JPS58213470A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS58213470A
JPS58213470A JP9590382A JP9590382A JPS58213470A JP S58213470 A JPS58213470 A JP S58213470A JP 9590382 A JP9590382 A JP 9590382A JP 9590382 A JP9590382 A JP 9590382A JP S58213470 A JPS58213470 A JP S58213470A
Authority
JP
Japan
Prior art keywords
region
epitaxial layer
buried
conductivity type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9590382A
Other languages
Japanese (ja)
Inventor
Kunio Aomura
青村 國男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9590382A priority Critical patent/JPS58213470A/en
Publication of JPS58213470A publication Critical patent/JPS58213470A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To form the titled semiconductor device microscopically as well as to reduce the contact resistance between the buried region and the epitaxial surface thereof by a method wherein an impurity-added region comes in contact with a part of the side face of the material containing a buried insulating substance, and a high density region is provided in the vicinity of the contact surface. CONSTITUTION:A buried region 202 is formed by diffusing the second conductive type impurities on the selective region located on one main surface of the first conductive type semiconductor substrate 201. Then the second conductive type epitaxial layer 203 is formed on the surface of the substrate 201 which is provided on the region 202. Then, at least a part of the film thickness of the layer 203 is selectively removed, and a convex island region 203 is formed. Subsequently, the second conductive type impurities are added at least to the side face of the region 203, and an impurity-added region 211 is formed. As a result, the resistance value between the external electrode and the region 202 can be lowered.

Description

【発明の詳細な説明】 本発明は半導体装置及びその製造方法にかかり、特に集
積回路用に適した小型化、高性能化の可能なエピタキシ
ャル型の半導体装置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to an epitaxial type semiconductor device suitable for integrated circuits that can be made smaller and higher in performance, and a method for manufacturing the same.

従来のバイポーラ型集積回路においてはエピタキシャル
型トランジスタが用いられるのが一般的である。第1図
(a)〜(ωは従来の半導体装置及びその製造方法の説
明用の製造工程断面図であ、る。結果として第1図(−
の半導体装置が得られるが、先ず製造工程を説明する。
Conventional bipolar integrated circuits typically use epitaxial transistors. FIGS. 1(a) to (ω) are manufacturing process cross-sectional views for explaining a conventional semiconductor device and its manufacturing method. As a result, FIGS.
A semiconductor device is obtained. First, the manufacturing process will be explained.

先ず第1の導電型のp型シリコン基板101に選択的に
形成された基板と異なる第2の導電型のnfllの埋込
領域102を設け、該基板上に均一にn型のエピタキシ
ャル層103を成長させ、該エピタキシャル層を区分す
る基板と同じ導電型のp型拡散領域104を設ける。し
かるときはp型領域に囲まれた底部に埋込領域を配した
エピタキシャル層103ができる。次に核エピタキシャ
ル層表面に選択的に酸化膜105と、その上に窒化膜1
06を形成する(第1図(a))。
First, a buried region 102 of NFLL of a second conductivity type different from that of the substrate is selectively formed on a p-type silicon substrate 101 of a first conductivity type, and an n-type epitaxial layer 103 is uniformly formed on the substrate. A p-type diffusion region 104 of the same conductivity type as the substrate which divides the epitaxial layer is provided. In this case, an epitaxial layer 103 having a buried region at the bottom surrounded by the p-type region is formed. Next, an oxide film 105 is selectively formed on the surface of the core epitaxial layer, and a nitride film 1 is formed on it.
06 is formed (FIG. 1(a)).

続いて前記窒化膜106のパターンを用いて、前記エピ
タキシャル層の膜厚の一部107を除去し、凸型の島領
域を形成する(第1図(b))。
Subsequently, using the pattern of the nitride film 106, a portion 107 of the epitaxial layer is removed to form a convex island region (FIG. 1(b)).

次に前記窒化膜106をマスクとして該窒化膜で覆われ
ていない少なくともエピタキシャル層を熱酸化により選
択的に酸化し酸化膜108を形成する。この時前記窒化
膜106で覆われたエピタキシャル層領域は酸化されな
い。これにより半導体は前記選択酸化膜108で囲まれ
たエピタキシャル領域103を有するはぼ表面の平坦な
形状となる。また選択酸化膜108の下面の一部は残存
するp型拡散領域104と接続している(第1図(C)
)。
Next, using the nitride film 106 as a mask, at least the epitaxial layer not covered with the nitride film is selectively oxidized by thermal oxidation to form an oxide film 108. At this time, the epitaxial layer region covered with the nitride film 106 is not oxidized. As a result, the semiconductor has a flat surface having an epitaxial region 103 surrounded by the selective oxide film 108. In addition, a part of the lower surface of the selective oxide film 108 is connected to the remaining p-type diffusion region 104 (FIG. 1(C)).
).

次に表面に残っている窒化膜106および酸化膜105
を除去し、再びエピタキシャル1103の表面に酸化膜
109を形成したあと、該酸化膜109に選択的にエピ
タキシャル層103の表面に達する開孔部110を設け
る(第1図(d))。続いて前記開孔部よりn型不純物
をエピタキシャル層103に拡散し、熱処理を加えて前
記埋込領域102に達する不純物添加領域111を形成
する。
Next, the nitride film 106 and oxide film 105 remaining on the surface
After removing the oxide film 109 and forming the oxide film 109 again on the surface of the epitaxial layer 1103, an opening 110 is selectively provided in the oxide film 109 to reach the surface of the epitaxial layer 103 (FIG. 1(d)). Subsequently, n-type impurities are diffused into the epitaxial layer 103 through the opening, and heat treatment is applied to form an impurity-doped region 111 that reaches the buried region 102.

なお表面酸化膜108の形成は熱処理の前、又は彼でも
、又は熱処理と同時の何れでも差支えない(第1図(e
))。
Note that the surface oxide film 108 may be formed before or after the heat treatment, or at the same time as the heat treatment (see Fig. 1(e)
)).

その稜、既知の技術により前記エピタキシャル層103
内にベース領域112.エミッタ領破113を形成する
。また前記工程(第1図1(e))で形成した不純物添
加領域1110表面にエミッタ領域113の形成時に同
時ttcam度領域114を形成することも可能である
。(第1図(f))。その後エピタキシャル層表面の酸
化膜に開孔部を設け、該開孔部を覆うアルミニウムによ
る電極パターン115.116,117を形成する。そ
して不純物添加領域111と接続する電極をコレクタ電
極115*ペース領域112およびエミッタ領域113
とそれぞれ接続する電極をそれぞれペース電極116゜
エミッタ電極117とすればトランジスタは完成する(
第1図(g))。
the epitaxial layer 103 by known techniques.
A base region 112. An emitter break 113 is formed. It is also possible to form the ttcam region 114 on the surface of the impurity doped region 1110 formed in the above step (FIG. 1(e)) at the same time as the emitter region 113 is formed. (Figure 1(f)). After that, openings are provided in the oxide film on the surface of the epitaxial layer, and electrode patterns 115, 116, 117 made of aluminum are formed to cover the openings. Then, the electrode connected to the impurity doped region 111 is connected to the collector electrode 115*the space region 112 and the emitter region 113.
The transistor is completed by connecting the electrodes as the pace electrode 116 and the emitter electrode 117, respectively.
Figure 1(g)).

以上のとおり従来の製造方法ではn型埋込領域102と
エピタキシャル層1030表面を低抵抗で接続するn型
不純物添加領域111の形成にあたっては、エピタキシ
ャル層103の表面の酸化膜109に開孔110を設け
、この開孔を通してn型不純物をいわゆる表面から添加
している。その後熱処理により拡散し埋込領域と接続し
ている。
As described above, in the conventional manufacturing method, when forming the n-type impurity doped region 111 that connects the n-type buried region 102 and the surface of the epitaxial layer 1030 with low resistance, the opening 110 is formed in the oxide film 109 on the surface of the epitaxial layer 103. The n-type impurity is added from the surface through the opening. Thereafter, it is diffused by heat treatment and connected to the buried region.

第2図は従来の製造方法により形成したエピタキシャル
型バイポーラトランジスタのエピタキシャル表面と埋込
領域間の接続層の状況を示す説明図である。図において
接続層111は表面よりaの深さだけ拡散し埋込層10
2と接続し、一方熱拡散によるため拡散の開孔部の端部
よりbだけ横方向に拡散している。bが大きいので隣の
拡散領域との距離0は非常に小さくなりている。
FIG. 2 is an explanatory diagram showing the state of a connection layer between an epitaxial surface and a buried region of an epitaxial bipolar transistor formed by a conventional manufacturing method. In the figure, the connection layer 111 is diffused from the surface to a depth of a, and the buried layer 111 is
2, and on the other hand, due to thermal diffusion, it is diffused laterally by a distance b from the end of the diffusion hole. Since b is large, the distance 0 to the adjacent diffusion region is very small.

一般に表面からの不純物の熱拡散により形成した領域の
不純物濃度は表面から深さ方向に向って低くなり、それ
にともなって抵抗値も高くなる。
Generally, the impurity concentration in a region formed by thermal diffusion of impurities from the surface decreases from the surface toward the depth, and the resistance value increases accordingly.

一方n型不純物添加領域はエピタキシャル表面に形成さ
れたアルミニウム等による外部電極とn型埋込領域間の
抵抗値を減するために設けられたものであるKかかわら
ず上記したように、深くなるに従い抵抗が増し全体とし
て望ましい低抵抗値が得られないという問題があった。
On the other hand, the n-type impurity doped region is provided to reduce the resistance value between the external electrode made of aluminum or the like formed on the epitaxial surface and the n-type buried region. There was a problem in that the resistance increased and a desirable low resistance value could not be obtained as a whole.

また第2図においてn型不純物添加領域111の形成は
、エピタキシャル層103の表面からの不純物添加によ
っているため、n型埋込領域102に接続するまで、#
グぼエピタキシャル層103の膜厚程度拡散しなければ
ならない。一方半導体物質の性質として深さ方向にある
深さ拡散した場合には横方向には深さ方向の約0.7倍
拡散が進行することが知られている。そのためこの例の
場合には横方向に進む距離すは、b=0.7Xaとなる
。すなわちn型不純物添加領域形成のためには、従来技
術でば少なくともQ、 7 X aの長さを余分に考慮
しておく必要がある。従って微細化が要望されて鱒る現
在においては面積、余裕長共に極めて不利であるという
問題がある。
In addition, in FIG. 2, the n-type impurity doped region 111 is formed by adding impurities from the surface of the epitaxial layer 103.
The diffusion should be approximately as thick as the grooved epitaxial layer 103. On the other hand, it is known that as a property of semiconductor materials, when diffusion occurs to a certain depth in the depth direction, the diffusion progresses in the lateral direction approximately 0.7 times as much as in the depth direction. Therefore, in this example, the distance traveled in the lateral direction is b=0.7Xa. That is, in order to form an n-type impurity doped region, in the conventional technique, at least the lengths of Q and 7 X a need to be taken into consideration. Therefore, in today's world where there is a growing demand for miniaturization, there is a problem in that both area and margin length are extremely disadvantageous.

従って本発明は以上の問題点に対処してなされたもので
、微細化ができ、かつ埋込領域とエピタキシャル表面の
接続抵抗を小ならしめることができる半導体装置及びそ
の製造方法を提供するにある。
SUMMARY OF THE INVENTION Therefore, the present invention has been made to address the above problems, and an object of the present invention is to provide a semiconductor device that can be miniaturized and that can reduce the connection resistance between a buried region and an epitaxial surface, and a method for manufacturing the same. .

すなわち水弟1の発明の要旨は、第1の導電型の半導体
基板の一主面上に咳基板と異なる第2の導電製のエピタ
キシャル層を有すると共に、該エピタキシャル層と前記
半導体基板との界面近傍に第2の導電型でエピタキシャ
ル層より高濃度の埋込領域を有し、少なくとも前記エピ
タキシャル層の厚さの一部に埋設された絶縁物物質を含
む材料で囲まれたエピタキシャル領域を有し、前記埋込
領域とエピタキシャル層表面を接続する第2の導電型の
不純物添加領域とを有する半導体装置において、前記不
純物添加領域は前記埋設された絶縁物質を含む材料の側
面の一部と接触し、かつ該接触面近傍に濃度の高い領域
を有していることを特徴とする半導体装置にある。
In other words, the gist of the invention of Suihiro 1 is to have an epitaxial layer made of a second conductivity different from that of the substrate on one main surface of a semiconductor substrate of a first conductivity type, and to provide an epitaxial layer at the interface between the epitaxial layer and the semiconductor substrate. The epitaxial region has a buried region of a second conductivity type and higher concentration than the epitaxial layer nearby, and has an epitaxial region surrounded by a material containing an insulating material buried in at least a part of the thickness of the epitaxial layer. , in a semiconductor device having a second conductivity type impurity doped region connecting the buried region and a surface of an epitaxial layer, the impurity doped region contacts a part of a side surface of the buried material containing an insulating substance; and a high concentration region near the contact surface.

また、水弟2の発明の要旨は、第1の導電型の半導体基
板の一主面上の選択領域に該基板と異なる第2の導電型
の不純物を拡散し埋込領域を形成する工程と、前記埋込
領域の形成された半導体基板の表面に第2の導電型のエ
ピタキシャル層を形成する工程と、該エピタキシャル層
の少なくとも膜厚の一部を選択的に除去し凸形の島領域
を形成する工程と、該凸型の島領域の少なくとも側面に
第2の導電型の不純物を添加する工程とを含むことを特
徴とする半導体装置の製造方法にある。
Further, the gist of the invention of Mizuo 2 is to form a buried region by diffusing an impurity of a second conductivity type different from that of the substrate into a selected region on one principal surface of a semiconductor substrate of a first conductivity type. , forming an epitaxial layer of a second conductivity type on the surface of the semiconductor substrate on which the buried region is formed; and selectively removing at least a part of the thickness of the epitaxial layer to form a convex island region. A method of manufacturing a semiconductor device comprising the steps of: forming a semiconductor device; and adding an impurity of a second conductivity type to at least a side surface of the convex island region.

以下−図面を参照し本楯明の詳細につき説明する。Hereinafter, details of this shield will be explained with reference to the drawings.

第3図(、l)〜(e)は水弟1および第2の発明の一
実施例による半導体装置およびその製造方法の説明用の
工程断面図である。先ず水弟1の発明の半導体装置は次
の工程により製造することができる。
FIGS. 3(1) to 3(e) are process cross-sectional views for explaining a semiconductor device and its manufacturing method according to an embodiment of the first and second inventions. First, the semiconductor device according to the invention of Mizuhiro 1 can be manufactured by the following steps.

p型シリコン基板201に選択的に形成された基板と異
なる導電型、すなわちn型の埋込領域202を設け、該
基板上に均一にエピタキシャル層203を成長させ、核
エピタキシャル層を貫通する基板と同じ導電型のp型拡
散領域204を設ける。しかるときはp型領域に囲まれ
底部に埋込層を配したエピタキシャル層203ができる
。次に該エピタキシャル表面に選択的に酸化膜205と
その上に窒化膜206を形成する。続いて窒化膜206
(7)パターンをマスクとしてエピタキシャル層の膜厚
の一部207を除去し凸型の島領域203を形成する(
第3図(a))。
A buried region 202 of a conductivity type different from that of the substrate, that is, an n-type, is selectively formed on a p-type silicon substrate 201, and an epitaxial layer 203 is grown uniformly on the substrate to form a substrate that penetrates the core epitaxial layer. A p-type diffusion region 204 of the same conductivity type is provided. In this case, an epitaxial layer 203 surrounded by a p-type region and having a buried layer at the bottom is formed. Next, an oxide film 205 and a nitride film 206 are selectively formed on the epitaxial surface. Next, the nitride film 206
(7) Using the pattern as a mask, a portion 207 of the epitaxial layer is removed to form a convex island region 203 (
Figure 3(a)).

次に、フォトレジスト膜219を選択的に形成する。こ
の時前工程までに形成した凸状の島領域の少なくとも側
面の一部が前記フォトレジスト膜219の一部から露出
していることが必要である。
Next, a photoresist film 219 is selectively formed. At this time, it is necessary that at least a part of the side surface of the convex island region formed up to the previous step is exposed from a part of the photoresist film 219.

前記フォトレジスト膜219をマスクとして、該ホトレ
ジスト膜で覆われていない領域、すなわち前記凸状の島
領域の少なくとも側面に選択的にイオン注入法によりn
型不純物、例えばリンをi加し、n型不純物添加領域2
11を形成する(第3図(b))。
Using the photoresist film 219 as a mask, an ion implantation method is selectively applied to the region not covered with the photoresist film, that is, at least the side surface of the convex island region.
A type impurity, for example, phosphorus is added to form an n-type impurity doped region 2.
11 (FIG. 3(b)).

続いて前記フォトレジスト膜219を除去したあと、窒
化膜206をマスクとして該窒化膜で轡われていない少
くともエピタキシャル層を熱酸化により選択的に酸化す
る。この時前記窒化膜206で覆われたエピタキシャル
層領域は酸化されない。
Subsequently, after removing the photoresist film 219, at least the epitaxial layer not covered by the nitride film is selectively oxidized by thermal oxidation using the nitride film 206 as a mask. At this time, the epitaxial layer region covered with the nitride film 206 is not oxidized.

これにより半導体基板は前記選択酸化物208で囲まれ
たエピタキシャル領域203を有するt1丁表面の平坦
な形状になる。又選択酸化物208の下面の一部は先に
形成されたp型拡散領域204の一部と接続している。
As a result, the semiconductor substrate has a flat surface having an epitaxial region 203 surrounded by the selective oxide 208. Also, a portion of the lower surface of the selective oxide 208 is connected to a portion of the previously formed p-type diffusion region 204.

そして前工程で導入されたn型不純物添加領域211は
選択酸化処理工程で拡散し、n型埋込領域およびエピタ
キシャル層203の表面と確実な導通を完成する。すな
わち内領域は低抵抗で接続される(第3図(C))。
Then, the n-type impurity doped region 211 introduced in the previous step is diffused in the selective oxidation treatment step, and reliable conduction with the n-type buried region and the surface of the epitaxial layer 203 is completed. That is, the inner region is connected with low resistance (FIG. 3(C)).

そのあと、表面の窒化膜206. 、酸化膜205を除
去したのち、再び表面に酸化膜209を形成する。その
後は従来技術によりベース領域212゜エミッタ領域2
13等を順次形成する(第3図(d))。
After that, the surface nitride film 206. After removing the oxide film 205, an oxide film 209 is formed on the surface again. After that, the base region 212° and the emitter region 2 are formed using conventional techniques.
13 etc. are formed one after another (Fig. 3(d)).

次に従来技術を用いてエピタキシャル層表面を覆う酸化
膜209に開孔部を設け、アルミニウムによるコレクタ
電極215.ベース電極216゜エミッタ電極217を
形成し、トランジスタを完成する(第3図(e))。
Next, using a conventional technique, an opening is formed in the oxide film 209 covering the surface of the epitaxial layer, and a collector electrode 215 made of aluminum is formed. A base electrode 216 and an emitter electrode 217 are formed to complete the transistor (FIG. 3(e)).

以上により埋込領域を有するエピタキシャル型の半導体
装置においてエピタキシャル層表面と埋込層とを接続す
る不純物添加領域が埋設された絶縁物質を含む材料の側
面の一部と接触し、かつ該接触面近傍に濃度の高い領域
を有していることを特徴とする半導体装置が得られる。
As described above, in an epitaxial type semiconductor device having a buried region, the impurity-doped region connecting the surface of the epitaxial layer and the buried layer is in contact with a part of the side surface of the material containing the buried insulating material, and in the vicinity of the contact surface. A semiconductor device characterized in that it has a region with high concentration can be obtained.

第4図(a)〜(d)は本第1および第2の発明の他の
実施例による半導体装置およびその製造方法の説明用の
工程断面図である。第3図(a)〜(e)で示した方法
はn型不純物添加領域の形成はイオン注入法によったが
、第4図(a)〜(d)に於てはこれを熱拡散により実
施した。すなわち以下の工程により行なった。
FIGS. 4(a) to 4(d) are process cross-sectional views for explaining semiconductor devices and methods of manufacturing the same according to other embodiments of the first and second inventions. In the method shown in Figures 3(a) to (e), the n-type impurity doped region was formed by ion implantation, but in Figures 4(a) to (d), it was formed by thermal diffusion. carried out. That is, the following steps were performed.

先ずp型半導体基板301の表面にn型の埋込領域30
2を形成し、その表面にエピタキシャル層303を形成
する。該エピタキシャル層を貫通する基板と同じ導電型
のp型拡散領域304を設ける。次に該エピタキシャル
層表面に選択的に酸化膜305とその上に窒化膜306
を形成する。
First, an n-type buried region 30 is formed on the surface of a p-type semiconductor substrate 301.
2 is formed, and an epitaxial layer 303 is formed on the surface thereof. A p-type diffusion region 304 having the same conductivity type as the substrate is provided passing through the epitaxial layer. Next, an oxide film 305 is selectively formed on the surface of the epitaxial layer, and a nitride film 306 is formed thereon.
form.

続いて窒化膜306をマスクとしてエピタキシャル層の
膜厚の一部307を除去し、凸型の島領域303を形成
する。これまでの工程は第3図(a)に示した工程と同
じである。次に全面を酸化し、窒化膜306に覆われて
いない表面に薄い酸化膜318を形成する(第4図(a
))。
Subsequently, a portion 307 of the epitaxial layer is removed using the nitride film 306 as a mask to form a convex island region 303. The steps up to this point are the same as those shown in FIG. 3(a). Next, the entire surface is oxidized, and a thin oxide film 318 is formed on the surface not covered with the nitride film 306 (see FIG. 4(a).
)).

続いて凸型の島領域の少なくとも側面の前記酸化膜31
8を選択的に除去する。露出したエピタキシャル層30
3に選択的にn型不純物を熱拡散し、n型不純物添加領
域311を形成する(第4図(b))。
Next, the oxide film 31 is formed on at least the side surface of the convex island region.
Selectively remove 8. exposed epitaxial layer 30
3, an n-type impurity is selectively thermally diffused to form an n-type impurity doped region 311 (FIG. 4(b)).

次に選択酸化を行い選択酸化物308を形成すると共に
、前記n型不純物添加領域311はn型埋込領域302
とエピタキシャル層303の表面とを接続する(第4図
(C))。
Next, selective oxidation is performed to form a selective oxide 308, and the n-type impurity doped region 311 is removed from the n-type buried region 302.
and the surface of the epitaxial layer 303 (FIG. 4(C)).

続いて第3図(d)の場合と同様にしてペース領域31
2、エミッタ領域313等を形成する(第4図(d))
Then, in the same way as in the case of FIG. 3(d), the pace area 31 is
2. Form emitter region 313, etc. (Fig. 4(d))
.

次いで従来技術によりエピタキシャル層表面を覆う酸化
膜309に開孔部を設け、アルミニウムによる電極を設
ければ本第1の発明による半導体装置は完成する(第4
図(e))。
Next, the semiconductor device according to the first invention is completed by forming an opening in the oxide film 309 covering the surface of the epitaxial layer using a conventional technique and providing an electrode made of aluminum.
Figure (e)).

以上説明した2つの実施例では何れも第1の導電型の半
導体基板の一生面上に該基板と異なる第2の導電型のエ
ピタキシャル型を有すると共に、該エピタキシャル層と
前記半導体基板との界面近傍に第2の導電型でエピタキ
シャル層より高濃度の埋込領域を有し、少なくとも前記
エピタキシャル層の厚さの一部に埋設された絶縁物質を
含む材料で囲まれたエピタキシャル領域を有し、前記埋
込領域とエピタキシャル表面を接続する第2の導電型の
不純物添加領域とを有する半導体装置において、前記不
純物の添加領域は前記埋設された絶縁物質を含む材料の
側面の一部と接触し、かつ該接触面近傍に濃度の高い領
域を有していることを特徴とする半導体装置が得られる
In the two embodiments described above, both have an epitaxial type of a second conductivity type different from that of the first conductivity type semiconductor substrate on the entire surface thereof, and near the interface between the epitaxial layer and the semiconductor substrate. has a buried region of a second conductivity type and a higher concentration than the epitaxial layer, and has an epitaxial region surrounded by a material containing an insulating material buried in at least a part of the thickness of the epitaxial layer; In a semiconductor device having a second conductivity type impurity doped region connecting a buried region and an epitaxial surface, the impurity doped region contacts a part of a side surface of the buried material containing an insulating material, and A semiconductor device characterized by having a highly concentrated region near the contact surface can be obtained.

また第3図(a) 〜(e) 、第4図(a)〜(d)
の実施例に示した本第2の発明の製造方法は、何れも第
1の導電型の半導体基板の一生面上の選択領域に該基板
と異なる第2の導電型の不純物を拡散し埋込領域を形成
する工程と、前記埋込領域の形成された半導体基板の表
面に第2の導電型のエピタキシャル層を形成する工程と
、該エピタキシャル層の少なくとも膜厚の一部を選択的
に除去し凸型の島領域を形成する工程と、該凸型の島領
域の少なくとも側面に第2の導電型の不純物を添加する
工程とを含むことを特徴とする半導体装置の製造方法で
ある。
Also, Fig. 3 (a) to (e), Fig. 4 (a) to (d)
The manufacturing method of the second invention shown in the embodiments includes the step of diffusing and embedding an impurity of a second conductivity type different from that of the substrate into a selected region on the whole surface of a semiconductor substrate of a first conductivity type. forming a second conductivity type epitaxial layer on the surface of the semiconductor substrate on which the buried region is formed; and selectively removing at least a part of the thickness of the epitaxial layer. A method of manufacturing a semiconductor device comprising the steps of forming a convex island region and adding a second conductivity type impurity to at least a side surface of the convex island region.

第5図は本第1および第2の発明の上記実施例により得
られた半導体装置の説明用の断面図である。第5図の各
部の符号は第3図(a)〜(e)と同じ部位をあられす
。先ず埋込領域とエピタキシャル層表面の接続領域であ
る不純物添加領域の抵抗値について考えるに、従来技術
ではエピタキシャル層の表面より不純物を添加して形成
しているため、表面から深くなるに従い不純物濃度はさ
がり、それに伴い抵抗値も増加するため、この領域の抵
抗値をさげることは困難であった。−力木発明構造にお
いては不純物を側面から添加しているため不純物濃度の
高い従来の表面に相当する面が、選択酸化物308とエ
ピタキシャル層303との界面になっているため、一番
不純物濃度の高い領域がエピタキシャル層の表面からn
型埋込領域302まで続いている。従って外部電極とn
型埋込領域302との間の抵抗値は従来のものに比べ格
段に低くすることができる。
FIG. 5 is an explanatory cross-sectional view of a semiconductor device obtained by the above embodiments of the first and second inventions. The reference numerals of each part in FIG. 5 refer to the same parts as in FIGS. 3(a) to (e). First, considering the resistance value of the impurity doped region, which is the connection region between the buried region and the surface of the epitaxial layer, in the conventional technology, impurities are added from the surface of the epitaxial layer, so the impurity concentration decreases as it gets deeper from the surface. It has been difficult to lower the resistance value in this region because the resistance value increases accordingly. - In the structure of the invention, impurities are added from the side, so the surface corresponding to the conventional surface with a high impurity concentration becomes the interface between the selective oxide 308 and the epitaxial layer 303, so it has the highest impurity concentration. The region with high n
It continues to the mold embedding area 302. Therefore, the external electrode and n
The resistance value between the mold embedding region 302 and the mold embedding region 302 can be made much lower than that of the conventional method.

次にn型不純物添加領域311の幅について考えるに1
本第2の発明の製造方法においてはn型不純物添加領域
311は側面からの不純物添加を行っているためエピタ
キシャル層303の膜厚に関係なく自由に形成でき、し
かもn型不純物添加領域311の幅を従来のものに比べ
極端に小さくすることができる。例えばコレクタコンタ
クト用のn型領域314の形成をエミッタ領域313形
成と同時に行りた場合について考えてみると、エピタキ
シャル膜厚3.0μm、エミッタ深さ0.3μmの場合
は、 従来技術での積みがり量b=3.OX0.7=2.1μ
m本発明の積みがりitb’=0.3X0.7=0.2
1μmすなわち本発明によれば従来のものに比べ積みが
り量を約10分の1にすることができる。それは、本発
明でのn型不純物添加領域の幅は選択酸化物の側面から
せいぜい1.07Jm程度であり、表面での積みがりは
コレクタコンタクト用n型領域314の形成開孔端32
0よシ外側には広がることは殆んどない。従って従来の
ものの積みがりのa X 9.7のようなコンタクト用
のn型領域をこえて拡散することはなく、寸法的には無
視できる。従って隣りの拡散領域との間隔Cは第2図の
場合に比べ大きくなっている。すなわち余分の領域の必
要性が減少するため、トランジスタの面積をそれだけ小
さくすることが可能になり、集積回路の微細化。
Next, considering the width of the n-type impurity doped region 311,
In the manufacturing method of the second invention, since the n-type impurity doped region 311 is doped from the side, it can be formed freely regardless of the thickness of the epitaxial layer 303, and the width of the n-type impurity doped region 311 is can be made extremely smaller than conventional ones. For example, if we consider the case where the formation of the n-type region 314 for the collector contact is performed at the same time as the formation of the emitter region 313, if the epitaxial film thickness is 3.0 μm and the emitter depth is 0.3 μm, the stacking using the conventional technology is Amount of warping b=3. OX0.7=2.1μ
m Accumulation of the present invention itb'=0.3X0.7=0.2
1 μm, that is, according to the present invention, the amount of accumulation can be reduced to about one-tenth of that of the conventional method. This is because the width of the n-type impurity doped region in the present invention is at most about 1.07 Jm from the side surface of the selective oxide, and the accumulation on the surface is caused by the formation of the collector contact n-type region 314 at the opening end 32.
It hardly spreads beyond 0. Therefore, it does not diffuse beyond the n-type region for contact, such as a x 9.7 in the conventional stack, and can be ignored in terms of size. Therefore, the distance C between adjacent diffusion regions is larger than in the case of FIG. That is, the need for extra area is reduced, allowing the area of transistors to be made that much smaller, leading to the miniaturization of integrated circuits.

高集積化が可能になる。High integration becomes possible.

なお第3図(a)〜(e)および第4図(a)〜(d)
の実施例では島領域の形成時エピタキシャル層の膜厚の
−“一部を除去した例であるが、全部除去しても本発明
の目的を達成することができる。
In addition, Fig. 3 (a) to (e) and Fig. 4 (a) to (d)
In this embodiment, a portion of the epitaxial layer is removed when forming the island region, but the object of the present invention can be achieved even if the entire film is removed.

また実施例ではエピタキシャル層の一部に埋設された絶
縁物質を含む材料は窒化膜をマスクとしてそれ以外のと
ころを酸化膜としたものであるが、エツチング、不純物
の添加後、島領域の周囲に絶縁物質の層を形成し、その
後例えばポリシリコンで凹部を埋めて表面を平滑化して
も本発明の目的を達成することができる。
In addition, in the example, the material containing the insulating material buried in a part of the epitaxial layer is a nitride film as a mask and the rest as an oxide film. The object of the invention can also be achieved by forming a layer of insulating material and then filling the recesses with, for example, polysilicon to smooth the surface.

また実施例の図面では島領域は最終的に絶縁物質で囲ま
れているが絶縁物質とPNジャンクシ。
Further, in the drawings of the embodiment, the island region is finally surrounded by an insulating material, but there is a PN junction between the insulating material and the insulating material.

ンで囲まれても同様に本発明の目的を達成できる。The object of the present invention can be achieved in the same way even if the object is surrounded by lines.

以上説明したとおり本発明によれば埋込領域とエピタキ
シャル層表面とを接続する不純物添加領域の抵抗を大幅
に低下させた半導体装置が得られる。またこの半導体装
置は装置の小型化、高密度化に対しても有利である。
As explained above, according to the present invention, a semiconductor device can be obtained in which the resistance of the impurity-doped region connecting the buried region and the surface of the epitaxial layer is significantly reduced. Further, this semiconductor device is advantageous in terms of miniaturization and high density of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置およびその製造方法の説明用
の工程断面図、第2図は従来の半導体装置の説明用の断
面図、第3図(a)〜(e)は本第1および第2の発明
の一実施例による半導体装置及びその製造方法の説明用
の工程断面図、第4図(aγ〜(d)は本第1および第
2の発明の他の実施例による半導体装置およびその製造
方法の説明用の工程断面図、第5図は本発明の一実施例
による半導体装置の説明用の断面図である。 101.201.301・・・・・・半導体基板、 1
02゜202.302・・°・・・埋込領域、1”63
,203゜303・・・・・・エピタキシャル領域、1
04,204゜304・・・・・・p型拡散領域、10
5.205,305・・・・・°酸化膜、106.20
6.306・・・・・・窒化膜、107.207.30
7°°°・・°エピタキシャル除去部、108,208
,30.8°°°・°・厚い酸化膜、109゜209.
309°°°・・°酸化膜、110,210,310・
・・・・・拡散用開孔部、111.211.311°旧
°。 不純物添加領域、112,212,312・・・・・・
ベース領域、113,213.313・・・・・・エミ
ッタ領域、114,214t314・・・・・・高濃度
領域、115.215・・・・・・コレクタ電極、11
6,216・・・・・・ペース電極、117,217・
・・・・・エミッタ電極、318°°゛°゛薄い酸化膜
、219・・・・・・ホトレジスト膜、220・・・・
・・開孔部端部、a・・・・・・不純物添加領域の厚さ
、b・・・・・・開孔部からの横広がり量、C・・・・
・・隣接領域との間隔。 茅 /TgJ 芽 l 図 半 2 図 第3図 (1) 隼 3 回
FIG. 1 is a process cross-sectional view for explaining a conventional semiconductor device and its manufacturing method, FIG. 2 is a cross-sectional view for explaining a conventional semiconductor device, and FIGS. FIGS. 4(a) to 4(d) are process cross-sectional views for explaining a semiconductor device according to an embodiment of the second invention and a method for manufacturing the same; FIGS. 101.201.301... Semiconductor substrate, 1
02゜202.302...°...Embedded area, 1"63
,203°303...Epitaxial region, 1
04,204°304...p-type diffusion region, 10
5.205,305...°Oxide film, 106.20
6.306...Nitride film, 107.207.30
7°°°...°Epitaxial removal part, 108, 208
, 30.8°°°・°・Thick oxide film, 109°209.
309°°°...°Oxide film, 110,210,310.
... Diffusion opening, 111.211.311° old°. Impurity doped region, 112, 212, 312...
Base region, 113,213.313...Emitter region, 114,214t314...High concentration region, 115.215...Collector electrode, 11
6,216...Pace electrode, 117,217.
...Emitter electrode, 318°°゛°゛thin oxide film, 219...Photoresist film, 220...
... End of the opening, a... Thickness of the impurity doped region, b... Amount of lateral spread from the opening, C...
... Distance between adjacent areas. Kaya /TgJ bud l Figure half 2 Figure 3 (1) Hayabusa 3 times

Claims (2)

【特許請求の範囲】[Claims] (1)第1の導電型の半導体基板の一生面上に該基板と
異なる第2の導電型のエピタキシャル層を有すると共に
、該エピタキシャル層と前記半導体基板との界面近傍に
第、2の導電型でエピタキシャル層より高濃度の埋込領
域を有し、少なくとも前記エピタキシャル層の厚さの一
部に埋設された絶縁物質を含む材料で囲まれたエピタキ
シャル領域を有し、前記埋込領域とエピタキシャル層表
面を接続する第2の導電型の不純物添加領域とを有する
半導体装置において、前記不純物添加領域は前記埋設さ
れた絶縁物質を含む材料の側面の一部と接触し、かつ該
接触面近傍に濃度の高い領域を有していることを特徴と
する半導体装置。
(1) An epitaxial layer of a second conductivity type different from that of the substrate is provided on the entire surface of a semiconductor substrate of a first conductivity type, and an epitaxial layer of a second conductivity type is provided near the interface between the epitaxial layer and the semiconductor substrate. a buried region having a higher concentration than the epitaxial layer, and an epitaxial region surrounded by a material containing an insulating material buried in at least a part of the thickness of the epitaxial layer, and the buried region and the epitaxial layer In a semiconductor device having an impurity doped region of a second conductivity type that connects surfaces, the impurity doped region is in contact with a part of the side surface of the buried material containing the insulating material, and the impurity doped region is in contact with a part of the side surface of the material containing the buried insulating material, and a concentration is 1. A semiconductor device characterized by having a region with high .
(2)  第1の導電型の半導体基板の一生面上の選択
領域に該基板と異なる第2の導電型の不純物を拡散し埋
込領域を形成する工程と、前記埋込領域の形成された半
導体基板の表面に第2の導電型のエピタキシャル層を形
成する工程と、該エビタキャル層の少なくとも膜厚の一
部を選択的に除去し凸型の島領域を形成する工程と、該
凸型の島領域の少なくとも側面に第2の導電型の不純物
を添加する工程とを含むことを4?徴とする半導体装置
の製造方法。
(2) forming a buried region by diffusing an impurity of a second conductivity type different from that of the substrate into a selected region on the entire surface of a semiconductor substrate of a first conductivity type; a step of forming an epitaxial layer of a second conductivity type on a surface of a semiconductor substrate; a step of selectively removing at least a part of the film thickness of the epitaxial layer to form a convex island region; and adding a second conductivity type impurity to at least a side surface of the island region. A method for manufacturing a semiconductor device characterized by:
JP9590382A 1982-06-04 1982-06-04 Semiconductor device and manufacture thereof Pending JPS58213470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9590382A JPS58213470A (en) 1982-06-04 1982-06-04 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9590382A JPS58213470A (en) 1982-06-04 1982-06-04 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS58213470A true JPS58213470A (en) 1983-12-12

Family

ID=14150249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9590382A Pending JPS58213470A (en) 1982-06-04 1982-06-04 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58213470A (en)

Similar Documents

Publication Publication Date Title
US4551911A (en) Method for manufacturing semiconductor device
JP2002110978A (en) Power semiconductor element
JPS6080276A (en) Method of forming semiconductor element
JPH06252359A (en) Manufacture of semiconductor device
JPH0658912B2 (en) Bipolar transistor manufacturing method
JPH0521338B2 (en)
JP2009032967A (en) Semiconductor apparatus and method of manufacturing the same
US5574306A (en) Lateral bipolar transistor and FET
JPS62179764A (en) Manufacture of bipolar semiconductor device with wall spaser
JPS6048111B2 (en) Non-volatile semiconductor memory device
JPS58213470A (en) Semiconductor device and manufacture thereof
JPS60241261A (en) Semiconductor device and manufacture thereof
JPS63217641A (en) Manufacture of semiconductor device and semiconductor device
JPH0551184B2 (en)
JP3076048B2 (en) Method for manufacturing semiconductor device
KR100194691B1 (en) Semiconductor device and manufacturing method thereof
JPH1174513A (en) Semiconductor of insulating gate type and its manufacture
JPS6237543B2 (en)
JP2534667B2 (en) Semiconductor device and manufacturing method thereof
JP2764988B2 (en) Semiconductor device
JP3106305B2 (en) Method for forming separation layer of semiconductor device
JP2686125B2 (en) Static induction type switching element and method of manufacturing the same
JPS60244036A (en) Semiconductor device and manufacture thereof
JPS62120040A (en) Manufacture of semiconductor device
JPH0824122B2 (en) Method for manufacturing semiconductor device