JPS58215070A - Planar semiconductor device and method of producing same - Google Patents

Planar semiconductor device and method of producing same

Info

Publication number
JPS58215070A
JPS58215070A JP8929583A JP8929583A JPS58215070A JP S58215070 A JPS58215070 A JP S58215070A JP 8929583 A JP8929583 A JP 8929583A JP 8929583 A JP8929583 A JP 8929583A JP S58215070 A JPS58215070 A JP S58215070A
Authority
JP
Japan
Prior art keywords
substrate
region
semiconductor device
conductivity type
planar semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8929583A
Other languages
Japanese (ja)
Inventor
フリツツ・ギユンタ−・アダム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
ITT Inc
Original Assignee
Deutsche ITT Industries GmbH
ITT Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH, ITT Industries Inc filed Critical Deutsche ITT Industries GmbH
Publication of JPS58215070A publication Critical patent/JPS58215070A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Thyristors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、ブレーナ半導体装置およびその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a Brainer semiconductor device and a manufacturing method thereof.

〔発明の技術的背景〕[Technical background of the invention]

ブレーナ構造の半導体装置、例えばブレーナトランジス
タではpnn付会破壌電圧は再ドープ領域の縁部の最小
曲率半径により、したがって結果的には壁間電荷領域の
限界の最小曲率半径によp決定さnる。接付部が扁平に
なるほど、(7tがって曲率半径が小さくなるほど破壊
電圧は低くなる。
In a semiconductor device with a Brehner structure, for example a Brehner transistor, the pnn associated breakdown voltage is determined by the minimum radius of curvature of the edge of the redoped region, and therefore ultimately by the minimum radius of curvature of the limit of the interwall charge region. nru. The flatter the joint (7t) and the smaller the radius of curvature, the lower the breakdown voltage.

そのようなpn接曾の破壌電圧はいわゆるフィールド板
によって増加できることが知らnている。こnは一拡散
領域と接触して酸化物上に設けら几縁部七部分的に葎っ
ている金属体である。
It is known that the breakdown voltage of such a pn ground can be increased by a so-called field plate. This is a metal body provided on the oxide in contact with one diffusion region and partially covering the edge of the oxide.

そのようなフィールド板ば″P4体装置の表面上の成る
程度の区域が必要であり、成る種の場合、例えば集積回
路の場合には使用することは好ましくない。何故ならば
そnに必要な区域は印刷得体に使用したい区域であるか
らである。
Such field plates require a considerable amount of area on the surface of the P4 device and are not recommended for use in some cases, such as integrated circuits, because they require This is because the area is the area that you want to use for printing.

西ドイツ公開特許公報DE−O82944937号には
拡散或はイオン注入の領域が浅くてしかも高い破壌電圧
?有するブレーナ半導体装置が記載さnている。この装
置においてはpn接倉から成る距離に配置さ几た保護リ
ングならびに絶縁層金種っている薄膜によってこの高い
破壌電圧が得ら几ている。この薄@は半絶縁性であり、
正確に区別を几た電位を持つ少なくとも2つの区域を有
している。もしも薄膜が2つの異なる電位に保持さ几る
ならば空間電荷領域は大きな曲案半径で特徴つけらnる
状態になり、そのため普通の半導体装置が高い破壌電圧
を持つことができる。
West German Published Patent Publication DE-082944937 describes a shallow diffusion or ion implantation region and a high breakdown voltage? A brainer semiconductor device having the following characteristics is described. In this device, this high breakdown voltage is achieved by means of a protective ring placed at a distance from the pn junction as well as a thin film containing an insulating layer. This thin @ is semi-insulating,
It has at least two areas with precisely differentiated potentials. If the thin film is held at two different potentials, the space charge region becomes characterized by a large radius of curvature, which allows common semiconductor devices to have high breakdown voltages.

〔発明の概要〕 この発明は、フィールド板金使用しないで、すなわち削
述の%計出区1中1τ記戦畑ハたよりもずつと簡単な方
法でpn後付の破壌電圧?増卵ざぜせる問題を解決する
ものである。
[Summary of the Invention] This invention does not use field sheet metal, that is, it is possible to calculate the breakdown voltage of pn retrofit in a simpler way than the % measurement area 1 out of 1 τ record field. This solves the problem of egg proliferation.

この発明は、基体と反対の導筒゛型を有する埃塵を半導
体基体千に配置し、そ几と同じ導電型の別の領域で環状
に取り囲み、そnらの領域のドープ不純物濃度を外卿1
の領駕・はど低くすることによって上述の間唯ケ解決す
るものである。
In this invention, dust having a conductive shape opposite to that of the substrate is placed on a semiconductor substrate, and is surrounded by another region of the same conductivity type in an annular manner to eliminate the doping impurity concentration in those regions. Lord 1
The above-mentioned problem can only be solved by lowering the territory and height of the enemy.

この発明によnはフィールド板を使用する場合より破壌
電圧を高めることが容易に可能である。
According to the present invention, it is possible to easily increase the failure voltage compared to the case where a field plate is used.

しかしながら適当な方法でこの発明全フィールド板と組
付せることも可能である。
However, it is also possible to assemble the entire field plate of the invention in a suitable manner.

〔発明の実施例〕[Embodiments of the invention]

以下添付図面を参照に実施例により詳細に説明する。 Examples will be described in detail below with reference to the accompanying drawings.

第1図煉ドーブ不糾物濃朋Noの半導体基体4を示し、
その基体中に半導体基体の導電型と反対の導電型の31
向の領域1,2..3が形成さn、でいる。半導体基体
4および憐域1,2.3>よひpnn仕付例えば510
2からなる絶縁層5で霞わnており、この杷@層5の領
域lの区域内に窓が設けらnlそこに寛換6刀S自巳置
さnている。領域3および2は領域lを囲んで環状に配
、$ ;n。
FIG. 1 shows a semiconductor substrate 4 of No.
31 of the conductivity type opposite to the conductivity type of the semiconductor body in the base body.
Direction areas 1, 2. .. 3 is formed n. Semiconductor substrate 4 and area 1, 2.3 > yohi pnn finishing example 510
A window is provided in the region l of this loquat layer 5, and a Kankan six sword S is placed therein. Regions 3 and 2 are arranged in a ring surrounding region l, $;n.

次式に対応してドープ不純物濃度が低くさ几ている。The doping impurity concentration is low corresponding to the following equation.

NO<N3<N2<N1 3個の領域全部が略々同じ深さXを有することが望まし
い。すなわちXI=X2=X3である。
NO<N3<N2<N1 It is desirable that all three regions have approximately the same depth X. That is, XI=X2=X3.

しかしながら深ざXは次式の関係になるようにすること
も可能である。
However, it is also possible to set the depth X to have the following relationship.

XI < X2 < X、3 第1図においてに9間電荷顆域(C斜暖の塁中性(qu
;+si −neutral 1区域の間にある。破壌
電圧を’[Jdとし、電圧UJ、U2.U3をUd:)
Ul)U2>U3とする。まず電圧U3が電極6に与え
ら几るとドープ不純物濃度N3の領域3のキャリアが清
掃さ几、次に電圧U2が加えら几るとドープ不純物濃度
N2の@接する領域2のキャリアが除去さfL、以下破
壌電圧U(i2で電圧の増加が行なわf′Lる。
XI < X2 <
;+si −neutral 1 between the zones. Let the failure voltage be '[Jd, and the voltages UJ, U2 . U3:)
Ul) Let U2>U3. First, when the voltage U3 is applied to the electrode 6, the carriers in the region 3 with the doped impurity concentration N3 are cleaned, and then when the voltage U2 is applied, the carriers in the contacting region 2 with the doped impurity concentration N2 are removed. fL, below the failure voltage U (the voltage increases at i2 and becomes f'L).

第2図および第3図は供鮒鵞圧に応じて空間電荷領域が
拡張さnる状態?示してぃbCそ几に結付を几ている壁
間電荷細切が情万回に拡張して増大するために破壌電圧
の増加が生じる。
Figures 2 and 3 show a state in which the space charge region expands depending on the pressure applied to the crucian carp. An increase in the breakdown voltage occurs because the wall-to-wall charge fragments that hold the bond in the cell shown in FIG.

実施例は3個の環状領域′に備えており、もちろんもつ
と多くすることも可能である。
The exemplary embodiment provides for three annular regions'; it is of course possible to have more.

環状領域の横Il@は領域の深さ、基体のドープ不純物
濃度および領域の数に依存し、5乃至20μmの範囲で
よい。個々の領域は数nが多くなるほど狭くしてよい。
The lateral Il@ of the annular region depends on the depth of the region, the doping concentration of the substrate and the number of regions, and may range from 5 to 20 μm. The individual regions may be made narrower as the number n increases.

第1図乃至第3図に示した実施例の半導体装置は次のよ
うにして製造さnる。
The semiconductor device of the embodiment shown in FIGS. 1 to 3 is manufactured as follows.

対応した寸法のマスク全使用して例えはドープ不純物濃
度Noのn型半2s体基体4中に、例えばイオン注入法
によジ領域3が形成さf6゜この後、領域3中に前より
小さい開口の新しいマスク全使用して領域2叱形取さn
、最佐に最も小きい開口のマスク全使用して領飯2内に
領域lが形成さnる。こ几らの領域に基体と反対の導電
型?有し、例えば硼素イオンのイオン注人により生成さ
fる。注入の深でおよびドーフー不純物奈度についての
粂件は深さに常に領域3のそaと寺しいか或は小さくさ
nl−万ドーフー不純′9/J濃度は領域lから領域3
に同って低くなるように辿ばnる。絶縁N5の付着に続
いて領wlの区域に開口が設けらflそこに篭僚6が取
り付けらnる。こnらの方法に通常の方法によジ行なわ
几る。
For example, by using an ion implantation method, a dielectric region 3 is formed in the n-type half-2s body substrate 4 with a doped impurity concentration of No. using all the masks of corresponding dimensions. Area 2 was removed using a new mask with all openings.
, a region l is formed in the area 2 using the entire mask with the smallest opening. Is the conductivity type opposite to that of the substrate in this area? For example, it is produced by an ion implanter of boron ions. At the depth of the implantation and the degree of impurity concentration, the depth is always as large or small as that of region 3.
If you trace it so that it becomes as low as , it will be n. Following the application of the insulation N5, an opening is provided in the area of the region fl into which the gauntlet 6 is mounted. These methods are followed by conventional methods.

第4図は第1図による半導体デ宵を示し、そn−はこの
発明による構造全具備し、さらにフィールド板7全備え
ている。
FIG. 4 shows the semiconductor device according to FIG. 1, which is equipped with the entire structure according to the invention, and further includes the entire field plate 7.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至243図はこの発明の第1の央漉例全断面図
で示し、第4図は男2の笑施例を断面図で示す。 4、・・牛4体全体、1,2..3・・・基体と反対a
亙型の領域、5・・絶#、j麹、6・・・電惨、7・・
・フィールド板。
1 to 243 are full cross-sectional views of a first example of the invention, and FIG. 4 is a cross-sectional view of a second embodiment of the invention. 4, ... 4 whole cows, 1, 2. .. 3...Opposite a to the base
亙-type area, 5...Zetsu#, J Koji, 6...Denzan, 7...
・Field board.

Claims (3)

【特許請求の範囲】[Claims] (1)  14電型の半導体基体中に少なくとも11固
のpn接曾全有し、その″?導体基体上に絶縁層が配置
さ几てそ几が半導体基体表面に出たpn接合部を蹄って
いるプレーナ半導体装置において、半導体基体中に配置
さf′Lだ基体と反対導電型の領域が1以上の基体と反
対導電型の領域により環状に囲if′lており、そnら
領域のドープ不純物濃度は外債“の領域はど低くさ几て
いること金%徴とするフーレーナ半導体装置。
(1) At least 11 pn junctions are present in a 14-electrode type semiconductor substrate, and an insulating layer is disposed on the conductive substrate, and a pn junction exposed on the surface of the semiconductor substrate is In a planar semiconductor device, a region of a conductivity type opposite to that of the substrate f'L disposed in a semiconductor substrate is annularly surrounded by one or more regions of a conductivity type opposite to that of the substrate; The doping impurity concentration is extremely low in the foreign region, which is a characteristic of Fullyna semiconductor devices.
(2)前記各領域の半導体基体中に侵入している深さが
等しいことを特徴とする特許請求の範囲果1項記載のプ
レーナ半導体装置。
(2) The planar semiconductor device according to claim 1, wherein each region penetrates the semiconductor substrate to the same depth.
(3)  所望の最大の島口全有するマスクから最小の
開口?有するマスクまで俵数個の異なるマスクを使用し
、基体と反対纒電型領域を形成するために同じ条件で不
純物ドープ濃度が順次増加するように同じ種類のイオン
を順次イオン注入すること?特徴とするプレーナ半導体
装置の製造方法。
(3) Minimum opening from mask with desired maximum island opening? Is it possible to use several different masks and sequentially implant ions of the same type so that the impurity doping concentration increases sequentially under the same conditions to form regions of conductivity type opposite to the substrate? A method for manufacturing a planar semiconductor device characterized by:
JP8929583A 1982-05-27 1983-05-23 Planar semiconductor device and method of producing same Pending JPS58215070A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE32198884 1982-05-27
DE19823219888 DE3219888A1 (en) 1982-05-27 1982-05-27 PLANAR SEMICONDUCTOR COMPONENT AND METHOD FOR PRODUCING IT

Publications (1)

Publication Number Publication Date
JPS58215070A true JPS58215070A (en) 1983-12-14

Family

ID=6164591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8929583A Pending JPS58215070A (en) 1982-05-27 1983-05-23 Planar semiconductor device and method of producing same

Country Status (3)

Country Link
EP (1) EP0095658A3 (en)
JP (1) JPS58215070A (en)
DE (1) DE3219888A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393153A (en) * 1986-10-07 1988-04-23 Toshiba Corp Manufacture of semiconductor device
JP2009044177A (en) * 1996-07-16 2009-02-26 Cree Inc SiC SEMICONDUCTOR DEVICE INCLUDING PN JUNCTION WITH VOLTAGE ABSORBING EDGE

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1214805B (en) * 1984-08-21 1990-01-18 Ates Componenti Elettron SEMICONDUCTOR WITH JUNPROCESS DEVICES FOR THE MANUFACTURE OF VARIABLE CHARGE CONCENTRATION PLANAR DIRECTIONS AND VERY HIGH BREAKDOWN VOLTAGE
DE3431811A1 (en) * 1984-08-30 1986-03-13 Philips Patentverwaltung Gmbh, 2000 Hamburg SEMICONDUCTOR TEMPERATURE SENSOR
DE3581348D1 (en) * 1984-09-28 1991-02-21 Siemens Ag METHOD FOR PRODUCING A PN TRANSITION WITH A HIGH BREAKTHROUGH VOLTAGE.
US5386136A (en) * 1991-05-06 1995-01-31 Siliconix Incorporated Lightly-doped drain MOSFET with improved breakdown characteristics
US5374843A (en) * 1991-05-06 1994-12-20 Silinconix, Inc. Lightly-doped drain MOSFET with improved breakdown characteristics
DE4119904A1 (en) * 1991-06-17 1992-12-24 Telefunken Electronic Gmbh SEMICONDUCTOR ARRANGEMENT
US6420757B1 (en) 1999-09-14 2002-07-16 Vram Technologies, Llc Semiconductor diodes having low forward conduction voltage drop, low reverse current leakage, and high avalanche energy capability
US6433370B1 (en) 2000-02-10 2002-08-13 Vram Technologies, Llc Method and apparatus for cylindrical semiconductor diodes
US6580150B1 (en) 2000-11-13 2003-06-17 Vram Technologies, Llc Vertical junction field effect semiconductor diodes
US6537921B2 (en) 2001-05-23 2003-03-25 Vram Technologies, Llc Vertical metal oxide silicon field effect semiconductor diodes
US6958275B2 (en) 2003-03-11 2005-10-25 Integrated Discrete Devices, Llc MOSFET power transistors and methods

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1764405A1 (en) * 1967-06-15 1971-07-08 Texas Instruments Inc Avalanche diode
DE1789043A1 (en) * 1967-10-14 1972-01-05 Sgs Sa Planar semiconductor devices provided with guard rings
DE2241600A1 (en) * 1971-08-26 1973-03-01 Dionics Inc HIGH VOLTAGE P-N TRANSITION AND ITS APPLICATION IN SEMICONDUCTOR SWITCHING ELEMENTS, AND THE PROCESS FOR ITS MANUFACTURING
US4038107B1 (en) * 1975-12-03 1995-04-18 Samsung Semiconductor Tele Method for making transistor structures
JPS5368581A (en) * 1976-12-01 1978-06-19 Hitachi Ltd Semiconductor device
FR2445617A1 (en) * 1978-12-28 1980-07-25 Ibm France IMPROVED BREAKDOWN VOLTAGE RESISTANCE ACHIEVED BY DOUBLE ION IMPLANTATION IN A SEMICONDUCTOR SUBSTRATE AND MANUFACTURING METHOD THEREOF
FR2450505A1 (en) * 1979-03-02 1980-09-26 Thomson Csf SEMICONDUCTOR DEVICE COMPRISING A DIFFUSED GUARD RING AND MANUFACTURING METHOD THEREOF

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393153A (en) * 1986-10-07 1988-04-23 Toshiba Corp Manufacture of semiconductor device
JPH0467781B2 (en) * 1986-10-07 1992-10-29 Tokyo Shibaura Electric Co
JP2009044177A (en) * 1996-07-16 2009-02-26 Cree Inc SiC SEMICONDUCTOR DEVICE INCLUDING PN JUNCTION WITH VOLTAGE ABSORBING EDGE
JP2013062545A (en) * 1996-07-16 2013-04-04 Cree Inc SiC SEMICONDUCTOR COMPONENT COMPRISING PN JUNCTION WITH VOLTAGE ABSORBING EDGE

Also Published As

Publication number Publication date
EP0095658A2 (en) 1983-12-07
DE3219888A1 (en) 1983-12-01
EP0095658A3 (en) 1986-12-10

Similar Documents

Publication Publication Date Title
US4926243A (en) High voltage MOS field effect semiconductor device
US4399449A (en) Composite metal and polysilicon field plate structure for high voltage semiconductor devices
US4176368A (en) Junction field effect transistor for use in integrated circuits
EP0304811B1 (en) Mos transistor
JPS58215070A (en) Planar semiconductor device and method of producing same
US6078364A (en) Liquid crystal display with high capacitance pixel
GB2087648A (en) Improvements in or relating to high voltage semiconductor devices
JP2007096341A (en) Lateral mosfet
EP0165644B1 (en) Semiconductor device having an increased breakdown voltage
US5003372A (en) High breakdown voltage semiconductor device
US20180331211A1 (en) High voltage metal oxide semiconductor device and manufacturing method thereof
JP3221489B2 (en) Insulated gate field effect transistor
JPH065692B2 (en) Semiconductor device
US4684967A (en) Low capacitance transistor cell element and transistor array
US4232328A (en) Dielectrically-isolated integrated circuit complementary transistors for high voltage use
US4412238A (en) Simplified BIFET structure
US4512815A (en) Simplified BIFET process
GB2084397A (en) Semiconductor integrated circuit
US4772568A (en) Method of making integrated circuit with pair of MOS field effect transistors sharing a common source/drain region
CN113497026B (en) SOI grid grounding MOS device structure for electrostatic protection and manufacturing method thereof
JPH0779157B2 (en) Semiconductor device
CN113497025B (en) SOI grid grounding MOS device structure for electrostatic protection and manufacturing method thereof
JPS61502087A (en) Monolithically integrated planar semiconductor device and its manufacturing method
JPH0235778A (en) Semiconductor device
JP2684712B2 (en) Field effect transistor