JPS58213157A - Water heater utilizing solar-heat - Google Patents

Water heater utilizing solar-heat

Info

Publication number
JPS58213157A
JPS58213157A JP57095782A JP9578282A JPS58213157A JP S58213157 A JPS58213157 A JP S58213157A JP 57095782 A JP57095782 A JP 57095782A JP 9578282 A JP9578282 A JP 9578282A JP S58213157 A JPS58213157 A JP S58213157A
Authority
JP
Japan
Prior art keywords
heat
temperature
collector
low
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57095782A
Other languages
Japanese (ja)
Other versions
JPS6313113B2 (en
Inventor
Takashi Sawada
敬 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57095782A priority Critical patent/JPS58213157A/en
Publication of JPS58213157A publication Critical patent/JPS58213157A/en
Publication of JPS6313113B2 publication Critical patent/JPS6313113B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/14Combinations of low and high pressure boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/006Methods of steam generation characterised by form of heating method using solar heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
    • F22B3/045Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators the drop in pressure being achieved by compressors, e.g. with steam jet pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

PURPOSE:To enhance heat-collecting efficiency easily and inexpensively, by a method wherein a heat pump cycle driven by solar heat through utilizing an ejector without obtaining any power from the exterior is constituted, and a part of a latent-heat transmitting medium is maintained at a low temperature to collect heat at a low temperature. CONSTITUTION:When solar rays are projected, a heat-transmitting medium contained in a high-temperature heat collector 11 is evaporated to be a high-temperature high-pressure vapor, which is introduced into the ejector 15, a high-speed vapor jet is generated by a nozzle 18 to reduce the pressure inside a low-temperature heat collector 12 connected to an intake port 19, and the vapor therein is introduced into a mixing chamber 20. The resultant mixed vapor stream enters a heat exchanger 13 trhough an outlet pipe 21, is condensed into a liquid, and the heat of condensation raises the temperature of water in a hot water storing tank 14, whereby heat is accumulated. The heat- transmitting medium thus liquefied is divided into two directions, one of which enters the heat collector 11, while the other is adiabatically expanded by an expansion valve 16, enters the heat collector 12 as a low-temperature heat-transmitting liquid, is evaporated by being heated by the solar heat, and is re-introduced into the mixing chamber 20 through the intake port 19 of the ejector 15.

Description

【発明の詳細な説明】 本発明は、集熱器と貯湯槽を分離し、例えばフロンのよ
うな潜熱媒体を内部に封入した閉回路を構成することに
より集熱器で熱媒体を蒸発し、貯湯槽で熱媒体蒸気を凝
縮することにより、太陽熱を集熱、搬送する太陽熱温水
器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention separates a heat collector and a hot water storage tank and forms a closed circuit in which a latent heat medium such as fluorocarbon is sealed inside, thereby evaporating the heat medium in the heat collector. This invention relates to a solar water heater that collects and transports solar heat by condensing heat medium vapor in a hot water storage tank.

従来のこの種の太陽熱温水器は第1図及び第2図に示す
ように構成されている。即ち、熱交換器(1)を内設し
て断熱された貯湯槽(2)の下方に集熱器(3)を接続
している。集熱器(3)は第2図1こ示すように、太陽
光を良く透過する透過板(4)で上部を覆ったケーシン
グ(5)の中に、フィン(6)に集熱管(7)を溶接し
太陽光を良く吸収するように表面処理し“Cなる集熱板
(8)と、集熱板(8)の底部を断熱する断熱材(9)
を設けて構成されている。この場合、集熱器(3)′の
集熱管(7)と熱交換器(1)を接続し、閉回路を構成
すると同時に、閉回路内部を低圧にし′Cフロン等の潜
熱媒体を作動媒体とし°C封入している。集熱時は集熱
管(7)内の熱媒体液が太陽熱により加熱されて蒸発し
、蒸気となって熱交換器C1)に八つ、そこで凝縮し、
そのときの凝縮熱が貯湯槽(2)内の水温を上昇するこ
とにより蓄熱される。一方、太陽熱温水器の性能は、X
軸に集熱時における集熱板平均温度と平均外気温との差
を日積算日射着で割った値をとり、Y軸に集熱効率をと
ると、第3図のように表わすことができる。第2図に示
すような平板形の集熱器(3)を用いた場合1.X軸の
値が0.04℃ゴ・日/kci/では約40%程度の集
熱効率しか得ることができなかった。又、真空管形のよ
うな高温集熱器を用いた場合、価格は倍以上になるにも
かかわらず、集熱効率は高々50%程度にしかならない
という欠点があった。
A conventional solar water heater of this type is constructed as shown in FIGS. 1 and 2. That is, a heat collector (3) is connected below an insulated hot water storage tank (2) with a heat exchanger (1) installed therein. As shown in Figure 2, the heat collector (3) is a casing (5) whose upper part is covered with a transparent plate (4) that transmits sunlight well, and a heat collecting tube (7) attached to a fin (6). A heat collecting plate (8) whose surface is welded and whose surface is treated to absorb sunlight (C), and a heat insulating material (9) which insulates the bottom of the heat collecting plate (8).
It is configured with the following. In this case, the heat collector pipe (7) of the heat collector (3)' and the heat exchanger (1) are connected to form a closed circuit, and at the same time, the pressure inside the closed circuit is made low and the latent heat medium such as CFC is used as the working medium. It is sealed at °C. During heat collection, the heat medium liquid in the heat collection tube (7) is heated by solar heat and evaporates, becoming steam and passing through the heat exchanger C1), where it condenses.
The heat of condensation at that time is stored by increasing the water temperature in the hot water storage tank (2). On the other hand, the performance of a solar water heater is
If the axis is the difference between the average temperature of the heat collection plate and the average outside temperature during heat collection divided by the daily cumulative solar radiation, and the Y axis is the heat collection efficiency, it can be expressed as shown in Figure 3. When using a flat heat collector (3) as shown in Figure 2: 1. When the value of the X-axis was 0.04° C./day/kci/, a heat collection efficiency of only about 40% could be obtained. Furthermore, when a high-temperature heat collector such as a vacuum tube type is used, the heat collection efficiency is only about 50% at most, although the price is more than double.

本発明はこのような従来の欠点を解消するために為され
たもので、外部より動力を得ることなく、太陽熱によっ
て駆動するヒートポンプサイクルを構成し、潜熱媒体の
一部を低温にして低温集熱をすることにより、大幅なコ
ストアップをすることなく太陽熱温水器全体の集熱効率
を向上させることを目的とするものである。
The present invention was made in order to eliminate such conventional drawbacks, and it configures a heat pump cycle that is driven by solar heat without obtaining power from the outside, and cools a part of the latent heat medium to collect low-temperature heat. By doing so, the objective is to improve the heat collection efficiency of the entire solar water heater without significantly increasing costs.

上記目的を達成するために本発明は、熱交換器を内設す
る貯@槽の下方に熱媒体lこよる蒸気発生用の高温集熱
器と低温集熱器を設け、前・記熱交換器出口の配管を2
方向に分岐し、一方を高温集熱器の入口に、他方を膨張
手段を介して低温集熱器の入口にそれぞれ接続し、高温
集熱器の出口にエジェクターの入口を接続し、エジェク
ターの低圧発生用の吸込口を低温集熱器の出口に接続し
、エジェクターの出口を熱交換器の入口に接続したもの
である。
In order to achieve the above object, the present invention provides a high-temperature collector and a low-temperature collector for steam generation by a heat medium l below a storage tank in which a heat exchanger is installed, and Connect the outlet piping to 2.
one side is connected to the inlet of the high-temperature collector, the other is connected to the inlet of the low-temperature collector through the expansion means, and the inlet of the ejector is connected to the outlet of the high-temperature collector, and the low pressure of the ejector is The suction inlet for generation is connected to the outlet of the low-temperature collector, and the outlet of the ejector is connected to the inlet of the heat exchanger.

本発明は上記構成とすることによって、高温集熱器で発
生した高温高圧蒸気がエジェクター門のノズルを通過す
るとき高速蒸気になることにより、吸込口に接続された
低温集熱器を低圧にすると同時に熱交換器でa略した熱
媒体が膨張手段を通ることにより断熱膨張し、低温とな
る。それ故、低温集熱器では貯湯槽水温より低い温度で
集熱することになり、かっヒートポンプサイクルが構成
されるため、従来の太陽熱温水器より大幅に集熱効率が
向上すると同時に、低温集熱器は安価なフィン付き集熱
管だけの構成でも可能になる。
With the above configuration, the present invention turns high-temperature and high-pressure steam generated in the high-temperature collector into high-speed steam when it passes through the nozzle of the ejector gate, thereby lowering the pressure in the low-temperature collector connected to the suction port. At the same time, the heat medium (a) in the heat exchanger passes through the expansion means, expands adiabatically, and becomes low temperature. Therefore, low-temperature collectors collect heat at a temperature lower than the water temperature in the hot water storage tank, forming a heat pump cycle, which significantly improves heat collection efficiency compared to conventional solar water heaters. This is possible even with a configuration consisting only of inexpensive finned heat collecting tubes.

以下、本発明の一実施例を第4図〜第6図)こ基づき説
明する。先ず第4図におい−c1高温集熱器(11)及
び低温集熱器(至)は熱交換器(L3)を内股する貯湯
槽04)の下方に設けら゛れ、前記高温集熱器(11)
の−出口にはエジェクター05)が接続されCいる。更
にエジェクター(′15)の出口は熱交換器(13)の
入口に、吸込口は低温集熱器(12)の出口1こそれぞ
れ接続されている。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 4 to 6). First, in FIG. 4, the c1 high temperature heat collector (11) and the low temperature heat collector (to) are installed below the hot water storage tank 04) that contains the heat exchanger (L3), and the high temperature heat collector ( 11)
An ejector 05) is connected to the outlet of the C. Furthermore, the outlet of the ejector ('15) is connected to the inlet of the heat exchanger (13), and the suction port is connected to one outlet of the low temperature collector (12).

又熱交換器(工3)の出口は2方向に分岐配Rされてお
り、一方は高温集熱器(11’)の入口に、他方は膨張
弁(16)を介して低温集熱器[有])の入口にそれぞ
れ接続され′Cいる。エジェクター(15)の構成は第
5図に示す、    ように、入口管α7)の先端にノ
ズル(18)か設けられ、このノズルOg)は吸込口0
9)を有する混合室(2o)内において出口管(21)
に接続されている。又前記高温集熱器(11)には真空
管形集熱器又は三直透過体を有する平板形集熱器が用い
られ、低温集熱器(12)には第2図に示すような集熱
板(8)〔フィン(6)、集熱管(1)〕が単体で用い
られる。
The outlet of the heat exchanger (No. 3) is branched in two directions, one being connected to the inlet of the high temperature collector (11') and the other being connected to the low temperature collector [11'] via the expansion valve (16). ) are connected to the entrances of the two terminals. The structure of the ejector (15) is shown in FIG. 5, as shown in FIG.
9) in the mixing chamber (2o) with an outlet pipe (21)
It is connected to the. Further, the high temperature collector (11) is a vacuum tube type collector or a flat plate type collector with a trigonal transmitter, and the low temperature collector (12) is a heat collector as shown in FIG. The plate (8) [fin (6), heat collecting tube (1)] is used alone.

上記構成において、閉回路を構成する配管内にはフロン
のような潜熱媒体が封入され′Cいる。以下に、上記構
成における作動状況を説明する。通常、液化し′Cいる
熱媒体は自重により高温集熱器(U)又は低温集熱器(
恥の底部に溜っているが、太陽光が照射すると高温集熱
器(11)では熱媒体が蒸発して高温高圧の蒸気になり
、エジェクター05)に流入し、ノズル(18)で高速
蒸気流になって吸込口(19)に接続されCいる低温集
熱器(12)を減圧し、内部の蒸気を混合室(20)に
尊く。混合した蒸気流は出口管(zr)を通って熱交換
器(13)に入り、凝縮液化し、その凝縮熱が貯湯槽(
14)内の水温を上昇させ、蓄熱される。
In the above configuration, a latent heat medium such as fluorocarbon is sealed in the piping constituting the closed circuit. The operating conditions in the above configuration will be explained below. Normally, the liquefied heat medium is transferred to a high-temperature collector (U) or a low-temperature collector (U) due to its own weight.
When sunlight irradiates the heat medium, it evaporates into high-temperature, high-pressure steam in the high-temperature heat collector (11), flows into the ejector 05), and generates a high-speed steam stream through the nozzle (18). The low-temperature collector (12) connected to the suction port (19) is then depressurized and the steam inside is pumped into the mixing chamber (20). The mixed vapor stream enters the heat exchanger (13) through the outlet pipe (zr) and is condensed and liquefied, and the heat of condensation is transferred to the hot water storage tank (
14) Increases the water temperature inside and stores heat.

液化した熱媒体は2方向に分岐し、一方は高温集熱器(
u)に入り、位置水頭分即ち高さ分だけ加圧される。他
方は膨張弁[有])により断熱膨張し、低温熱媒液とし
て低温集熱器(ロ)jこ入り、太陽熱により加熱されて
蒸発し、再びエジェクター〇5)のの連日■)より混合
室0のに導かれるヒートポンプサイクルが構成される。
The liquefied heat medium branches into two directions, one of which is a high-temperature collector (
u) and is pressurized by the position water head, that is, the height. The other one is adiabatically expanded by the expansion valve (with), enters the low-temperature collector (b)j as a low-temperature heat transfer liquid, is heated by solar heat and evaporates, and is returned to the mixing chamber from the ejector (○5). A heat pump cycle guided by 0 is constructed.

このように、低温集熱器(Y2)には貯湯槽04)の貯
水よりも低い温度の熱媒体が入り、かつヒートポンプサ
イクルが構成され゛C低温集熱が行なわれるため、集熱
効率が向上する。°即ち第6図のように、高温集熱器(
11)の性能は(5)の実線、低温集熱器(2)は(至
))の1点鎖線、第2図に示す従来の集熱器は破線(C
)で示されるが、従来の集熱:SJ座が前述したように
40%程度であるのに対し°C1−h記本発明の構成で
は高温集熱器(11)は50%程度で作動し、低温集熱
器(恥は低温集熱、即ち熱媒体が外気温度近くで1色熱
するため、90%程度の集熱効争を得ることができ、全
体とし゛C70%程度の集熱効率を得ることができる。
In this way, a heat medium with a temperature lower than that of the water stored in the hot water storage tank 04) enters the low-temperature heat collector (Y2), and a heat pump cycle is configured, so that low-temperature heat collection is performed, improving heat collection efficiency. . ° In other words, as shown in Figure 6, a high temperature collector (
The performance of 11) is shown by the solid line (5), the low-temperature collector (2) is shown by the dashed line (to), and the conventional collector shown in Figure 2 is shown by the broken line (C
), but the conventional heat collector (11) operates at about 40% as described above, whereas in the configuration of the present invention shown in °C1-h, the high temperature collector (11) operates at about 50%. , Low-temperature heat collector (the shame is low-temperature heat collection, that is, the heat medium heats up to one color near the outside temperature, so it is possible to obtain a heat collection efficiency of about 90%, and the overall heat collection efficiency is about 70%. be able to.

以−トのように本発明によれば、安価な低温集熱器を高
温集熱器と組み合せて、用いることができると同時に、
可動部のあるコンプレッサーではflく可動部のな′い
エジェクターを用いて外部動力を必要としないヒートポ
ンプでサイクルを構成することができるため、大:扁な
コストアップをすることなく、信頼性の高い高効率の太
陽熱温水器を実現することができる。
As described above, according to the present invention, an inexpensive low-temperature heat collector can be used in combination with a high-temperature heat collector, and at the same time,
Unlike compressors with moving parts, the cycle can be configured with a heat pump that does not require external power by using an ejector with no moving parts, so it is highly reliable without increasing costs. A highly efficient solar water heater can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽熱温水器の部分断面図、第2図は従
来の太陽熱温水器に用いられる集熱器の断面りで、第3
図は従来の太陽熱温水器の集熱器の性能を示すグラフ、
第4図〜第6図は本発明の一実施例を示し、第4図は太
陽熱温水器の部分断面図、第5図はエジェクターの断面
図、笈6図は本発明におGする太陽熱温水器の集熱器の
性能を示すグラフである。 (u’)・・・高温集熱器、(12)・−・低温集熱器
、(13)・・・菖交俟器、(14)・・・貯湯槽、(
15)−・エジェクター、(15)・・・膨張弁、(1
7)−・入口管、Q8)・・−ノズル、(1g)・−・
吸込口、(2・))・・混合室、(2)・・・出口管 代理人   森  本  義  弘 第1図 第2図 y 第3図 c菜に板乎均渇麿−平均外1品度)/a種11吋量f″
c・m’−a/kcal) 第4図 4
Figure 1 is a partial cross-sectional view of a conventional solar water heater, Figure 2 is a cross-sectional view of a collector used in a conventional solar water heater, and Figure 3 is a partial cross-sectional view of a conventional solar water heater.
The figure is a graph showing the performance of a conventional solar water heater collector.
Figures 4 to 6 show an embodiment of the present invention, Figure 4 is a partial cross-sectional view of a solar water heater, Figure 5 is a cross-sectional view of an ejector, and Figure 6 is a solar water heater according to the present invention. It is a graph showing the performance of the heat collector of the container. (u')...High temperature collector, (12)...Low temperature collector, (13)...Irises collector, (14)...Hot water tank, (
15)--Ejector, (15)--Expansion valve, (1
7)--Inlet pipe, Q8)--Nozzle, (1g)--
Inlet, (2・))...Mixing chamber, (2)...Outlet pipe agent Yoshihiro Morimoto Figure 1 Figure 2 y Figure 3 c Itadaki Hitomaro - 1 item outside the average Degree) / Type A 11 inches Weight f''
c・m'-a/kcal) Figure 44

Claims (1)

【特許請求の範囲】[Claims] ■、熱交換器を内股する貯湯槽の下方に熱媒体による蒸
気発生用の高温集熱器と低温集熱器を設け、前記熟交換
器出口の配管を2方向に分岐し、一方を高温集熱器の入
口1こ、他方を膨張手段を介して低温集熱器の入口にそ
れぞれ接続し、高温集熱器の出口にエジェクターの入口
を接続し、エジェクターの低圧発生用子の吸込口を低温
集熱器の出口に接続し、エジェクターの出口を熱交換器
の入口に接続した太陽熱温水器。
■ A high-temperature collector and a low-temperature collector for steam generation using a heat medium are installed below the hot water storage tank that houses the heat exchanger, and the piping at the outlet of the mature exchanger is branched into two directions, one of which collects the high temperature. Connect one inlet of the heat generator and the other to the inlet of a low-temperature collector through expansion means, connect the inlet of the ejector to the outlet of the high-temperature collector, and connect the suction port of the low-pressure generator of the ejector to the low-temperature collector. Solar water heater connected to the outlet of the collector and the outlet of the ejector to the inlet of the heat exchanger.
JP57095782A 1982-06-03 1982-06-03 Water heater utilizing solar-heat Granted JPS58213157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57095782A JPS58213157A (en) 1982-06-03 1982-06-03 Water heater utilizing solar-heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57095782A JPS58213157A (en) 1982-06-03 1982-06-03 Water heater utilizing solar-heat

Publications (2)

Publication Number Publication Date
JPS58213157A true JPS58213157A (en) 1983-12-12
JPS6313113B2 JPS6313113B2 (en) 1988-03-24

Family

ID=14147039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57095782A Granted JPS58213157A (en) 1982-06-03 1982-06-03 Water heater utilizing solar-heat

Country Status (1)

Country Link
JP (1) JPS58213157A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453171A1 (en) * 2009-07-10 2012-05-16 IHI Corporation Vapor supply device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102084391A (en) 2008-03-05 2011-06-01 电子湾有限公司 Method and apparatus for image recognition services
US9495386B2 (en) 2008-03-05 2016-11-15 Ebay Inc. Identification of items depicted in images
US10846766B2 (en) 2012-06-29 2020-11-24 Ebay Inc. Contextual menus based on image recognition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453171A1 (en) * 2009-07-10 2012-05-16 IHI Corporation Vapor supply device
EP2453171A4 (en) * 2009-07-10 2014-05-14 Ihi Corp Vapor supply device

Also Published As

Publication number Publication date
JPS6313113B2 (en) 1988-03-24

Similar Documents

Publication Publication Date Title
CN207064167U (en) A kind of line-focusing solar couples heat generating system
CN101893327B (en) Solar-powered water heating and heat-electricity converting device
CN106762489A (en) A kind of electricity generation system based on low-temperature solar energy and cold energy of liquefied natural gas
CN108561282A (en) A kind of slot type direct steam and fuse salt combined thermal power generating system
CN205779517U (en) A kind of Novel wire focused solar energy combined generating system
US4050445A (en) Solar energy collection system
WO2012022273A1 (en) Solar power ammonia thermoelectric conversion system
CN109631393A (en) The double-effect lithium bromide absorption type refrigerating plant of fume afterheat and solar energy coupling driving
CA2736418A1 (en) A low temperature solar power system
US4207744A (en) Solar refrigeration system
CN108954854A (en) Cogeneration cooling heating system based on Organic Rankine Cycle
CN208123012U (en) A kind of slot type direct steam and fuse salt combined thermal power generating system
CN208222868U (en) Dual temperature area storing energy and supplying hot type solar water heating system
CN105649901A (en) Solar light-condensation and heat-collection power generation device based on absorption heat pump
JPS58213157A (en) Water heater utilizing solar-heat
CN208073689U (en) A kind of steam circulation generator with Fresnel mirror and honeycomb regenerator
WO2010070702A1 (en) Power generator utilizing natural energy
CN104612920B (en) Tower type solar high/low temperature complementary power generation system
CN206144725U (en) Solar energy steam heat electric system
CN109506392A (en) Compression couples high temperature heat pump unit with absorption
CN203348020U (en) Geothermal power generation system adopting photo-thermal secondary evaporation
CN108561281A (en) A kind of steam circulation generator with Fresnel mirror and honeycomb regenerator
CN201705598U (en) Solar water heating thermoelectricity conversion device
CN201945201U (en) Air & steam parallelly connected one-piece high efficiency compound condenser
JP7238102B2 (en) water source heat pump