JPS58210202A - Vibration attenuating support apparatus - Google Patents

Vibration attenuating support apparatus

Info

Publication number
JPS58210202A
JPS58210202A JP9145182A JP9145182A JPS58210202A JP S58210202 A JPS58210202 A JP S58210202A JP 9145182 A JP9145182 A JP 9145182A JP 9145182 A JP9145182 A JP 9145182A JP S58210202 A JPS58210202 A JP S58210202A
Authority
JP
Japan
Prior art keywords
bearing
support
shoe
radius
curved surfaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9145182A
Other languages
Japanese (ja)
Inventor
庄市 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9145182A priority Critical patent/JPS58210202A/en
Publication of JPS58210202A publication Critical patent/JPS58210202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、耐地裏構造を南する減損支承装vtに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a loss bearing VT south of an earth-resistant lining structure.

一般に、l震動は同い地盤では伝播速度が大きく、加速
度も犬となるが、振幅は小さい。一方、軟弱地盤では、
逆に加速度は小さいが、振幅は大きい。
In general, the propagation velocity of l earthquake is high in the same ground, and the acceleration is also small, but the amplitude is small. On the other hand, in soft ground,
Conversely, the acceleration is small, but the amplitude is large.

面接地盤に固定される橋梁、建築、機械装置等の基礎に
対して加わる地震荷重は、地震動の加速度から算定でき
るが、振幅による一E部構造への荷重は、これを支える
柱等のはね定数の大小により伝達力が変化する。
Earthquake loads applied to the foundations of bridges, buildings, machinery, etc. that are fixed to surface ground can be calculated from the acceleration of seismic motion, but the load on the 1E structure due to the amplitude is calculated by the impact of the pillars, etc. that support it. The transmission force changes depending on the size of the constant.

軟弱地盤では地震動の7Jl+速度は小さいが、振幅が
大きいので、振幅による上部構造への荷重は重要な設計
要素となる。
In soft ground, the 7Jl+ velocity of seismic motion is small, but the amplitude is large, so the load on the superstructure due to the amplitude is an important design element.

本発明の目的は、地震動の大きな振幅を吸収することの
できる減損支承装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a loss bearing device capable of absorbing large amplitude earthquake motions.

減損支承に要求される技術的項目は、次の5つである。The following five technical items are required for impairment bearing.

(1)  振幅を吸収すること。(1) Absorb the amplitude.

(2)  上部構造への伝達力を小さくすること。(2) Reduce the force transmitted to the upper structure.

に3j  復元力があること。3j. Must have resilience.

(1)  ある限度以上にて制動機能をもっていること
(1) Must have a braking function above a certain limit.

(5)基礎地盤に固定された下沓の水平移動に対して、
上沓を持ち上げることなく円滑に水平移動できること。
(5) Regarding horizontal movement of the lower shoe fixed to the foundation ground,
Able to move horizontally smoothly without lifting the upper shoe.

これら5つの要求項目をすべて兼ねjiiIえているの
が本発明の減損支承装置である。
The impairment bearing device of the present invention satisfies all of these five requirements.

以下、図によって本発明の実施例’d: i(j?明す
る。。
Hereinafter, embodiments of the present invention will be explained with reference to the drawings.

第1図は、互いに凹部を内(Hllにして相接した上下
二つの凹球面の正面断面図である。たたし、ここでは球
面を基本として曲面は174成されるので曲面を球面と
表現する。以下、−1−側の凹球(r■を上沓1、下側
の凹球面を下沓2と称する。P。
Figure 1 is a front cross-sectional view of two concave spherical surfaces, upper and lower, which are adjacent to each other with the concave portions inside (Hll). However, here, there are 174 curved surfaces based on spherical surfaces, so the curved surfaces are expressed as spherical surfaces. Hereinafter, the concave sphere on the -1- side (r) will be referred to as the upper shoe 1, and the concave spherical surface on the lower side will be referred to as the lower shoe 2.P.

は−上沓1の凹球面の中心、P2は下沓2の凹球面の中
心、Rは各半径である。
is the center of the concave spherical surface of the upper shoe 1, P2 is the center of the concave spherical surface of the lower shoe 2, and R is each radius.

第2図は、第1図の上・下沓1,2によって形成される
内°領空間Sに、それぞれ1−・下・告1゜2に接しな
がら組込まれるi1動部分としてのつづみ支承5である
Figure 2 shows a suspension support as an i1 moving part that is installed in the inner space S formed by the upper and lower shoes 1 and 2 in Figure 1, while contacting the 1-, lower, and foot shoes 1 and 2, respectively. It is 5.

すなわち、つづみ支承5は、中・L−缶iK+′−o、
 、 02を異にする上、下二つの凸球面3,4(半径
はそれぞれr)を、互いにその凸部を外側にしてつなぎ
合わせたものであり、下凸球面3および下凸球面4は、
それぞれ相手側の凸球の半径r外に各中心00,0□を
有している。
That is, the Tsuzumi bearing 5 is a medium/L-can iK+'-o,
, 02 are different upper and lower convex spherical surfaces 3 and 4 (each radius is r), which are joined together with their convex portions on the outside, and the lower convex spherical surface 3 and the lower convex spherical surface 4 are
Each has a center 00, 0□ outside the radius r of the convex sphere on the other side.

第3図は、第2図のつづみ支承5を第1図の上・下沓1
,2の内側空間Sに組込んだ状態を示している。すなわ
ち、定常状態では、点Uにおいて下凸球面6は上沓1の
凹球面に接し、点りにおいて下凸球面4は下沓2の凹球
面に接している。換言すればU、Lがそれぞれ支点にな
っている。
Figure 3 shows the suspension bearings 5 in Figure 2 and the upper and lower shoes 1 in Figure 1.
, 2 is shown incorporated into the inner space S of . That is, in a steady state, the downward convex spherical surface 6 is in contact with the concave spherical surface of the upper shoe 1 at point U, and the downward convex spherical surface 4 is in contact with the concave spherical surface of the lower shoe 2 at the point U. In other words, U and L each serve as a fulcrum.

ここで地震動が起き、第3図の二点鎖線で示すように、
上沓1に対し下沓2′がδたけ横変位したとする。この
とき、つづみ支承5′は上・下凸球面3′、4が一体と
なりながら、上・下沓1゜2′の凹球面上を転がりなが
らその支点を変えるので、上下の支点U’ 、 L’の
ずれ(間隔e)を生ずる。したがって、上下から荷重が
かかつているため偶力を生じ、これが復元力(前記技術
的要求項目(3))として働く。
Earthquake motion occurs here, as shown by the two-dot chain line in Figure 3.
Assume that the lower shoe 2' is laterally displaced by δ with respect to the upper shoe 1. At this time, the suspension support 5' changes its fulcrum while rolling on the concave spherical surfaces of the upper and lower shoes 1°2' while the upper and lower convex spherical surfaces 3' and 4 are integrated, so that the upper and lower fulcrums U', A deviation (distance e) of L' occurs. Therefore, since loads are applied from above and below, a couple is generated, which acts as a restoring force (technical requirement item (3)).

また、第3図の破線矢印で示すように、上沓1の凹球面
につづみ支承5′の上・下凸球面6′。
Further, as shown by the broken line arrows in FIG. 3, the upper and lower convex spherical surfaces 6' of the support 5' are connected to the concave spherical surface of the upper shoe 1.

4′が同時に接した点で、つづみ支承5′は移動できな
くなる。これに伴って下沓2′も移動できなくなり、制
動作用(前記項目(4))が働く。十・下沓が移動して
U’L’が接点になると、 支承のU’L’と上沓、下
沓のL’L’とは一般に等しくないので、この値を等し
くするような曲面とし、これにより上告、下沓が水平移
動できる。
At the point where 4' are in contact with each other at the same time, the suspension support 5' cannot move. Along with this, the lower shoe 2' also becomes unable to move, and the braking action (item (4) above) is activated. 10. When the lower shoe moves and U'L' becomes the contact point, U'L' of the support and L'L' of the upper shoe and lower shoe are generally not equal, so create a curved surface that makes these values equal. , This allows the upper and lower shoes to move horizontally.

なお、つづみ支承5は、上・下凸球面6.4のころがり
によって地震動の振幅を吸収することができ(前記項l
11)、かつ、上部構造への伝達力を小さくすることが
できる(前記項目12))。
In addition, the suspension bearing 5 can absorb the amplitude of earthquake motion by rolling the upper and lower convex spherical surfaces 6.4 (the above-mentioned item l).
11), and the force transmitted to the upper structure can be reduced (item 12)).

したがって、上・下沓1,2の内full空間Sにつづ
み支承5を内接させながら組込んだ本発明の一実施例よ
りなる減損支承装置は、前記技術的要求項目(1)〜(
5)をすべて満足することができる。
Therefore, the impairment bearing device according to an embodiment of the present invention, which incorporates the suspension bearing 5 in the inner full space S of the upper and lower shoes 1 and 2, has the above-mentioned technical requirements (1) to (
5) can all be satisfied.

次に、楕円支承の場合について説明する。Next, the case of elliptical bearing will be explained.

第4図は、楕円支承6をヒ・下沓1,2の内側空間Sに
内接させながら(支点tJ、L)、組込んだ状態を示し
ている3゜ ここで楕円支承6は、−ト下二つの楕円球面7゜8より
なり、それぞれの支承半径r′は上・下沓1.2の半径
Rよりも小さく、互いに反対側の楕円球の半径内にそれ
ぞれ中心O:、、04を有している。
Fig. 4 shows a state in which the elliptical bearing 6 is inscribed in the inner space S of the lower shoes 1 and 2 (fulcrum points tJ, L) and installed at 3°.Here, the elliptical bearing 6 is - The bottom consists of two elliptical spherical surfaces 7°8, each bearing radius r' is smaller than the radius R of the upper and lower shoes 1.2, and each center O is within the radius of the ellipsoids on opposite sides. have.

楕円支承6の場合にも、つつみ支承5の場合と同様に、
上・下楕円球面7,8のころがりによって振幅吸収する
ことができ、かつ、上部構造への伝達力を小さくするこ
とかできる。
In the case of the elliptical bearing 6, as in the case of the wrapping bearing 5,
The rolling of the upper and lower ellipsoidal surfaces 7 and 8 can absorb the amplitude and reduce the force transmitted to the upper structure.

また、地震動によって上・下沓1,2間に変位が生じた
としても、つづみ支承5の例で説明したと同様のメカニ
ズムによって、復元力が働く。
Further, even if displacement occurs between the upper and lower shoes 1 and 2 due to earthquake motion, a restoring force will be exerted by the same mechanism as explained in the example of the suspension bearing 5.

さらに、楕円支承6の場合には、上・下楕円球面7,8
の共通面(つなき合せ面)の円周上の点が上・下沓1,
2に到達した点で、それ以上では上・下沓1,2を持ち
上ける状態となり、大きな制動力を発揮する。
Furthermore, in the case of the elliptical bearing 6, the upper and lower ellipsoidal surfaces 7 and 8
The points on the circumference of the common surface (connecting surface) are the upper and lower shoes 1,
2, and beyond that point, the upper and lower shoes 1 and 2 are lifted, exerting a large braking force.

なお、本発明の減損支承装置において、上・下沓1,2
の凹球面の半径は等しくても、また異なっていてもよい
。つづみ支承5の1−・下凸球面6,4の半径、および
楕円支承6の上・下情円球面7,8の半径についても同
様に、それぞれ等しくてもまた異なっていてもよい。た
たし、上・下沓1,2の凹球面の半径が四・シいときは
、つづみ支承5についても、楕円支承6についてもそれ
ぞれ上・子球面半径を等し5くしなければならない。
In addition, in the impairment bearing device of the present invention, the upper and lower shoes 1 and 2
The radii of the concave spherical surfaces may be equal or different. Similarly, the radii of the first and lower convex spherical surfaces 6 and 4 of the suspension bearing 5 and the radii of the upper and lower convex spherical surfaces 7 and 8 of the elliptical bearing 6 may be equal or different. However, if the radius of the concave spherical surfaces of the upper and lower shoes 1 and 2 is 4, the radii of the upper and lower spherical surfaces of the suspension bearing 5 and the elliptical bearing 6 must be equal and equal to 5. .

上・下沓1,2の凹球面の半径が顕なる場合は、上沓1
と接するつづみ支承5の下凸球面3あるいは楕円支承6
の上楕円球面7か、」−告1の凹球面をころがりながら
下降する垂直方向の変位と、下沓2と接するつづみ支承
5の下凸球面4あるいは楕円支承るの下情円球面8が、
F沓の凹球面をころがりながら上昇する垂直方向の変位
を等しくすればよい。
If the radius of the concave spherical surface of upper and lower shoes 1 and 2 is obvious, upper shoe 1
The lower convex spherical surface 3 or elliptical bearing 6 of the suspension bearing 5 in contact with
The vertical displacement of the upper elliptical spherical surface 7 or the lower convex spherical surface 4 of the ellipsoidal support 5 or the lower spherical surface 8 of the elliptical support is caused by the vertical displacement that descends while rolling on the concave spherical surface 1. ,
It is sufficient to equalize the displacement in the vertical direction of the F shoe as it rises while rolling on the concave spherical surface.

なお、上・下沓1,2の水平のすれによりつづみ支承5
又は楕円支承6が上・下沓1,2の曲面を転がる場合、
単純な半径一定の球面では沓と支承との共通接点におい
て支承の接点間隔と上下前の接点間隔が等しくならない
ので支承が沓を持ち上げることになる。このため本発明
では支承又は上下前に特殊な曲面をつくることにより上
下前の水平移動を可能にしている。次にこの曲面の形成
について述べる。
In addition, due to the horizontal slippage of the upper and lower shoes 1 and 2, the suspension support 5
Or when the elliptical bearing 6 rolls on the curved surfaces of the upper and lower shoes 1 and 2,
In the case of a simple spherical surface with a constant radius, at the common point of contact between the shoe and the support, the spacing between the contact points on the support and the contact spacing between the top and bottom front points will not be equal, so the support will lift the shoe. Therefore, in the present invention, horizontal movement in the vertical direction is made possible by creating a special curved surface in the support or in the vertical direction. Next, the formation of this curved surface will be described.

第5図に示されるように、上沓1、下沓2を左右同じ距
り移動させた場合、上告のD点は左方に移動してB点で
支承と接する。支承は上沓1、下沓2の曲面をころがり
つつ移動するので上沓及支承の円弧はTD二TCoとな
る。
As shown in FIG. 5, when the upper shoe 1 and the lower shoe 2 are moved the same distance on the left and right, the appellant's point D moves to the left and comes into contact with the support at point B. Since the support moves while rolling on the curved surfaces of the upper shoe 1 and the lower shoe 2, the arc of the upper shoe and the support becomes TD2TCo.

このC8点と下沓2と支承の接点をC′とすると、支承
の軸距CC′と支承と上沓の接点Bと支承と下沓との接
点をB′とすると、 CC′二BB’ でなくてはならない。上下前も円弧、支承も円弧である
と、一般に上式は成りたたない。
If the point of contact between this C8 point and the lower shoe 2 and the support is C', then the wheelbase CC' of the support, the point of contact B between the support and the upper shoe, and the point of contact between the support and the lower shoe are B', then CC'2BB' Must be. If the upper and lower fronts are also circular arcs, and the support is also a circular arc, the above formula generally does not hold.

よって支承の曲面を修正して、水平移動でも接する曲面
を支承にて行うとすれば、次の計算によりその曲面を算
定する。
Therefore, if the curved surface of the support is modified and horizontal movement is also performed on the contacting curved surface using the support, the curved surface will be calculated using the following calculation.

TD二TC。TD2TC.

1 r、ψにr二θ1.θ1−−ψ、(2)[2 水平距りZaを決めるとψ、の角度が判明するので上記
式の91が決まり計算により0.は決定する。
1 r, ψ to r2 θ1. θ1−−ψ, (2) [2 Once the horizontal distance Za is determined, the angle of ψ is known, so 91 in the above equation is determined and the calculation is 0. is determined.

AO,二AP、 −P、 O。AO, two AP, -P, O.

二r、cosψI’ (rl  ’2)=r、(cos
ψ、−1)+r2 次に、 θ二jan ’□ r、 (co5ψ+1)+r2 次にO,C,を回転してO−+Bi上にもって来たとき
の点を01とすると、縦軸上に投影する点を02として 01C2−r2CO5θ よって OI C20HA−e i 二r”2 CO5θ−r、
 (cos ψ、−1 ) −r2このelだけ支承C
点にて切削して曲面を作っておけばB点にて接し、且つ
、 CC′二BB’ となし得る。このようにして各点の曲面を作ることがで
きる。
2r, cosψI' (rl '2)=r, (cos
ψ, -1)+r2 Next, θ2jan '□ r, (co5ψ+1)+r2 Next, if O, C, are rotated and brought onto O-+Bi, and the point is 01, then on the vertical axis With the point to be projected as 02, 01C2-r2CO5θ Therefore, OI C20HA-e i 2r”2 CO5θ-r,
(cos ψ, -1) -r2 Only this el is supported C
If a curved surface is created by cutting at a point, it will touch at point B, and CC'2BB' can be formed. In this way, a curved surface at each point can be created.

楕円支承の曲面の形成: 第6図は、上告、下沓を左右同じ距離だけ移動させた場
合を示す。第6図において、上告のD点は左方に移動し
てB点で支承と接することになる。
Formation of curved surface of elliptical support: Figure 6 shows the case where the upper and lower shoes are moved the same distance on both sides. In Figure 6, the appellant's point D moves to the left and comes into contact with the support at point B.

然るに上告、下沓の上下接点の距離は、BB’ である。However, the distance between the upper and lower contact points of the lower shoe is BB' It is.

支承を等径の円とすると、ころがりによる円弧は等しい
関係から、 rIψI:r2θ12 θ1′−二%(1)2 とする。0点の径 CC′ となり、BB’\−CC’になるのでこ才L ’k Q
周整するために次の計算をして曲線を求める。
If the support is a circle with equal diameter, the arc due to rolling is equal, so rIψI:r2θ12 θ1'-2%(1)2. The diameter of point 0 becomes CC', which becomes BB'\-CC', so this is L 'k Q
In order to adjust the circumference, perform the following calculation to find the curve.

r。r.

[1ψI −”2θl  I   θ10−ψ1   
  (3)2 AOI 二API  PHOにl)p、cos ψH(
rl  r2)= r、cosψ1−「1モr2 二 r、(cos  ψ、−1)−+−r2次に、 6点をθ角となるO、B上に持って来た場合の点をC4
とすると、 0、C2= r2cosθ よって、 −67で2−加昇= eにr、、CO3θ−r、 (c
os ep、−1)  r:このelだけ支承の6点で
切込んで曲面を作っておけば、上沓、下沓が水平移動出
来るようになる。第6図2点鎖線の如し。
[1ψI −”2θl I θ10−ψ1
(3) 2 AOI 2 API PHO l) p, cos ψH (
rl r2) = r, cos ψ1 - "1 mo r2 2 r, (cos ψ, -1) - + - r2 Next, when the 6 points are brought on O and B, which is the θ angle, the point is C4
Then, 0,C2=r2cosθ Therefore, at -67, 2-increase=r to e,,CO3θ-r, (c
os ep, -1) r: If this el is cut at six points on the support to create a curved surface, the upper and lower shoes will be able to move horizontally. As shown by the two-dot chain line in Figure 6.

本発明の減損支承装置の大きさは、まず、可動部分であ
るつづみ支承あるいは楕円支承の凸球あるいは楕円球の
半径の決定から進められる。
The size of the loss bearing device of the present invention is determined by first determining the radius of the convex sphere or elliptical sphere of the movable part, such as a truss bearing or an elliptical bearing.

すなわち、荷重の大きさ、使用場所、環境により材料が
選定され、その材料の弾性係数、許容応カポアソ/比か
らヘルツの公式に基づいて、凸球あるいは楕円球の半径
が算定される。または、それぞれの部門における基準規
格によって決められる。
That is, the material is selected depending on the magnitude of the load, the place of use, and the environment, and the radius of the convex sphere or elliptical sphere is calculated from the elastic modulus of the material and the allowable capoisso/ratio based on Hertz's formula. Alternatively, it is determined by the standards in each sector.

次いで、上記可動部分の許容移動距離を決めてから、上
下沓の半径を決める。
Next, after determining the permissible travel distance of the movable part, the radius of the upper and lower shoes is determined.

以上説明したように、本発明の減損支承装置は、(1)
振幅の吸収、(2)上部構造への伝達力の抑制、(3)
復元力、(4)制動作用、(5)水平移動という5つの
機能を兼ね備えているので、橋梁、建築、機械装置等の
減損支承として有効に働くことができる。
As explained above, the impairment bearing device of the present invention has (1)
Absorption of amplitude, (2) Suppression of force transmitted to the superstructure, (3)
Since it has five functions: restoring force, (4) braking action, and (5) horizontal movement, it can work effectively as a loss support for bridges, buildings, mechanical devices, etc.

なお、更に別の態様として支承と上下沓の接触面で上り
を生じないようインボリュート歯形を形成すれば本発明
に係る装置を円滑に動かすことができる。
In addition, as another aspect, the device according to the present invention can be smoothly operated by forming an involute tooth profile so that no upward movement occurs at the contact surfaces of the bearing and the upper and lower shoes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は上下沓の正面断面図、第2図はつづみ支承の正
面断面図、第3図は上下舎内につつみ支承を組込んだ本
発明の一実施例よりなる減損支承装置の正面断面図、第
4図は」−下沓内に楕円支承を組込んだ本発明の他の実
施例よりなる減損支承装置の正面断面図、第5図は上下
舎内につづみ支承を組込んだ本発明の一実施例よりなる
減損支承装置の動きを示した説明図、および第6図は上
下舎内に楕円支承を組込んだ本発明の他の実施例よりな
る減損支承装置?+の動きを示した説明図である。 1・・・上沓、2・・・下沓、6・・・上凸球面、4・
・下凸球面、5・・・つづみ支承、6・・楕円支承、7
・・・上楕円球面、8・・・下楕円球面。 1 4−1  [ぢ二 第4図 7 f :j・5.パ
Fig. 1 is a front cross-sectional view of the upper and lower shoes, Fig. 2 is a front cross-sectional view of the tie support, and Fig. 3 is a front view of a loss bearing device according to an embodiment of the present invention in which the wrap support is incorporated in the upper and lower shoes. 4 is a front sectional view of an impairment bearing device according to another embodiment of the present invention in which an elliptical bearing is incorporated in the lower shoe, and FIG. 5 is a front sectional view in which a suspension bearing is incorporated in the upper and lower shoes An explanatory diagram showing the movement of a loss bearing device according to one embodiment of the present invention, and FIG. It is an explanatory diagram showing movement of +. 1...Upper shoe, 2...Lower shoe, 6...Upper convex spherical surface, 4...
・Downward convex spherical surface, 5... Tsuzuru bearing, 6... Elliptical bearing, 7
... Upper ellipsoidal surface, 8... Lower ellipsoidal surface. 1 4-1 [J2 Fig. 7 f:j・5. pa

Claims (1)

【特許請求の範囲】 1、 互いに凹部を内側にして相接した1−1二つの凹
曲面と、該二つの凹曲面によって形成される内側空間に
、それぞれの凹曲面に接し、なから組込捷Jする、中心
位置を異にする二つの凸曲面を互いにその凸部を外側に
してつなき介わせたDJ動部分とからなる減損支承装置
。 2、特許請求の範囲第1項において、用動部分が互いに
反対側の凸曲面の半径外に中・L・をもつつつみ支承よ
りなる減損支承装置。 3、 特許請求の範囲第1項において、LIJ動部分が
二つの凹曲面の半径よりも小さな半径を支承半径とし、
互いに反対側の凸曲面の十保内に中心をもつ楕円支承よ
りなる減損支承装Fj’: 。
[Claims] 1. Two concave curved surfaces 1-1 adjoining each other with the concave portions inside, and an inner space formed by the two concave curved surfaces, in contact with each of the concave curved surfaces, and incorporating A loss bearing device comprising a DJ moving part in which two convex curved surfaces having different center positions are connected to each other with the convex portion facing outward. 2. The impairment bearing device according to claim 1, wherein the operating portion is a wrap bearing having a center L outside the radius of convex curved surfaces on opposite sides. 3. In claim 1, the LIJ moving part has a radius smaller than the radius of the two concave curved surfaces as the bearing radius,
Impairment bearing Fj': .
JP9145182A 1982-05-31 1982-05-31 Vibration attenuating support apparatus Pending JPS58210202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9145182A JPS58210202A (en) 1982-05-31 1982-05-31 Vibration attenuating support apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9145182A JPS58210202A (en) 1982-05-31 1982-05-31 Vibration attenuating support apparatus

Publications (1)

Publication Number Publication Date
JPS58210202A true JPS58210202A (en) 1983-12-07

Family

ID=14026722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9145182A Pending JPS58210202A (en) 1982-05-31 1982-05-31 Vibration attenuating support apparatus

Country Status (1)

Country Link
JP (1) JPS58210202A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147529A (en) * 2001-09-10 2002-05-22 Kanazawa Seisakusho:Kk Base isolation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002147529A (en) * 2001-09-10 2002-05-22 Kanazawa Seisakusho:Kk Base isolation device

Similar Documents

Publication Publication Date Title
EP1013600B1 (en) Seismic isolation system of a crane
US20060000159A1 (en) Foundation shock eliminator
JP2015190502A (en) Seismic isolation device
JP2011144044A (en) Base isolation structure for travelling crane
JP2017514048A (en) Seismic isolation support with gravity control using gravity negative stiffness
JPS58210202A (en) Vibration attenuating support apparatus
JP3741428B2 (en) Support foundation structure of structure
JP4739567B2 (en) Seismic isolation structure
JP3195512B2 (en) Seismic isolation structure
JPH11190390A (en) Base isolation device
JP2001280418A (en) Vibration isolator
JP2004210546A (en) Base isolating apparatus for crane
JP2008127868A (en) Vibration control device and vibration control method
JP2007225101A (en) Vibration control device
JP5795516B2 (en) Fall prevention device
JP6464000B2 (en) Seismic isolation structure for rail-type traveling machines
JP2884965B2 (en) Damping device
JP3026446B2 (en) Seismic isolation device
JPH11230254A (en) Base isolation device
JPH10246281A (en) Damping device for base isolation structure
JP3829593B2 (en) Isolation device
JPS62188834A (en) Vibration damping supporter
JP2006037546A (en) Seismically isolated structure of building
JP4040437B2 (en) Vibration damping device using viscoelastic material
JPH02246866A (en) Between-bodies angular motion restraint