed on nonvolatile memory
US6125435A (en) * 1995-09-13 2000-09-26 Lexar Media, Inc. Alignment of cluster address to block addresses within a semiconductor non-volatile mass storage memory
US6141249A (en) * 1999-04-01 2000-10-31 Lexar Media, Inc. Organization of blocks within a nonvolatile memory unit to effectively decrease sector write operation time
US6262918B1 (en) 1999-04-01 2001-07-17 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
JP2001273196A (en) * 2000-03-27 2001-10-05 Nec Corp Device and method for managing backup data
US6374337B1 (en) 1998-11-17 2002-04-16 Lexar Media, Inc. Data pipelining method and apparatus for memory control circuit
US6411546B1 (en) 1997-03-31 2002-06-25 Lexar Media, Inc. Nonvolatile memory using flexible erasing methods and method and system for using same
US6462992B2 (en) 1989-04-13 2002-10-08 Sandisk Corporation Flash EEprom system
US6567307B1 (en) 2000-07-21 2003-05-20 Lexar Media, Inc. Block management for mass storage
US6728851B1 (en) 1995-07-31 2004-04-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6757800B1 (en) 1995-07-31 2004-06-29 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6801979B1 (en) 1995-07-31 2004-10-05 Lexar Media, Inc. Method and apparatus for memory control circuit
US6813678B1 (en) 1998-01-22 2004-11-02 Lexar Media, Inc. Flash memory system
US6898662B2 (en) 2001-09-28 2005-05-24 Lexar Media, Inc. Memory system sectors
US7120729B2 (en) 2002-10-28 2006-10-10 Sandisk Corporation Automated wear leveling in non-volatile storage systems
US7492660B2 (en) 1989-04-13 2009-02-17 Sandisk Corporation Flash EEprom system
JP2011028793A (en) * 2009-07-22 2011-02-10 Toshiba Corp Semiconductor memory device
US9213606B2 (en) 2002-02-22 2015-12-15 Micron Technology, Inc. Image rescue
US9576154B2 (en) 2004-04-30 2017-02-21 Micron Technology, Inc. Methods of operating storage systems including using a key to determine whether a password can be changed
WO2018186453A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Nonvolatile memory with increased number of usable times

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3991963B2 (en) 2002-10-16 2007-10-17 株式会社デンソー Vehicle control device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671885A (en) * 1979-11-15 1981-06-15 Nec Corp Semiconductor memory
JPS5671897A (en) * 1979-11-13 1981-06-15 Sanyo Electric Co Ltd Nonvolatile storage device
JPS5860490A (en) * 1981-10-05 1983-04-09 Yamatake Honeywell Co Ltd Controlling method for memory

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671897A (en) * 1979-11-13 1981-06-15 Sanyo Electric Co Ltd Nonvolatile storage device
JPS5671885A (en) * 1979-11-15 1981-06-15 Nec Corp Semiconductor memory
JPS5860490A (en) * 1981-10-05 1983-04-09 Yamatake Honeywell Co Ltd Controlling method for memory

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230250A (en) * 1984-04-27 1985-11-15 Meidensha Electric Mfg Co Ltd Data processing system of nonvolatile memory
JPS61265869A (en) * 1985-05-14 1986-11-25 ザイコ−ル・インコ−ポレ−テツド Electrically alterable non-volatile memory
JPH0581071B2 (en) * 1985-05-14 1993-11-11 Xicor Inc
JPS62135984A (en) * 1985-12-09 1987-06-18 Matsushita Electric Ind Co Ltd Ic card
JPS62136880A (en) * 1985-12-11 1987-06-19 Fujitsu Ltd Semiconductor memory device and manufacture of the same
JPS61258462A (en) * 1986-05-23 1986-11-15 Hitachi Ltd Assembly of electronic component parts
JPS62283497A (en) * 1986-05-31 1987-12-09 Canon Inc Management system for of number of times of writing programmable read only memory
JPS62283496A (en) * 1986-05-31 1987-12-09 Canon Inc Management system for of number of times of writing programmable read only memory
JPS6324796U (en) * 1986-07-30 1988-02-18
JPS63181190A (en) * 1987-01-23 1988-07-26 Nippon Telegr & Teleph Corp <Ntt> Information storage method
JPS63234500A (en) * 1987-03-20 1988-09-29 Omron Tateisi Electronics Co Data protection system
US4984191A (en) * 1987-03-31 1991-01-08 Smh Alcatel Limited write non-volatile memory and a franking machine making use thereof
FR2620246A1 (en) * 1987-03-31 1989-03-10 Smh Alcatel NON-VOLATILE MEMORY WITH LOW WRITING RATES AND POSTAGE MACHINE BY APPLYING
JPS63292496A (en) * 1987-05-25 1988-11-29 Seiko Instr & Electronics Ltd Semiconductor nonvolatile memory device
US5712819A (en) * 1988-06-08 1998-01-27 Harari; Eliyahou Flash EEPROM system with storage of sector characteristic information within the sector
US5862081A (en) * 1988-06-08 1999-01-19 Harari; Eliyahou Multi-state flash EEPROM system with defect management including an error correction scheme
US5835415A (en) * 1988-06-08 1998-11-10 Harari; Eliyahou Flash EEPROM memory systems and methods of using them
US5268870A (en) * 1988-06-08 1993-12-07 Eliyahou Harari Flash EEPROM system and intelligent programming and erasing methods therefor
US5642312A (en) * 1988-06-08 1997-06-24 Harari; Eliyahou Flash EEPROM system cell array with more than two storage states per memory cell
US5583812A (en) * 1988-06-08 1996-12-10 Harari; Eliyahou Flash EEPROM system cell array with more than two storage states per memory cell
US5909390A (en) * 1988-06-08 1999-06-01 Harari; Eliyahou Techniques of programming and erasing an array of multi-state flash EEPROM cells including comparing the states of the cells to desired values
US5568439A (en) * 1988-06-08 1996-10-22 Harari; Eliyahou Flash EEPROM system which maintains individual memory block cycle counts
US5434825A (en) * 1988-06-08 1995-07-18 Harari; Eliyahou Flash EEPROM system cell array with more than two storage states per memory cell
US5963480A (en) * 1988-06-08 1999-10-05 Harari; Eliyahou Highly compact EPROM and flash EEPROM devices
US5544118A (en) * 1988-06-08 1996-08-06 Harari; Eliyahou Flash EEPROM system cell array with defect management including an error correction scheme
US7492660B2 (en) 1989-04-13 2009-02-17 Sandisk Corporation Flash EEprom system
US5999446A (en) * 1989-04-13 1999-12-07 Sandisk Corporation Multi-state flash EEprom system with selective multi-sector erase
US5936971A (en) * 1989-04-13 1999-08-10 Sandisk Corporation Multi-state flash EEprom system with cache memory
US6373747B1 (en) 1989-04-13 2002-04-16 Sandisk Corporation Flash EEprom system
US6462992B2 (en) 1989-04-13 2002-10-08 Sandisk Corporation Flash EEprom system
US7460399B1 (en) 1989-04-13 2008-12-02 Sandisk Corporation Flash EEprom system
US8040727B1 (en) 1989-04-13 2011-10-18 Sandisk Corporation Flash EEprom system with overhead data stored in user data sectors
US5602987A (en) * 1989-04-13 1997-02-11 Sandisk Corporation Flash EEprom system
US5719808A (en) * 1989-04-13 1998-02-17 Sandisk Corporation Flash EEPROM system
JPH03181716A (en) * 1989-12-08 1991-08-07 Sanyo Electric Co Ltd Electronically controlled apparatus
EP0455238A2 (en) * 1990-05-02 1991-11-06 DeTeMobil Deutsche Telekom MobilNet GmbH Method for increasing the utilisation period of information carriers with EEPROM
US5544356A (en) * 1990-12-31 1996-08-06 Intel Corporation Block-erasable non-volatile semiconductor memory which tracks and stores the total number of write/erase cycles for each block
US5630093A (en) * 1990-12-31 1997-05-13 Intel Corporation Disk emulation for a non-volatile semiconductor memory utilizing a mapping table
US5592669A (en) * 1990-12-31 1997-01-07 Intel Corporation File structure for a non-volatile block-erasable semiconductor flash memory
US6850443B2 (en) 1991-09-13 2005-02-01 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US6081447A (en) * 1991-09-13 2000-06-27 Western Digital Corporation Wear leveling techniques for flash EEPROM systems
US6594183B1 (en) 1991-09-13 2003-07-15 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US7353325B2 (en) 1991-09-13 2008-04-01 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
US6230233B1 (en) 1991-09-13 2001-05-08 Sandisk Corporation Wear leveling techniques for flash EEPROM systems
EP0544252A2 (en) * 1991-11-28 1993-06-02 Fujitsu Limited Data management system for programming-limited type semiconductor memory and IC memory card having the data management system
US5530827A (en) * 1991-11-28 1996-06-25 Fujitsu Limited Data management system for programming-limited type semiconductor memory and IC memory card employing data save/erase process with flag assignment
US5673383A (en) * 1992-01-10 1997-09-30 Kabushiki Kaisha Toshiba Storage system with a flash memory module
US5559956A (en) * 1992-01-10 1996-09-24 Kabushiki Kaisha Toshiba Storage system with a flash memory module
JPH0670119A (en) * 1992-06-12 1994-03-11 Ricoh Co Ltd Facsimile equipment
US5544119A (en) * 1992-10-30 1996-08-06 Intel Corporation Method for assuring that an erase process for a memory array has been properly completed
JPH06302194A (en) * 1993-01-20 1994-10-28 Canon Inc Information processor
JPH06338195A (en) * 1993-05-31 1994-12-06 Nec Corp Device for managing number of writing times of electrically erasable nonvolatile memory
FR2712412A1 (en) * 1993-11-12 1995-05-19 Peugeot Safeguarding data in EEPROM microprocessor circuit in motor vehicle
US5765175A (en) * 1994-08-26 1998-06-09 Intel Corporation System and method for removing deleted entries in file systems based on write-once or erase-slowly media
JPH08314807A (en) * 1995-05-19 1996-11-29 Fuji Xerox Co Ltd Control method for eeprom
US6115785A (en) * 1995-07-31 2000-09-05 Lexar Media, Inc. Direct logical block addressing flash memory mass storage architecture
US5838614A (en) * 1995-07-31 1998-11-17 Lexar Microsystems, Inc. Identification and verification of a sector within a block of mass storage flash memory
US6801979B1 (en) 1995-07-31 2004-10-05 Lexar Media, Inc. Method and apparatus for memory control circuit
US6757800B1 (en) 1995-07-31 2004-06-29 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6728851B1 (en) 1995-07-31 2004-04-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6128695A (en) * 1995-07-31 2000-10-03 Lexar Media, Inc. Identification and verification of a sector within a block of mass storage flash memory
US6393513B2 (en) 1995-07-31 2002-05-21 Lexar Media, Inc. Identification and verification of a sector within a block of mass storage flash memory
US5907856A (en) * 1995-07-31 1999-05-25 Lexar Media, Inc. Moving sectors within a block of information in a flash memory mass storage architecture
US6145051A (en) * 1995-07-31 2000-11-07 Lexar Media, Inc. Moving sectors within a block of information in a flash memory mass storage architecture
US6172906B1 (en) 1995-07-31 2001-01-09 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6223308B1 (en) 1995-07-31 2001-04-24 Lexar Media, Inc. Identification and verification of a sector within a block of mass STO rage flash memory
US6912618B2 (en) 1995-07-31 2005-06-28 Lexar Media, Inc. Direct logical block addressing flash memory mass storage architecture
US5930815A (en) * 1995-07-31 1999-07-27 Lexar Media, Inc. Moving sequential sectors within a block of information in a flash memory mass storage architecture
US6125435A (en) * 1995-09-13 2000-09-26 Lexar Media, Inc. Alignment of cluster address to block addresses within a semiconductor non-volatile mass storage memory
JPH1063582A (en) * 1996-08-26 1998-03-06 Jatco Corp Controller for vehicle
US5928370A (en) * 1997-02-05 1999-07-27 Lexar Media, Inc. Method and apparatus for verifying erasure of memory blocks within a non-volatile memory structure
US6411546B1 (en) 1997-03-31 2002-06-25 Lexar Media, Inc. Nonvolatile memory using flexible erasing methods and method and system for using same
US6081878A (en) * 1997-03-31 2000-06-27 Lexar Media, Inc. Increasing the memory performance of flash memory devices by writing sectors simultaneously to multiple flash memory devices
US6587382B1 (en) 1997-03-31 2003-07-01 Lexar Media, Inc. Nonvolatile memory using flexible erasing methods and method and system for using same
US6122195A (en) * 1997-03-31 2000-09-19 Lexar Media, Inc. Method and apparatus for decreasing block write operation times performed on nonvolatile memory
US6327639B1 (en) 1997-12-11 2001-12-04 Lexar Media, Inc. Method and apparatus for storing location identification information within non-volatile memory devices
US6076137A (en) * 1997-12-11 2000-06-13 Lexar Media, Inc. Method and apparatus for storing location identification information within non-volatile memory devices
JPH11190877A (en) * 1997-12-26 1999-07-13 Fuji Photo Optical Co Ltd Method for storing number of operating times of camera
US6813678B1 (en) 1998-01-22 2004-11-02 Lexar Media, Inc. Flash memory system
JPH11274438A (en) * 1998-03-18 1999-10-08 Ricoh Co Ltd Non-volatile semiconductor storage device and its manufacture
JPH11296439A (en) * 1998-04-08 1999-10-29 Toshiba Corp Semiconductor device
US6374337B1 (en) 1998-11-17 2002-04-16 Lexar Media, Inc. Data pipelining method and apparatus for memory control circuit
US6034897A (en) * 1999-04-01 2000-03-07 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6262918B1 (en) 1999-04-01 2001-07-17 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
US6141249A (en) * 1999-04-01 2000-10-31 Lexar Media, Inc. Organization of blocks within a nonvolatile memory unit to effectively decrease sector write operation time
US6134151A (en) * 1999-04-01 2000-10-17 Lexar Media, Inc. Space management for managing high capacity nonvolatile memory
JP2001273196A (en) * 2000-03-27 2001-10-05 Nec Corp Device and method for managing backup data
US6567307B1 (en) 2000-07-21 2003-05-20 Lexar Media, Inc. Block management for mass storage
US6898662B2 (en) 2001-09-28 2005-05-24 Lexar Media, Inc. Memory system sectors
US9213606B2 (en) 2002-02-22 2015-12-15 Micron Technology, Inc. Image rescue
US7120729B2 (en) 2002-10-28 2006-10-10 Sandisk Corporation Automated wear leveling in non-volatile storage systems
US7552272B2 (en) 2002-10-28 2009-06-23 Sandisk Corporation Automated wear leveling in non-volatile storage systems
US9576154B2 (en) 2004-04-30 2017-02-21 Micron Technology, Inc. Methods of operating storage systems including using a key to determine whether a password can be changed
US10049207B2 (en) 2004-04-30 2018-08-14 Micron Technology, Inc. Methods of operating storage systems including encrypting a key salt
JP2011028793A (en) * 2009-07-22 2011-02-10 Toshiba Corp Semiconductor memory device
US8687420B2 (en) 2009-07-22 2014-04-01 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory device
WO2018186453A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Nonvolatile memory with increased number of usable times
CN110392885A (en) * 2017-04-07 2019-10-29 松下知识产权经营株式会社 Increase the nonvolatile memory of access times
CN110392885B (en) * 2017-04-07 2023-08-04 松下知识产权经营株式会社 Non-volatile memory with increased number of uses

Also Published As

Publication number Publication date
JPH0552000B2 (en) 1993-08-04

Similar Documents

Publication Publication Date Title
JPS58215794A (en) Non-volatile memory device
JPS58215795A (en) Non-volatile memory device
US8797798B2 (en) Flash EEPROM system with simultaneous multiple data sector programming and storage of physical block characteristics in other designated blocks
US6141249A (en) Organization of blocks within a nonvolatile memory unit to effectively decrease sector write operation time
US6108236A (en) Smart card comprising integrated circuitry including EPROM and error check and correction system
US8850102B2 (en) Flash memory with small data programming capability
KR20070102507A (en) On-chip data grouping and alignment
JP5272013B2 (en) Semiconductor device
CN101796498A (en) Memory system
US6768675B1 (en) Stack-gate flash memory array
JP3796063B2 (en) Non-volatile memory writing circuit
KR20100065505A (en) Method for cache read of non volatile memory device
KR20100054483A (en) Non volatiel memory device
JP2000276885A (en) Write-in circuit for non-volatile memory