JPS58214281A - Nonaqueous electrolyte for lithium secondary battery - Google Patents

Nonaqueous electrolyte for lithium secondary battery

Info

Publication number
JPS58214281A
JPS58214281A JP57096921A JP9692182A JPS58214281A JP S58214281 A JPS58214281 A JP S58214281A JP 57096921 A JP57096921 A JP 57096921A JP 9692182 A JP9692182 A JP 9692182A JP S58214281 A JPS58214281 A JP S58214281A
Authority
JP
Japan
Prior art keywords
lithium
charge
electrode
nonaqueous electrolyte
discharge performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57096921A
Other languages
Japanese (ja)
Inventor
Shinichi Tobishima
真一 鳶島
Akihiko Yamaji
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP57096921A priority Critical patent/JPS58214281A/en
Publication of JPS58214281A publication Critical patent/JPS58214281A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a nonaqueous electrolyte for a lithium secondary battery in which charge-discharge performance of a lithium electrode is good by using a nitrobenzene derivative as an additive of an nonaqueous electrolyte. CONSTITUTION:In a nonaqueous electrolyte prepared by dissolving a lithium salt in an organic solvent, a nitrobenzene derivative is used as an additive of the electrolyte. By adding the derivative, charge-discharge performance of a lithium electrode is increased. Although the reason is not always clear, it presumes that when an aromatic nitrocompound is added, a Li<+> ion conductive film is formed on the lithium surface and this film effectively acts in charge-discharge performance of a Li electrode. As effective nitrocompounds, 2,4,7-trinitro-9-fluorenone, nitramine, or 5-nitrobenzotriazole is used. 10<-1>mol/l or less of a nitrobenzene is preferably added. Addition of more than 10<-1>mol/l decreases charge-discharge performance of the Li electrode.

Description

【発明の詳細な説明】 本発明は、リチウム二次″電池に用いる送′4液に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a feed liquid used in lithium secondary batteries.

リチウムを負極活物質として用いる電池は、小型・高エ
ネルギ密度を有する電池として研究されているが、その
二次化が大きな間惺点となっている。
Batteries using lithium as a negative electrode active material are being researched as small-sized batteries with high energy density, but secondaryization has become a major failure point.

二次化が可能な正伍活吻質として、V20s +LiO
2等の金属酸化・吻、’l’ iSt + WS2等の
層状化金物が、Liとの間でトポケミカルな反応をする
化合物として昶られており現在までチタン、ジルコニウ
ム、ハフニウム、ニオビウム、り/タル、バナジウムの
硫化物、セレン化吻、テルル化物を用いた電池(米国特
許第4089052号明細書参照)及びセレン化ニオビ
ウム等を用いた電池(J、 Electrochem 
aoc、 vol、 124、ム7第968頁及び第3
25貞(1977年)参照)等が開示されている。
V20s +LiO as a positive active proboscis that can be secondaryized
Layered metal materials such as metal oxides such as 2 and 'l' iSt + WS2 have been used as compounds that undergo topochemical reactions with Li. , batteries using vanadium sulfide, selenide, telluride (see U.S. Pat. No. 4,089,052) and batteries using niobium selenide (J, Electrochem)
aoc, vol, 124, mu 7, pages 968 and 3
25 Sada (1977)) etc. have been disclosed.

しかしながら、このような二仄電他用正慟活吻質の研究
に比して、LI Qの充放電#性に関する研究は元号と
はいオ、ず、Li  二仄電池実現のためには、光放′
岨効率及びサイクル寿命等の光放電特性の良好な電′I
!!液の探査が重大な向魂となっている。LI極の光放
電効率を同上させる試みとしてはLiC1o< /グロ
ビレンカーボネイトにニトロメタン、SOz、等の蚕刀
口剤を加える試み(Electrochimica。
However, compared to such research on the active properties of Li-Q batteries, research on the charging and discharging characteristics of LIQ is more important. light emission
A battery with good photodischarge characteristics such as efficiency and cycle life.
! ! Exploration of liquids has become an important goal. In an attempt to improve the photodischarge efficiency of the LI pole, an attempt was made to add a silicate agent such as nitromethane, SOz, etc. to LiC1o</globylene carbonate (Electrochimica).

Acra、Vol、 22、第75頁〜83頁(197
7))やL i C10< /メチルアセテートを用い
る試み[Ele−ctrochimica Acta、
Vol、 22、第ssa〜91頁(1977):]等
が行なわれているが、必ずしも充分とはいえず、さらに
特性の優れたリナウム二仄電池用重解液が求められてい
る。
Acra, Vol. 22, pp. 75-83 (197
7)) and Li C10 < /Methyl acetate [Ele-ctrochimica Acta,
Vol. 22, pp. SSA-91 (1977):], etc., but these are not necessarily sufficient, and there is a need for a heavy decomposition solution for linium secondary batteries with even better characteristics.

本発明は、このような現状に鑑みてなされたものであり
、その目的はLi 極の充放電特性の優れたリチウム二
次電池用非水電解液を提供する事にある。
The present invention has been made in view of the current situation, and its purpose is to provide a non-aqueous electrolyte for lithium secondary batteries with excellent charging and discharging characteristics of Li electrodes.

したがって、本発明によるリチウム二次電池用非水電解
液、ば、リチウム塩f:肩噴溶媒に@嘆させた非水戒解
液において、前記非水喧唾液の添加剤として、ニトロベ
ンゼン誘導体を用・ハた事を特徴とするものである。
Therefore, in the non-aqueous electrolyte for lithium secondary batteries according to the present invention, eg, lithium salt f: the non-aqueous electrolyte solution made with a shoulder injection solvent, a nitrobenzene derivative is used as an additive for the non-aqueous saliva. It is characterized by hata.

本発明によれば、リチウム@を有IS4溶媒に溶解した
電解液に、ニトロベンゼン誘導体を添加することにより
、Li極の充放電%ヰが良好なリチウム二次電池を実現
しえる。
According to the present invention, by adding a nitrobenzene derivative to an electrolytic solution in which lithium is dissolved in an IS4 solvent, a lithium secondary battery with good charge/discharge percentage of Li electrode can be realized.

不発明を更に詳しく説明する。Non-invention will be explained in more detail.

本発明によるリチウム二次截池の非水蝋聯液に用いられ
る有機溶媒は従来、この棟の成→偕に用いらするもので
あればいかなるものでもよい。だとえば、グロピレンカ
ーボナイト、テトラヒドロフラン、ジメチルスルホキシ
ド、γ−ブチロラクトン、ジオキシラン、1,2−シト
キシエタン、2−メチルテトラノ・イドロフランから選
択された1種以上の有機溶媒を用いることができる。
The organic solvent used in the non-aqueous wax solution of the secondary lithium cutting pond according to the present invention may be any organic solvent conventionally used in the formation of this structure. For example, one or more organic solvents selected from glopyrene carbonite, tetrahydrofuran, dimethyl sulfoxide, γ-butyrolactone, dioxirane, 1,2-cytoxyethane, and 2-methyltetranohydrofuran can be used.

さらに、溶質であるリチウム塩は前述の有機溶媒と同様
限定されない。たとえば、L I CZO4+LiBF
+ 、LiAsFa 、LiPFa 、LiAtCム。
Furthermore, the lithium salt that is the solute is not limited to the above-mentioned organic solvent. For example, L I CZO4+LiBF
+, LiAsFa, LiPFa, LiAtC.

CF35o、 Li、  CFi CO2Liから選択
された1種以上のような、一般に非水電4液の溶質とし
て用いられるリチウム塩を有効に用いることができる。
Lithium salts generally used as solutes in non-aqueous liquids, such as one or more selected from CF35o, Li, and CFiCO2Li, can be effectively used.

有4溶媒に溶解させる溶質の歌は好ましくは0.5〜2
.5Nである。0.5N未満であると、充放電特性が者
しく低下し、まだ2.5Nを超えると、溶解が困奔とな
ったり、粘度が上昇し充放t、a注が悪化すると言う欠
点を生ずるからである。袢シ゛こ好ましくは、たとえば
L i CLO4の場合、1.25N前後、LiBF4
 の基音、0.75N前後である。
The density of the solute dissolved in the solvent is preferably 0.5 to 2.
.. It is 5N. If it is less than 0.5N, the charging and discharging characteristics will deteriorate significantly, and if it still exceeds 2.5N, there will be disadvantages such as difficulty in dissolving, increased viscosity, and worsening of charging and discharging characteristics. It is from. For example, in the case of Li CLO4, the thickness is preferably around 1.25N, LiBF4
The fundamental tone is around 0.75N.

本発明において用いられる添加剤はニトロベンゼン誘導
体である。このようなニトロベンゼン誘導体を添加する
と、なぜ充放電特性が向上するのか、その理由は必ずし
も明確ではない。
The additive used in the present invention is a nitrobenzene derivative. The reason why the addition of such a nitrobenzene derivative improves the charge-discharge characteristics is not necessarily clear.

リチウム負極として、リチウム金属板等のリチウムをそ
のまま用いた場合、放電ちるいは充電電流が増大すると
局部的な反応惺進(でより、リチウム負極に穴があいた
り、充電時にデンドライト状のリチウムが析出し負極か
ら脱落する等の現象が生じる。これがLi極の充放電効
率を低下させる原因となっている。
When lithium, such as a lithium metal plate, is used as it is as a lithium negative electrode, when the discharging or charging current increases, a local reaction may occur (due to this, holes may form in the lithium negative electrode, or dendrite-like lithium may form during charging). Phenomena such as precipitation and falling off from the negative electrode occur.This is a cause of decreasing the charging and discharging efficiency of the Li electrode.

ニトロベンゼン誘導体を添加剤として用いると、リチウ
ム極の充放電特性は向上する。この理由は前述のように
必ずしも明確ではないが、芳香族ニトロ化合物を添加す
ると、リチウム金属表面にLi+ イオン伝導性の膜を
形成し、Li極の充放’twiに効果的に作用している
事も考えられる。
When a nitrobenzene derivative is used as an additive, the charge/discharge characteristics of a lithium electrode are improved. The reason for this is not necessarily clear as mentioned above, but when an aromatic nitro compound is added, a Li+ ion conductive film is formed on the lithium metal surface, which effectively affects the charging and discharging of the Li electrode. Things can also be considered.

この櫟な効果を示すニトロベンゼン誘導体としては、た
とえば下記の一般式(1)であられInるものをあげる
ことができる。
Examples of nitrobenzene derivatives exhibiting this powerful effect include those represented by the following general formula (1).

(以下余白) NOl ここにRは、水素、ハロゲン、アルキル基、フェニル基
、アルコキシ基、N−アルキル者喚アミノ基、塩化カル
ボニル基、ニトロ基、ペテロ原子を含む環状の置換基、
ピリジル、ベンジル、フェニルケトン、キノン等の置換
基を表わし、Xはこれらの考喚藁の数を示す。
(Left below) NOl Here, R is a cyclic substituent including hydrogen, halogen, alkyl group, phenyl group, alkoxy group, N-alkyl ester amino group, carbonyl chloride group, nitro group, and petro atom,
It represents a substituent such as pyridyl, benzyl, phenylketone, quinone, etc., and X represents the number of these substituents.

具体的に上記ニトロベンゼン誘導体の一例を述べると以
下のような化合物を含む。すなわち、ニトロベンゼン、
ニトロアセナフテン、ニトロアセタニリド、ニトロアセ
トフェノン、ニトロアミノアニソール、ニトロアミノア
ニンールジアゾニウム塩、ニトロアミノベンシトリフル
オロライド、ニトロアミノフェノール、ニトロアミノピ
リジン、ニトロアミノチアゾール、ニトロアミノトルエ
ン、ニトロアニリン、ニトロアニシジン、ニトロアニシ
ジン、ニトロアントラキノン、ニトロベンズアルデヒド
、ニトロベンズアミド、ニトロベンゼンスルフェニルク
ロライド、ニトロベンゼンスルホニツクアシッド、ニト
ロベンゼンチオール、ニトロベンゾイックアシッド、ニ
トロベンゾニトリル、ニトロベンゾフェノン、ニトロベ
ンゾトリアゾール、ニトロ塩化ベンゾイル、ニトロベン
ジルアセテイト、ニトロベンジルアルコール、ニトロベ
ンジルプロマイト、ニトロベンジルクロライド、γ−(
P−ニトロベンジル)ピリジン、ニトロクロルベンゼン
、ニトロトルエン、トリニトロトルエン、ジニトロベン
ゼン、トリニトロペンゼ為ニトロフルオレン、トリニト
ロフルオレン、テトラニトロフルオレノン、ニトロフタ
リックアシッド、ニトロキノリン等である。これらのニ
トロベンゼン誘導体のうちでとくに、2,4.7−1−
ジニトロ−9−フルオレノン、ニトラミン、P−ニトロ
塩化ベンソイル、m−ニトロ塩化ベンソイル、0−ニト
ロベンゾニトリル、m−ニトロベンゾニトリル、P−ニ
トロペンゾニトリル、P−ニトロベンゾフェノン、γ−
(P−ニトロベンジル)ピリジン、5−ニトロベンゾト
リアゾールが好ましい。ニトロベンゼン誘導体は好まし
くは10−’ moL/を以下添加される。
Specifically, examples of the above-mentioned nitrobenzene derivatives include the following compounds. i.e. nitrobenzene,
Nitroacenaphthene, nitroacetanilide, nitroacetophenone, nitroaminoanisole, nitroaminoanilin diazonium salt, nitroaminobensitrifluoride, nitroaminophenol, nitroaminopyridine, nitroaminothiazole, nitroaminotoluene, nitroaniline, Nitroanisidine, nitroanisidine, nitroanthraquinone, nitrobenzaldehyde, nitrobenzamide, nitrobenzenesulfenyl chloride, nitrobenzenesulfonic acid, nitrobenzenethiol, nitrobenzoic acid, nitrobenzonitrile, nitrobenzophenone, nitrobenzotriazole, nitrobenzoyl chloride, Nitrobenzyl acetate, Nitrobenzyl alcohol, Nitrobenzyl promite, Nitrobenzyl chloride, γ-(
P-nitrobenzyl) pyridine, nitrochlorobenzene, nitrotoluene, trinitrotoluene, dinitrobenzene, trinitropenze, nitrofluorene, trinitrofluorene, tetranitrofluorenone, nitrophthalic acid, nitroquinoline, and the like. Among these nitrobenzene derivatives, 2,4.7-1-
Dinitro-9-fluorenone, nitramine, P-nitrobenzoyl chloride, m-nitrobenzoyl chloride, 0-nitrobenzonitrile, m-nitrobenzonitrile, P-nitropenzonitrile, P-nitrobenzophenone, γ-
(P-nitrobenzyl)pyridine and 5-nitrobenzotriazole are preferred. The nitrobenzene derivative is preferably added at less than 10-' moL/.

10−’ mat/lを超えるとLi 極の充放電効率
が悪化するからである。
This is because if it exceeds 10-' mat/l, the charging/discharging efficiency of the Li electrode will deteriorate.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例1 Pt極を作用極、対極にLi  (線状Li を厚さ約
3mmのペレットにしたもの、電原面墳1.ff1)を
参照電極としてLi を用いた電池を組み、Pt極上に
Li  を析出させることにより、Li 極の充放電特
性を測定した。
Example 1 A battery was assembled using Li as the working electrode and Li (linear Li pellets with a thickness of approximately 3 mm, Electrogen Surface Tomb 1.ff1) as the reference electrode, and a Pt electrode as the counter electrode. The charge/discharge characteristics of the Li electrode were measured by depositing Li.

測定は、まず5Am〆蒲の定電流で1分間、Pt極上に
Li  を析出させ充電した後、5mAz−の定電流で
Pt極上に析出したLi をLl  イオンとして放電
するサイクル試験を行なった。充放電効率は、pt 4
の電位変化より求め、Pt極上に析出したLi  をL
ビイオンとして改tせるのに要した電気量とpt、i上
にLi を析出させるために要した電気t”Thの比か
ら算出した。
For the measurement, first, Li was deposited on the Pt electrode and charged for 1 minute at a constant current of 5 Am, and then a cycle test was performed in which the Li deposited on the Pt electrode was discharged as Ll ions at a constant current of 5 mA. Charge/discharge efficiency is pt 4
The Li deposited on the Pt electrode is calculated from the potential change of L
It was calculated from the ratio of the amount of electricity required to convert Li into bioions and the amount of electricity t''Th required to deposit Li on pt and i.

第1図は、充放電効率とサイクル数の関係を示す図であ
り、図中のaは電解液として2NLiC4へ/PCに5
 X 10−’ moL’tの2.4.7−ドリニトロ
ー9−フルオレノン(TNE)を添加したものを用いた
場合であり、図1 (b)は参考例として、電解液とし
てI NL i CtCk /P Cを用いた場合の、
Li極の充放電特性を示しだ。
Figure 1 is a diagram showing the relationship between charge/discharge efficiency and cycle number, and a in the diagram indicates 5 to 2NLiC4/PC as an electrolyte.
This is the case where 2.4.7-dolinitro-9-fluorenone (TNE) of When using P.C.
This figure shows the charging and discharging characteristics of Li electrodes.

第1図から判るように、単独系(b)に比べて、混合系
(a)Li明らかに充放電特性は向上している。
As can be seen from FIG. 1, the charge/discharge characteristics of the mixed system (a) are clearly improved compared to the single system (b).

実施列2 Pt極を作用燻、対極にLi薄片(厚さ0.5mm X
電虐面積1c!/L)を参照醒橿としてLi  を用い
た電池を組み、Pt極上にLi  を析出させることに
より、Li  啄の充放電特性を狙j定した。
Implementation row 2 Pt electrode was heated, Li thin piece (thickness 0.5 mm
Electricity area 1c! /L) was used as a reference material, and a battery using Li was assembled, and Li was deposited on the Pt layer, thereby aiming at the charge-discharge characteristics of Li.

測定は、まず1mA/c++tの定電流で1分間、Pt
極上にLi  を析出させ光占した説、11TIA/d
の定電流でPt4上に析出したLi  をLi+イオン
として放電するサイクル試験を行なった。充放電効率は
、Pt 匣の直立変化より求め、PtCt上(析出した
しi をLi+イオンとして放電させるのに要した電気
量とpt 極上にLl・、を析出させるために要した電
気量との比から算出した。
The measurement was first performed with a constant current of 1 mA/c++t for 1 minute.
Theory of optical astronomy by precipitating Li on the top, 11TIA/d
A cycle test was conducted in which Li deposited on Pt4 was discharged as Li + ions at a constant current of . The charge/discharge efficiency was determined from the upright change of the Pt box, and was calculated by comparing the amount of electricity required to discharge the precipitated i on PtCt as Li+ ions and the amount of electricity required to deposit Ll on the Pt top. Calculated from the ratio.

第2図は、充放電効率とす停クル数の−A系r示/PC
にIXl 0−mol/lのニトラミンを添加したもの
を用いた場合であり、図中の(6)は参考例(D I 
NL i C1O< /P Cラミ解液として用いた場
合のLi極の充放電特性を示した。
Figure 2 shows the charge/discharge efficiency and number of stoppages in -A system r/PC
(6) in the figure is a reference example (D I
NL i C1O< /P The charge/discharge characteristics of the Li electrode when used as a lamination solution are shown.

第4図から判るように、単独系(b)に比べて、混合系
(a)は明らかに、充放電特性は向上している。
As can be seen from FIG. 4, the charge/discharge characteristics of the mixed system (a) are clearly improved compared to the single system (b).

実施例3゜ 電解液として、2 NL i CtO4/P CにI 
X 10−3mol/Aのm−二トロベンゾニトリルヲ
添加したものを用いた以外は実施列2と同様にして、L
i極の充放電特性を測定した。
Example 3 As an electrolyte, I
L
The charge/discharge characteristics of the i-pole were measured.

第3図は、充放電効率とサイクル数の関係を示す図であ
り、図中のaは上記戒;膵液を用いた場合であり、図中
の(b)は、I NL i CIO4/プロピレンカー
ボネイト単独系の電解液を用いた場合の充放電特性を参
考例として示した。第3図刀・ら判るように、単独系(
b)に比べて、混合系(a)は明らかに、充放電特性は
向上している。
FIG. 3 is a diagram showing the relationship between charge/discharge efficiency and number of cycles; a in the diagram is the case when pancreatic juice is used; The charging and discharging characteristics when using a single electrolyte are shown as a reference example. As you can see in Figure 3, the sword is a single system (
Compared to b), the charging/discharging characteristics of the mixed system (a) are clearly improved.

リチウム塩を有機溶媒に溶解させた非水電解液において
、前記非水電解液の添加剤としてニトロベンゼン誘導体
を用いる事により、リチウム衡の充放電特性の良好なリ
チウム二次電池用非水室′解液を実現できる。
By using a nitrobenzene derivative as an additive in a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent, a non-aqueous chamber solution for lithium secondary batteries with good lithium balance charge-discharge characteristics can be created. liquid can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は、本発明の実権例におけるリチウム唯
の充放電効率とサイクル数の関係を示す図でろる。
FIGS. 1 to 3 are diagrams showing the relationship between the charging and discharging efficiency of lithium and the number of cycles in practical examples of the present invention.

Claims (1)

【特許請求の範囲】[Claims] リチウム塩を有機溶媒に6稈させた非水電解液において
、前記非水電解液の添加剤として、ニトロベ/ゼ/誘導
体を弔;ハた事を特徴とするリチウム二次電池用非水電
解液。
A non-aqueous electrolyte for a lithium secondary battery, characterized in that a non-aqueous electrolyte is prepared by adding a lithium salt to an organic solvent, and a nitrobe/ze/derivative is used as an additive in the non-aqueous electrolyte. .
JP57096921A 1982-06-08 1982-06-08 Nonaqueous electrolyte for lithium secondary battery Pending JPS58214281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57096921A JPS58214281A (en) 1982-06-08 1982-06-08 Nonaqueous electrolyte for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57096921A JPS58214281A (en) 1982-06-08 1982-06-08 Nonaqueous electrolyte for lithium secondary battery

Publications (1)

Publication Number Publication Date
JPS58214281A true JPS58214281A (en) 1983-12-13

Family

ID=14177816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57096921A Pending JPS58214281A (en) 1982-06-08 1982-06-08 Nonaqueous electrolyte for lithium secondary battery

Country Status (1)

Country Link
JP (1) JPS58214281A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971432A1 (en) * 1998-07-09 2000-01-12 Wilson Greatbatch Ltd. Inorganic and organic nitrate additives for non aqueous electrolyte in alkali metal electrochemical cells
WO2001091223A1 (en) * 2000-05-26 2001-11-29 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and secondary battery containing the same
US6562515B2 (en) 2001-03-21 2003-05-13 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a nitrate additive in the electrode active mixture
US7026074B2 (en) * 2002-02-15 2006-04-11 The University Of Chicago Lithium ion battery with improved safety
US8988858B2 (en) 2010-10-15 2015-03-24 Panasonic Intellectual Property Management Co., Ltd. Electrode for electrochemical capacitor and electrochemical capacitor using same
WO2018016421A1 (en) * 2016-07-22 2018-01-25 株式会社Gsユアサ Nonaqueous electrolyte, power storage element, and method for producing power storage element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0971432A1 (en) * 1998-07-09 2000-01-12 Wilson Greatbatch Ltd. Inorganic and organic nitrate additives for non aqueous electrolyte in alkali metal electrochemical cells
WO2001091223A1 (en) * 2000-05-26 2001-11-29 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and secondary battery containing the same
US6905799B2 (en) 2000-05-26 2005-06-14 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution and secondary battery containing the same
US6562515B2 (en) 2001-03-21 2003-05-13 Wilson Greatbatch Ltd. Electrochemical cell having an electrode with a nitrate additive in the electrode active mixture
US7026074B2 (en) * 2002-02-15 2006-04-11 The University Of Chicago Lithium ion battery with improved safety
US8988858B2 (en) 2010-10-15 2015-03-24 Panasonic Intellectual Property Management Co., Ltd. Electrode for electrochemical capacitor and electrochemical capacitor using same
WO2018016421A1 (en) * 2016-07-22 2018-01-25 株式会社Gsユアサ Nonaqueous electrolyte, power storage element, and method for producing power storage element

Similar Documents

Publication Publication Date Title
US11121407B2 (en) Electrolytes for stable cycling of high capacity lithium based batteries
JP5199130B2 (en) Rechargeable lithium ion battery with triphenylamine redox shuttle
CN106356561B (en) Overcharge-preventing electrolyte and lithium ion battery
TWI389369B (en) Rechargeable lithium-ion cell and its manufacturing and recharging methods
US7648801B2 (en) Redox shuttle for overdischarge protection in rechargeable lithium-ion batteries
JP4296620B2 (en) Non-aqueous electrolyte battery
US11177513B2 (en) Rechargeable lithium-ion cell
US20060263697A1 (en) Substituted phenothiazine redox shuttles for rechargeable lithium-ion cell
US20090068562A1 (en) Rechargeable lithium battery
JP4361218B2 (en) Electrolyte for lithium secondary battery
WO2019200656A1 (en) Lithium secondary battery electrolyte and lithium secondary battery thereof
JPS58214281A (en) Nonaqueous electrolyte for lithium secondary battery
US7422827B2 (en) Nonaqueous electrolyte
WO2001041248A1 (en) Non-aqueous electrolyte and non-aqueous electrolyte cell
JP2014067585A (en) Additive for nonaqueous electrolyte, nonaqueous electrolyte, and electricity storage device
JP2548573B2 (en) Electrolyte for lithium battery
JP6017803B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte, and electricity storage device
JPH0351068B2 (en)
JPH1131526A (en) Lithium secondary battery
JPS5887777A (en) Nonaqueous electrolytic solution for lithium secondary battery
JPS5931571A (en) Electrolyte for lithium secondary battery
JPH07220757A (en) Lithium secondary battery
JPH0477426B2 (en)
JP7464445B2 (en) Method for manufacturing liquid-type lithium-ion secondary battery, and performance improver for liquid-type lithium-ion secondary battery
JPS58142771A (en) Negative electrode for lithium battery