JP4739567B2 - Seismic isolation structure - Google Patents

Seismic isolation structure Download PDF

Info

Publication number
JP4739567B2
JP4739567B2 JP2001106203A JP2001106203A JP4739567B2 JP 4739567 B2 JP4739567 B2 JP 4739567B2 JP 2001106203 A JP2001106203 A JP 2001106203A JP 2001106203 A JP2001106203 A JP 2001106203A JP 4739567 B2 JP4739567 B2 JP 4739567B2
Authority
JP
Japan
Prior art keywords
isolation structure
seismic isolation
flange portions
flange
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001106203A
Other languages
Japanese (ja)
Other versions
JP2002302376A (en
Inventor
晃司 近藤
雅人 信太
武重 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Transport Machinery Co Ltd
Original Assignee
IHI Transport Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Transport Machinery Co Ltd filed Critical IHI Transport Machinery Co Ltd
Priority to JP2001106203A priority Critical patent/JP4739567B2/en
Publication of JP2002302376A publication Critical patent/JP2002302376A/en
Application granted granted Critical
Publication of JP4739567B2 publication Critical patent/JP4739567B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Leg Units, Guards, And Driving Tracks Of Cranes (AREA)
  • Control And Safety Of Cranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、免震構造に関するものである。
【0002】
【従来の技術】
図19及び図20に示すようなコンテナ荷役用のクレーン1は、港湾3の岸壁4上に敷設した海側レール5及び陸側レール6に沿って移動可能な走行部2を有している。
【0003】
走行部2は、海側レール5上を転動する車輪7が装備された海側支持脚8と、陸側レール6上を転動する車輪7が装備された陸側支持脚9とを、水平材10によって一体的に固定したものである。
【0004】
また、図示しないが、陸側支持脚9のみを水平材10と一体の剛脚とし、海側支持脚8を水平材10に対してレール5,6と平行な支持ピンにより揺動可能に枢支した揺脚構造とする場合もある。
【0005】
このクレーン1では、地震が発生した場合に、クレーン走行方向に対して直交する方向への加振力Aが、危険な外力としてクレーン1に作用することになる。
【0006】
この加振力Aは、レール5,6を介して両支持脚8,9に伝達されるが、地震の規模が大きいと当該支持脚8,9が折れ曲がり、クレーン1が海中に落下して、復旧が不可能になったり、あるいは復旧に要する費用が多大になることが懸念される。
【0007】
こうした地震によるクレーン1の倒壊を回避するためには、両支持脚8,9、及び走行部2全体の剛性強度を大幅に高める必要があるが、このような手法では、クレーン1の重量増加や制作費の高騰を招いてしまう。
【0008】
更に、近年、走行部2を構成している両支持脚8,9、及びその他の構造部材に、弾性材や低摩擦材を用いた振動緩衝装置を設けて、地震に起因する加振力Aを吸収、減衰させる手法や、予め設定した値を超える加振力Aが作用したときに破断する剪断ピンを、走行部2の支持脚8,9などに設けたり、あるいは通常時に走行部2の構成部材を締結状態に保ち、予め設定した値を超過する加振力Aが作用した際に当該構成部材の締結を解除する締結機を設けて、部材の折損を回避する手法が提案されている。
【0009】
【発明が解決しようとする課題】
しかしながら、振動緩衝装置を設ける手法では、通常作業時にも走行部2などの作動に伴ってクレーン1上部が揺動するため、操作室の乗り心地が悪く、運転者に不快感を与えることになる。
【0010】
また、振動緩衝装置の機能的条件を、加振力Aを確実に吸収できるように設定することが非常に難しく、このため、揺れを増幅させてしまう可能性もある。
【0011】
剪断ピンや締結機を設ける手法では、これらで締結される構成部材が水平方向へ大きくずれることを抑制するストッパを設けて、剪断ピンの破断時、あるいは締結機の作動時にクレーン1が転倒しないようにする必要がある。
【0012】
更に、上記手法のいずれにおいても、地震の発生によって構成部材が水平方向へ相互にずれて停止したときを考慮すると、これらの相対位置を元の状態に戻すために、ジャッキなどの位置調節装置を備えなければならない。
【0013】
これに加えて、構成部材を元の状態に戻すこと、剪断ピンの交換、締結機の再締結などの復旧作業は、短時間で完了することが困難であるため、大規模な地震の発生で陸上が甚大な被害を被った場合には、海上交通により輸送される物資の陸揚げを速やかに行なうことができなくなってしまう。
【0014】
本発明は上述した実情に鑑みてなしたもので、通常は剛構造を呈し且つ地震による振動の伝達を抑制できる免震構造を提供することを目的としている。
【0015】
【課題を解決するための手段】
上記目的を達成するため本発明では、支持柱を上下へ2分割し且つ各分割端にフランジ部を設け、上下に対峙するフランジ部の中央部分に、所要の接触幅を有して相互に接し且つ鉛直方向の荷重を伝達する当接面を形成し、上下のフランジ部の少なくとも一方の両側縁寄り部分の形状を、他方のフランジ部から離隔するように設定して隙間を形成し、上下のフランジ部の両側縁寄り部分を、上下への相対変位を許容する連結具によって連結し、上下のフランジ部の間に、当接面幅端部に沿って延びる支点ピンを介在させ、免震構造を構成する。
【0016】
また、支持柱の下端部を、略水平に且つフランジ部接触幅に対して交差する方向へ延びる支持ピンにより固定構造物に枢支する。
【0017】
あるいは、支持柱を上下へ3分割し且つ各分割端にフランジ部を設け、上下に対峙するフランジ部の中央部分に、所要の接触幅を有して相互に接し且つ鉛直方向の荷重を伝達する当接面を形成し、上下のフランジ部の少なくとも一方の両側縁寄り部分の形状を、他方のフランジ部から離隔するように設定して隙間を形成し、上下のフランジ部の両側縁寄り部分を、上下への相対変位を許容する連結具によって連結し、上下のフランジ部の間に、当接面幅端部に沿って延びる支点ピンを介在させ、免震構造を構成する。
【0018】
更に、上下のフランジ部を相互に押圧する弾性材を設ける。
【0019】
本発明の免震構造のいずれにおいても、通常は、フランジ部よりも上方に位置している部材の荷重によって、上下のフランジ部の当接面が密に接触した状態が保たれ、支持柱が剛構造を呈する。
【0020】
地震の発生により、当接面の幅方向への加振力が支持柱に作用すると、上下のフランジ部が支点ピンを中心として相対的に傾き、上下に分割されている支持柱が、フランジ部を境に折れ曲がり、次いで、フランジ部よりも上方に位置している部材の荷重によって、上下のフランジ部の支点ピンを中心とした相対的な傾きが減少して双方の当接面が密に接触した状態へ戻る。
【0021】
更に、弾性材によって上下のフランジ部を相互に押圧する構成とすると、通常は、フランジ部よりも上方に位置している部材の荷重、及び弾性材の予圧縮力で、上下のフランジ部の当接面が密に接触した状態が保たれる。
【0022】
また、地震の発生により、上下に分割されている支持柱が、フランジ部を境に折れ曲がった後、フランジ部よりも上方に位置している部材の荷重、及び弾性材の反発力で、上下のフランジ部が双方の当接面が密に接触する状態へ戻る。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0024】
図1乃至図4は本発明の免震構造を適用したクレーンの第1の例であり、図中、図19及び図20と同一の符号を付した部分は同一物を表わしている。
【0025】
このクレーン1では、海側支持脚8及び陸側支持脚9をそれらの上端寄り箇所で分割し、分割した上部材8a,9aと下部材8b,9bの間に、免震構造11を装備している。
【0026】
免震構造11は、上部材8a,9a下端部に設けたフランジ部12と、下部材8b,9b上端部に設けたフランジ部13と、当該フランジ部12,13を上下への変位を許容するように連結する連結具18と、フランジ部12,13を相互に押圧する弾性材17とを備えている。
【0027】
フランジ部12,13には、図2乃至図4に示すように、クレーン1走行方向に対して交差する方向へ所要の接触幅Lを有して相互に接し且つ鉛直方向の荷重を伝達する当接面14が、レール5,6真上に位置するように形成されている。
【0028】
また、下側のフランジ部13の両側縁寄り部分には、当接面14に連なり且つ上側のフランジ部12から徐々に離隔して隙間15,16を形成する傾斜面20が設けられている。
【0029】
この傾斜面20と当接面14とがなす傾斜角αは、想定される地震の大きさ、並びに支持脚8,9の下部材8b,9bの長さに応じて設定されている。
【0030】
連結具18は、その中間部分が隙間15,16内に位置し且つ支持脚8,9を構成している側板19の内方と外方に位置するように2列にわたってフランジ部12,13の両側縁寄り部分を貫通している。
【0031】
弾性材17は、複数の皿バネ17Aを積み重ねたもので、皿バネ17A積層体は、フランジ部12上面と連結具18の上端部の間、及びフランジ部13下面と連結具18の下端部との間に介在している。
【0032】
弾性材17の反発強度と連結具18による締め付け強度は、所定の予圧縮力が想定される地震の規模に応じて得られるように設定しておく。
【0033】
連結具18と弾性材17を、図2乃至図4に示すように、側板19内外に2列にわたって配置した場合には、装置の小型化が達成でき、側板19内だけに配置した場合には、連結具18や弾性材17の発錆を抑制できる。
【0034】
また、フランジ部12,13の間には、当接面14の幅端部14a,14bに沿って前後方向へ延びる支点ピン21,22が介在しており、該支点ピン21,22のいずれか一方を支点として、フランジ部12,13が相対的に傾くことができるようになっている。
【0035】
更に、フランジ部12の左右縁部には、フランジ部12,13の左右方向への位置ずれを防止し且つフランジ部12,13の左右への傾動を規制するストッパ23が固着され、フランジ部13の前後縁部には、フランジ部12,13の前後方向への位置ずれを防止するためのストッパ24が固着されている。
【0036】
図1乃至図4に示すクレーン1では、通常は、免震構造11よりも上方に位置している部材の鉛直方向の荷重、及び弾性材17の予圧縮力(初期締め付け力)で、フランジ部12,13の当接面14が密に接触した状態が保たれ、走行部2の両支持脚8,9が剛構造を呈する。
【0037】
地震の発生により、クレーン1左右方向への加振力Aが両支持脚8,9に作用して、当該加振力Aが弾性材17によるフランジ部12,13の初期締め付け力を超えると、例えば、図4に示すように、フランジ部12,13が支点ピン22を中心に相対的に傾き、一方の隙間15が拡がり且つ他方の隙間16が狭まってフランジ部12,13の当接面14が離反し、下部材8b,9bと上部材8a,9aが免震構造11を境に折れ曲がる。
【0038】
次いで、免震構造11よりも上方の部材の荷重で生じる復原モーメント、及び弾性材17の反発力によって、図2に示すように、フランジ部12,13が支点ピン22を中心に相対的な傾きが減少するように変位し、再び当接面14が密に接触した状態へ戻る。
【0039】
また、一方の隙間15が狭まり且つ他方の隙間16が拡がるように、両支持脚8,9が折れ曲がるときには、支点ピン21を中心としてフランジ部12,13が相対的に傾くことになる。
【0040】
すなわち、下部材8b,9bに対する上部材8a,9aの相対変位と加振力A(モーメント)の関係が、図5に実線で示すように、加振力Aが所定値に達するまでは、下部材8b,9bと上部材8a,9aが相対変位せず、加振力Aが所定値を超えたときに、当該加振力Aに応じて下部材8b,9bと上部材8a,9aが相対変位するような折れ線状を呈している。
【0041】
従って、通常は、弾性材17が作動せず、クレーン1上部が揺動しないため、運転者に不快感を与えることがない。
【0042】
また、地震が発生したときは、支持脚8,9が免震構造11を境に自由に折れ曲がることにより加振力Aを吸収して減衰させ、免震構造11よりも上方に位置している部材の応答加速度の低減を図るので、部材の折損や、クレーン1の倒壊を回避できる。
【0043】
更に、免震構造11よりも上方の部材の荷重によって生じる復原モーメント、及び弾性材17の反発力で、フランジ部12,13が支点ピン21,22を中心に変位して当接面14が密に接触した状態に戻るとともに、ストッパ23,24によってフランジ部12,13の左右と前後への位置ずれを防止するので、地震が収束すれば、直ちに通常の荷役作業を再開することができる。
【0044】
これに加えて、近年提案されている振動吸収装置をクレーン1に適用した場合は、クレーン1上部の変位と加振力Aの関係が、図5に破線で示すように、バネ定数kと加振力Aに応じてクレーン1上部が変位する直線状を呈し、部材の固有振動数と加振力Aの周波数とが近似した際に共振が生じることが懸念されるが、免震構造11を適用したクレーン1では、加振力Aが所定値を超過したときに、支持脚8,9が免震構造11を境に折れ曲って相対的に変位するので、共振点が定まらず、共振を考慮する必要がなくなる。
【0045】
図6及び図7は本発明の免震構造を適用したクレーンの第2の例であり、図中、図1乃至図4と同一の符号を付した部分は同一物を表わしている。
【0046】
このクレーン1では、フランジ部12,13を貫通している連結具18の上端部を、当該連結具18が左右へ揺動し得るようにフランジ部12に枢支し、図1乃至図4における皿バネ17A積層体に代えて、圧縮バネ17Bを弾性材17として、フランジ部13下面と連結具18の下端部との間に介在させており、図1乃至図4に示すものと同等の作用効果を奏する。
【0047】
上記の圧縮バネ17Bに代えて、上側のフランジ部12と下部材8b,9bとの間に引張りバネを設ける構成、あるいは下側のフランジ部13と上部材8a,9aとの間に引張りバネを設ける構成、更にはこれらを組み合わせて引張りバネをタスキ掛けにし、フランジ部12,13に予圧縮力を付与するようにした場合も、図1乃至図4に示すものと同等の作用効果を奏する。
【0048】
また、図8は本発明の免震構造を適用したクレーンの第3の例であり、図中、図1乃至図4と同一の符号を付した部分は同一物を表わしている。
【0049】
このクレーン1では、図1乃至図4で用いた皿バネ17Aに代えて、弾性ゴム17Cを弾性材17として、フランジ部12上面と連結具18の上端部との間、及びフランジ部13下面と連結具18の下端部との間にそれぞれ介在させており、図1乃至図4に示すものと同等の作用効果を奏する。
【0050】
図9は本発明の免震構造を適用したクレーンの第4の例であり、このクレーン25は、走行機能を有していない位置固定の複数の支持脚26を、上部材26aと下部材26bに2分割し、上部材26aの下端部に図1乃至図4と同様な免震構造11のフランジ部12を、下部材26bの上端部にフランジ部13を設け、下部材26bの下端部を地表に設けたブラケット27に、フランジ部12,13の接触幅L(図2乃至図4参照)に対して交差する方向へ水平に延びる支持ピン28を介して枢支したものであり、図1乃至図4に示すものと同等の作用効果を奏する。
【0051】
図9に示すクレーン25では、地震の発生により、クレーン25左右方向への加振力A(図1参照)が支持脚26に作用すると、フランジ部12,13が支点ピン21,22のいずれかを中心に相対的に傾き、下部材26bと上部材26aが免震構造11を境に折れ曲がる。
【0052】
次いで、免震構造11よりも上方の部材の荷重で生じる復原モーメント、及び弾性材17の反発力によって、相対的な傾きが減少するようにフランジ部12,13が変位し、図1乃至図4に示すものと同様の作用効果を奏する。
【0053】
また、図10は本発明の免震構造を適用したクレーンの第5の例であり、図中、図9と同一の符号を付した部分は同一物を表わしている。
【0054】
このクレーン25では、位置固定の支持脚26の下端寄り部分の形状を、水平断面が下方へ向かって徐々に縮小する先細り状に設定したうえ、当該支持脚26を、上部材26aと下部材26bに2分割し、上部材26aの下端部に免震構造11のフランジ部12を、下部材26bの上端部にフランジ部13を設けており、図9に示すものと同等の作用効果を奏する。
【0055】
図11及び図12は本発明の免震構造を適用したクレーンの第6の例であり、図中、図1乃至図4と同一の符号を付した部分は同一物を表わしている。
【0056】
このクレーン25は、支持脚26を、上部材26a、中間部材26c、下部材26bに3分割して、上部材26a、中間部材26cの下端部に免震構造11のフランジ部12を、中間部材26c、下部材26bの上端部にフランジ部13を設けたものである。
【0057】
中間部材26cと下部材26bとの間に装備される免震構造11では、図12に示すように、上側のフランジ部12の両側縁寄り部分に、当接面14に連なり且つ下側のフランジ部13から徐々に離隔して隙間15,16を形成する傾斜面20が設けられている。
【0058】
図11及び図12に示すクレーン25では、地震の発生により、クレーン25左右方向への加振力A(図1参照)が支持脚26に作用すると、フランジ部12,13が支点ピン21,22のいずれかを中心に相対的に傾く。
【0059】
これにより、下部材26bと中間部材26cが下側の免震構造11を境に折れ曲がり、中間部材26cと上部材26aが上側の免震構造11を境に折れ曲がる。
【0060】
次いで、免震構造11よりも上方の部材の荷重で生じる復原モーメント、及び弾性材17の反発力によって、相対的な傾きが減少するようにフランジ部12,13が変位し、図1乃至図4に示すものと同様の作用効果を奏する。
【0061】
図13乃至図18は免震構造11の変形例であり、図中、図1乃至図4、図6乃至図8と同一の符号を付した部分は同一物を表わしている。
【0062】
図13に示すものでは、上下の各フランジ部12,13の両側縁寄り部分に、当接面14に連なり且つ下側のフランジ部13から徐々に離隔して隙間15,16を形成する傾斜面20がそれぞれ設けられている。
【0063】
図14に示すものでは、フランジ部13の両側縁寄り部分に、当接面14に連なり且つ上側のフランジ部12から徐々に離隔して隙間15,16を形成する凸曲面29が設けられている。
【0064】
この凸曲面29は、上側のフランジ部12だけに設けるようにしてもよいし、あるいは、上下の各フランジ部12,13に設けるようにしてもよい。
【0065】
図15及び図16に示すものでは、上側のフランジ部12の中央部分に上下へ貫通する孔30を穿設し、該孔30の内周面に対して空隙を形成し得る平面形状のストッパ31を、下側のフランジ部13の中央部分に固着している。
【0066】
この免震構造では、地震の発生により、クレーン1左右方向への加振力A(図1参照)が支持脚8に作用すると、フランジ部12,13が当接面14の幅端部14a,14bのいずれかを中心に相対的に傾く。
【0067】
フランジ部12,13が相対的に傾くときや、当接面14が密に接触する状態に戻るときには、孔30内周面とストッパ31外周面が接して、フランジ部12,13の左右と前後への位置ずれを防止する。
【0068】
また、上述した構成とは逆に、下側のフランジ部13の中央部分に上下へ貫通する孔を穿設し、当該孔の内周面に対して空隙を形成し得る平面形状のストッパを、上側のフランジ部12の中央部分に固着してもよい。
【0069】
図17及び図18に示すものでは、上側のフランジ部12の前後縁部に切り欠き32を設け、該切り欠き32に対して遊嵌するストッパ33を、下側のフランジ部13の前後縁部に固着している。
【0070】
この免震構造では、フランジ部12,13が当接面14の幅端部14a,14bの一方を中心に傾くときや、当接面14が密に接触する状態に戻るときには、切り欠き32とストッパ33が接して、フランジ部12,13の左右と前後への位置ずれを防止する。
【0071】
また、上述した構成とは逆に、下側のフランジ部13の前後縁部に切り欠きを設け、当該切り欠きに遊嵌するストッパを、上側のフランジ部12の前後縁部に固着してもよい。
【0072】
なお、本発明の免震構造は、上述した実施の形態のみに限定されるものではなく、剛脚と揺脚構造とを組み合わせて備えた走行クレーンの場合には、剛脚だけに免震構造を設けること、クレーン以外の柱や脚を有する構造物に適用すること、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0073】
【発明の効果】
以上述べたように、本発明の免震構造によれば、下記のような種々の優れた効果を奏し得る。
【0074】
(1)本発明の免震構造のいずれにおいても、通常は、フランジ部よりも上方に位置している部材の荷重によって、上下のフランジ部の当接面が密に接触した状態が保たれ、支持柱が剛構造を呈するので、当該支持柱の上方の構造物に揺れが生じない。
【0075】
(2)地震の発生により、当接面の幅方向への加振力が支持柱に作用すると、上下のフランジ部が支点ピンを中心として相対的に傾き、上下に分割されている支持柱が、フランジ部を境に折れ曲がり、次いで、フランジ部よりも上方に位置している部材の荷重によって、上下のフランジ部の支点ピンを中心とした相対的な傾きが減少して当接面が密に接触する状態へ戻るので、フランジ部よりも上方の部材の応答加速度が低減し、支持柱の倒壊や部材の折損を回避することができる。
【0076】
(3)加振力が所定値を超えない限り、上下に分割されている支柱が相対的に変位しないので、共振を考慮する必要がなくなる。
【0077】
(4)本発明をクレーンの支持脚に適用した場合、通常は、フランジ部の当接面が密に接触して免震構造よりも上方に位置している荷重を、免震構造を介してその下方の部材へ伝達するので、クレーン上部が揺動せず、運転者に不快感を与えることがない。
【0078】
(5)また、地震が発生したときは、上下に分割されている支持脚が免震構造を境に折れ曲がることにより加振力を吸収して減衰させるので、免震構造よりも上方に位置している部材の応答加速度の低減が図られ、部材の折損や、クレーンの倒壊を回避できる。
【0079】
(6)更に、免震構造よりも上方の部材の荷重で、上下のフランジ部の当接面が密に接触した状態に戻るので、地震が収束した後、直ちに荷役作業を再開することができる。
【図面の簡単な説明】
【図1】 本発明の免震構造を適用したクレーンの第1の例の走行部を示す概略正面図である。
【図2】 本発明の免震構造を適用したクレーンの第1の例の詳細を示す正面図である。
【図3】 図2のIII−III矢視図である。
【図4】 図2における免震構造の作動状態を示す正面図である。
【図5】 クレーン上部の変位と水平方向への加振力との関係を示す線図である。
【図6】 本発明の免震構造を適用したクレーンの第2の例の詳細を示す正面図である。
【図7】 図6のVII−VII矢視図である。
【図8】 本発明の免震構造を適用したクレーンの第3の例の詳細を示す正面図である。
【図9】 本発明の免震構造を適用したクレーンの第4の例の支持脚を示す概略正面図である。
【図10】 本発明の免震構造を適用したクレーンの第5の例の支持脚を示す概略正面図である。
【図11】 本発明の免震構造を適用したクレーンの第6の例の支持脚を示す概略正面図である。
【図12】 図11における下側の免震構造の詳細を示す正面図である。
【図13】 本発明の免震構造の変形例を示す正面図である。
【図14】 本発明の免震構造の変形例を示す正面図である。
【図15】 本発明の免震構造の変形例を示す正面図である。
【図16】 図15のXVI−XVI矢視図である。
【図17】 本発明の免震構造の変形例を示す正面図である。
【図18】 図17のXVIII−XVIII矢視図である。
【図19】 コンテナクレーンの一例を示す概略構成図である。
【図20】 図19のコンテナクレーンが倒壊していく様子を示す概略図である。
【符号の説明】
1,25 クレーン
2 走行部
5,6 レール
8 海側支持脚(支持柱)
9 陸側支持脚(支持柱)
12,13 フランジ部
14 当接面
14a,14b 幅端部
15,16 隙間
17 弾性材
17A 皿バネ
17B 圧縮バネ
17C 弾性ゴム
18 連結具
20 傾斜面
21,22 支点ピン
23,24 ストッパ
26 支持脚(支持柱)
27 ブラケット(固定構造物)
28 支持ピン
29 凸曲面
31,33 ストッパ
L 接触幅
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic isolation structure.
[0002]
[Prior art]
A crane 1 for container handling as shown in FIGS. 19 and 20 has a traveling unit 2 that can move along a sea-side rail 5 and a land-side rail 6 laid on a quay 4 of a harbor 3.
[0003]
The traveling unit 2 includes a sea-side support leg 8 equipped with wheels 7 that roll on the sea-side rail 5 and a land-side support leg 9 equipped with wheels 7 that roll on the land-side rail 6. It is integrally fixed by the horizontal member 10.
[0004]
Although not shown, only the land-side support leg 9 is a rigid leg integrated with the horizontal member 10, and the sea-side support leg 8 is pivotable with respect to the horizontal member 10 by a support pin parallel to the rails 5 and 6. In some cases, it is a supported swinging leg structure.
[0005]
In this crane 1, when an earthquake occurs, the exciting force A in a direction orthogonal to the traveling direction of the crane acts on the crane 1 as a dangerous external force.
[0006]
This excitation force A is transmitted to both support legs 8 and 9 via the rails 5 and 6, but when the magnitude of the earthquake is large, the support legs 8 and 9 are bent, and the crane 1 falls into the sea, There is a concern that recovery will become impossible or the cost required for recovery will be large.
[0007]
In order to avoid the collapse of the crane 1 due to such an earthquake, it is necessary to significantly increase the rigidity strength of the support legs 8 and 9 and the traveling part 2 as a whole. The production cost will soar.
[0008]
Furthermore, in recent years, vibration support devices using an elastic material or a low friction material are provided on the support legs 8 and 9 and other structural members constituting the traveling unit 2, and an excitation force A resulting from an earthquake is provided. Is provided on the support legs 8 and 9 of the traveling unit 2 or the normal operation of the traveling unit 2 at a normal time, or a shear pin that breaks when an excitation force A exceeding a preset value is applied. There has been proposed a method for avoiding breakage of a member by providing a fastening machine that keeps the component member in a fastening state and releases the fastening of the component member when an excitation force A exceeding a preset value is applied. .
[0009]
[Problems to be solved by the invention]
However, in the method of providing the vibration damping device, the upper part of the crane 1 swings in accordance with the operation of the traveling unit 2 or the like even during normal work, so the ride comfort in the operation room is poor and the driver is uncomfortable. .
[0010]
In addition, it is very difficult to set the functional condition of the vibration damper so that the excitation force A can be surely absorbed, and therefore, the vibration may be amplified.
[0011]
In the method of providing a shear pin or a fastening machine, a stopper is provided to prevent the components fastened by these from being greatly displaced in the horizontal direction so that the crane 1 does not fall over when the shear pin is broken or when the fastening machine is operated. It is necessary to.
[0012]
Furthermore, in any of the above methods, in consideration of when the structural members are displaced from each other in the horizontal direction and stopped due to the occurrence of an earthquake, a position adjusting device such as a jack is used to return these relative positions to the original state. You must prepare.
[0013]
In addition, recovery operations such as returning components to their original state, exchanging shear pins, and re-fastening fasteners are difficult to complete in a short time. If the land is severely damaged, it will be impossible to promptly land the goods transported by maritime traffic.
[0014]
The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a seismic isolation structure that normally exhibits a rigid structure and can suppress transmission of vibration due to an earthquake.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the support column is divided into two parts in the vertical direction, and a flange portion is provided at each divided end. In addition, a contact surface that transmits a load in the vertical direction is formed, and the shape of at least one side edge portion of the upper and lower flange portions is set so as to be separated from the other flange portion to form a gap. The parts near both side edges of the flange part are connected by a connector that allows relative displacement in the vertical direction, and a fulcrum pin extending along the end of the abutting surface width is interposed between the upper and lower flange parts, thereby providing a seismic isolation structure. Configure.
[0016]
Further, the lower end portion of the support column is pivotally supported on the fixed structure by a support pin extending substantially horizontally and in a direction intersecting with the flange portion contact width.
[0017]
Alternatively, the support pillar is divided into three parts in the vertical direction, and a flange portion is provided at each divided end, and a center portion of the flange portion facing the vertical direction is in contact with each other with a required contact width and transmits a vertical load. A contact surface is formed, and the shape of at least one side edge portion of the upper and lower flange portions is set so as to be separated from the other flange portion to form a gap. They are connected by a connector that allows relative displacement in the vertical direction, and a fulcrum pin extending along the abutting surface width end portion is interposed between the upper and lower flange portions to constitute a seismic isolation structure.
[0018]
Furthermore, an elastic material that presses the upper and lower flange portions is provided.
[0019]
In any of the seismic isolation structures of the present invention, normally, the contact surface of the upper and lower flange portions is kept in close contact with the load of the member located above the flange portion, and the support column is Exhibits a rigid structure.
[0020]
When an excitation force in the width direction of the contact surface acts on the support column due to the occurrence of an earthquake, the upper and lower flange portions are inclined relative to the fulcrum pin, and the support columns that are divided vertically are Then, due to the load of the member located above the flange part, the relative inclination around the fulcrum pin of the upper and lower flange parts decreases, and both contact surfaces come into close contact with each other Return to the completed state.
[0021]
Further, when the upper and lower flange portions are pressed against each other by the elastic material, the upper and lower flange portions are usually applied by the load of the member positioned above the flange portion and the precompression force of the elastic material. The contact surface is kept in close contact.
[0022]
In addition, after the support pillar divided vertically by the occurrence of an earthquake is bent at the flange, the load of the member positioned above the flange and the repulsive force of the elastic material The flange portion returns to a state in which both contact surfaces are in close contact with each other.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0024]
1 to 4 show a first example of a crane to which the seismic isolation structure of the present invention is applied. In the figure, the same reference numerals as those in FIGS. 19 and 20 denote the same parts.
[0025]
In this crane 1, the sea-side support leg 8 and the land-side support leg 9 are divided at their upper end portions, and the seismic isolation structure 11 is provided between the divided upper members 8a, 9a and lower members 8b, 9b. ing.
[0026]
The seismic isolation structure 11 allows a flange portion 12 provided at the lower ends of the upper members 8a and 9a, a flange portion 13 provided at the upper ends of the lower members 8b and 9b, and displacement of the flange portions 12 and 13 in the vertical direction. Thus, a connecting tool 18 and an elastic member 17 that presses the flange portions 12 and 13 together are provided.
[0027]
As shown in FIGS. 2 to 4, the flange portions 12 and 13 have a required contact width L in a direction intersecting the traveling direction of the crane 1 and are in contact with each other and transmit a load in the vertical direction. The contact surface 14 is formed so as to be positioned immediately above the rails 5 and 6.
[0028]
In addition, inclined surfaces 20 that form gaps 15, 16 are provided at portions near both side edges of the lower flange portion 13, which are connected to the contact surface 14 and are gradually separated from the upper flange portion 12.
[0029]
The inclination angle α formed by the inclined surface 20 and the contact surface 14 is set in accordance with the magnitude of the assumed earthquake and the length of the lower members 8b, 9b of the support legs 8, 9.
[0030]
The connecting member 18 is positioned between the flange portions 12 and 13 in two rows so that the intermediate portion thereof is located in the gaps 15 and 16 and located on the inner side and the outer side of the side plate 19 constituting the supporting legs 8 and 9. It penetrates the side edge.
[0031]
The elastic member 17 is formed by stacking a plurality of disc springs 17A, and the disc spring 17A laminate is formed between the upper surface of the flange portion 12 and the upper end portion of the connector 18, and the lower surface of the flange portion 13 and the lower end portion of the connector 18. It is interposed between.
[0032]
The resilience strength of the elastic material 17 and the tightening strength by the coupler 18 are set so that a predetermined precompression force can be obtained according to the magnitude of the earthquake.
[0033]
As shown in FIGS. 2 to 4, when the connector 18 and the elastic member 17 are arranged in two rows inside and outside the side plate 19, the apparatus can be reduced in size. Further, rusting of the connector 18 and the elastic material 17 can be suppressed.
[0034]
Between the flange portion 12, the width end portion 14a of the abutment surface 14 and fulcrum pin 21, 22 extending in the longitudinal direction is interposed along 14b, one of the support pins 21 and 22 The flange portions 12 and 13 can be relatively inclined with one side as a fulcrum.
[0035]
Further, stoppers 23 that prevent the flange portions 12 and 13 from being displaced in the left-right direction and restrict the tilting of the flange portions 12 and 13 to the left and right are fixed to the left and right edge portions of the flange portion 12. A stopper 24 is fixed to the front and rear edge portions of the flange portion 12 and 13 for preventing the flange portions 12 and 13 from shifting in the front-rear direction.
[0036]
In the crane 1 shown in FIG. 1 to FIG. 4, the flange portion is usually formed by the vertical load of the member positioned above the seismic isolation structure 11 and the precompression force (initial tightening force) of the elastic member 17. The contact surfaces 14 and 13 are kept in close contact with each other, and both support legs 8 and 9 of the traveling unit 2 have a rigid structure.
[0037]
When the vibration force A in the lateral direction of the crane 1 acts on both support legs 8 and 9 due to the occurrence of an earthquake, and the vibration force A exceeds the initial tightening force of the flange portions 12 and 13 by the elastic material 17, For example, as shown in FIG. 4, the flange portions 12 and 13 are relatively inclined with respect to the fulcrum pin 22, one gap 15 is widened, and the other gap 16 is narrowed so that the contact surface 14 of the flange portions 12 and 13. Are separated, and the lower members 8b and 9b and the upper members 8a and 9a are bent with the seismic isolation structure 11 as a boundary.
[0038]
Next, due to the restoring moment generated by the load of the member above the seismic isolation structure 11 and the repulsive force of the elastic member 17, the flange portions 12 and 13 are inclined relative to the fulcrum pin 22 as shown in FIG. Is reduced so that the contact surface 14 comes into close contact again.
[0039]
Further, when both the support legs 8 and 9 are bent so that one gap 15 is narrowed and the other gap 16 is widened, the flange portions 12 and 13 are relatively inclined with the fulcrum pin 21 as the center.
[0040]
That is, the relationship between the relative displacement of the upper members 8a and 9a with respect to the lower members 8b and 9b and the excitation force A (moment) is lower until the excitation force A reaches a predetermined value as shown by the solid line in FIG. When the members 8b and 9b and the upper members 8a and 9a are not relatively displaced, and the excitation force A exceeds a predetermined value, the lower members 8b and 9b and the upper members 8a and 9a are relative to each other according to the excitation force A. It has a broken line shape that is displaced.
[0041]
Therefore, normally, since the elastic member 17 does not operate and the upper part of the crane 1 does not swing, the driver does not feel uncomfortable.
[0042]
Further, when an earthquake occurs, the support legs 8 and 9 are freely bent at the boundary of the base isolation structure 11 to absorb and attenuate the excitation force A, and are located above the base isolation structure 11. Since the response acceleration of the member is reduced, breakage of the member and collapse of the crane 1 can be avoided.
[0043]
Further, due to the restoring moment generated by the load of the member above the seismic isolation structure 11 and the repulsive force of the elastic member 17, the flange portions 12 and 13 are displaced about the fulcrum pins 21 and 22, and the contact surface 14 is dense. In addition, the stoppers 23 and 24 prevent the flange portions 12 and 13 from being displaced to the left and right and front and rear, so that if the earthquake converges, normal cargo handling operations can be resumed immediately.
[0044]
In addition, when a recently proposed vibration absorber is applied to the crane 1, the relationship between the displacement of the upper part of the crane 1 and the excitation force A is shown in FIG. Although the upper part of the crane 1 is displaced in response to the vibration force A, there is a concern that resonance will occur when the natural frequency of the member approximates the frequency of the excitation force A. In the applied crane 1, when the excitation force A exceeds a predetermined value, the support legs 8 and 9 are bent relative to the seismic isolation structure 11, and the resonance point is not determined. No need to consider.
[0045]
6 and 7 show a second example of a crane to which the seismic isolation structure of the present invention is applied. In the figure, the parts denoted by the same reference numerals as those in FIGS. 1 to 4 represent the same thing.
[0046]
In this crane 1, the upper end portion of the connecting tool 18 penetrating the flange parts 12 and 13 is pivotally supported on the flange part 12 so that the connecting tool 18 can swing left and right. Instead of the disc spring 17A laminate, the compression spring 17B is used as an elastic material 17 and is interposed between the lower surface of the flange portion 13 and the lower end portion of the coupler 18, and has the same effect as that shown in FIGS. There is an effect.
[0047]
Instead of the compression spring 17B, a configuration in which a tension spring is provided between the upper flange portion 12 and the lower members 8b and 9b, or a tension spring is provided between the lower flange portion 13 and the upper members 8a and 9a. Even when the structure to be provided and the combination thereof are used as a tension spring to apply a precompression force to the flange portions 12 and 13, the same effects as those shown in FIGS.
[0048]
FIG. 8 is a third example of a crane to which the seismic isolation structure of the present invention is applied. In the figure, the parts denoted by the same reference numerals as those in FIGS. 1 to 4 represent the same thing.
[0049]
In this crane 1, instead of the disc spring 17 </ b> A used in FIGS. 1 to 4, an elastic rubber 17 </ b> C is used as the elastic material 17, and between the upper surface of the flange portion 12 and the upper end portion of the connector 18, and the lower surface of the flange portion 13. It is interposed between the lower end portion of the connecting tool 18 and has the same effects as those shown in FIGS. 1 to 4.
[0050]
FIG. 9 shows a fourth example of a crane to which the seismic isolation structure of the present invention is applied. This crane 25 includes a plurality of position-fixed support legs 26 that do not have a traveling function, and includes an upper member 26a and a lower member 26b. 1, the flange portion 12 of the seismic isolation structure 11 similar to that of FIGS. 1 to 4 is provided at the lower end portion of the upper member 26 a, the flange portion 13 is provided at the upper end portion of the lower member 26 b, and the lower end portion of the lower member 26 b is provided. It is pivotally supported on a bracket 27 provided on the ground surface via a support pin 28 extending horizontally in a direction intersecting with the contact width L (see FIGS. 2 to 4) of the flange portions 12 and 13. Thru | or an effect equivalent to what is shown in FIG.
[0051]
In the crane 25 shown in FIG. 9, when an excitation force A (see FIG. 1) in the lateral direction of the crane 25 acts on the support leg 26 due to the occurrence of an earthquake, the flange portions 12 and 13 are either the fulcrum pins 21 or 22. The lower member 26b and the upper member 26a are bent with the seismic isolation structure 11 as a boundary.
[0052]
Next, the flange portions 12 and 13 are displaced so that the relative inclination is reduced by the restoring moment generated by the load of the member above the seismic isolation structure 11 and the repulsive force of the elastic member 17, and FIGS. The same effects as those shown in FIG.
[0053]
FIG. 10 is a fifth example of a crane to which the seismic isolation structure of the present invention is applied. In the figure, the portions denoted by the same reference numerals as those in FIG. 9 represent the same items.
[0054]
In this crane 25, the shape of the portion near the lower end of the support leg 26 whose position is fixed is set to be tapered such that the horizontal cross section gradually decreases downward, and the support leg 26 is composed of the upper member 26a and the lower member 26b. The flange portion 12 of the seismic isolation structure 11 is provided at the lower end portion of the upper member 26a, and the flange portion 13 is provided at the upper end portion of the lower member 26b. The same effects as those shown in FIG.
[0055]
FIGS. 11 and 12 show a sixth example of a crane to which the seismic isolation structure of the present invention is applied. In the drawings, the portions denoted by the same reference numerals as those in FIGS. 1 to 4 represent the same thing.
[0056]
In this crane 25, the support leg 26 is divided into three parts, an upper member 26a, an intermediate member 26c, and a lower member 26b, and the flange portion 12 of the seismic isolation structure 11 is attached to the lower ends of the upper member 26a and the intermediate member 26c. The flange portion 13 is provided at the upper end portion of the lower member 26b.
[0057]
In the seismic isolation structure 11 provided between the intermediate member 26c and the lower member 26b, as shown in FIG. 12, the lower flange is connected to the abutment surface 14 at the portions near both side edges of the upper flange portion 12. An inclined surface 20 is provided that forms gaps 15 and 16 that are gradually separated from the portion 13.
[0058]
In the crane 25 shown in FIGS. 11 and 12, when the vibration force A (refer to FIG. 1) in the lateral direction of the crane 25 acts on the support leg 26 due to the occurrence of an earthquake, the flange portions 12 and 13 become the fulcrum pins 21 and 22. It tilts relative to one of the centers.
[0059]
Accordingly, the lower member 26b and the intermediate member 26c are bent at the lower seismic isolation structure 11, and the intermediate member 26c and the upper member 26a are bent at the upper seismic isolation structure 11.
[0060]
Next, the flange portions 12 and 13 are displaced so that the relative inclination is reduced by the restoring moment generated by the load of the member above the seismic isolation structure 11 and the repulsive force of the elastic member 17, and FIGS. The same effects as those shown in FIG.
[0061]
FIGS. 13 to 18 are modifications of the seismic isolation structure 11. In the drawings, the same reference numerals as those in FIGS. 1 to 4 and FIGS. 6 to 8 represent the same components.
[0062]
In the example shown in FIG. 13, inclined surfaces that form gaps 15, 16 that are connected to the abutment surface 14 and are gradually separated from the lower flange portion 13 at portions near both side edges of the upper and lower flange portions 12, 13. 20 are provided.
[0063]
In the example shown in FIG. 14, convex curved surfaces 29 that form gaps 15, 16 that are connected to the abutment surface 14 and are gradually separated from the upper flange portion 12 are provided in the portions near both side edges of the flange portion 13. .
[0064]
The convex curved surface 29 may be provided only in the upper flange portion 12 or may be provided in the upper and lower flange portions 12 and 13.
[0065]
In FIG. 15 and FIG. 16, a planar stopper 31 is formed which has a hole 30 penetrating vertically in the central portion of the upper flange portion 12 and can form a gap with respect to the inner peripheral surface of the hole 30. Is fixed to the central portion of the lower flange portion 13.
[0066]
In this seismic isolation structure, when an excitation force A (see FIG. 1) in the lateral direction of the crane 1 acts on the support leg 8 due to the occurrence of an earthquake, the flange portions 12 and 13 are connected to the width end portions 14a and 14a of the contact surface 14, respectively. It inclines relatively centering on either of 14b.
[0067]
When the flange portions 12 and 13 are relatively inclined or when the contact surface 14 returns to a close contact state, the inner peripheral surface of the hole 30 and the outer peripheral surface of the stopper 31 are in contact, and the left and right, front and rear of the flange portions 12 and 13 To prevent misalignment.
[0068]
Contrary to the configuration described above, a flat-shaped stopper that can be formed with a hole penetrating vertically in the central portion of the lower flange portion 13 to form a gap with respect to the inner peripheral surface of the hole, You may adhere to the central part of the upper flange part 12.
[0069]
17 and 18, notches 32 are provided at the front and rear edge portions of the upper flange portion 12, and stoppers 33 that are loosely fitted to the notches 32 are provided as front and rear edge portions of the lower flange portion 13. It is stuck to.
[0070]
In this seismic isolation structure, when the flange portions 12 and 13 are tilted about one of the width end portions 14a and 14b of the contact surface 14 or when the contact surface 14 returns to a close contact state, the notches 32 and The stopper 33 is in contact with the flange portions 12 and 13 so as to prevent displacement of the flange portions 12 and 13 from front to back and front and rear.
[0071]
Contrary to the configuration described above, a notch is provided in the front and rear edge portions of the lower flange portion 13, and a stopper that is loosely fitted in the notch is fixed to the front and rear edge portions of the upper flange portion 12. Good.
[0072]
Note that the seismic isolation structure of the present invention is not limited to the above-described embodiment. In the case of a traveling crane provided with a combination of a rigid leg and a rocking leg structure, the seismic isolation structure is provided only for the rigid leg. Of course, it can be applied to structures having columns and legs other than cranes, and various changes can be made without departing from the scope of the present invention.
[0073]
【The invention's effect】
As described above, according to the seismic isolation structure of the present invention, the following various excellent effects can be achieved.
[0074]
(1) In any of the seismic isolation structures of the present invention, the state in which the contact surfaces of the upper and lower flange portions are normally in close contact with each other by the load of the member positioned above the flange portion is maintained. Since the support column has a rigid structure, the structure above the support column does not shake.
[0075]
(2) When an excitation force in the width direction of the contact surface acts on the support column due to the occurrence of an earthquake, the upper and lower flange portions are inclined relative to the fulcrum pin, and the support column divided vertically is Bending at the flange part, and then the relative inclination of the upper and lower flange parts around the fulcrum pin is reduced by the load of the member located above the flange part, and the contact surface becomes dense Since it returns to the state which contacts, the response acceleration of the member above a flange part reduces, and collapse of a support pillar and breakage of a member can be avoided.
[0076]
(3) Unless the excitation force exceeds a predetermined value, the vertically divided struts are not relatively displaced, so that it is not necessary to consider resonance.
[0077]
(4) When the present invention is applied to a support leg of a crane, a load that is positioned above the base isolation structure with the contact surface of the flange portion being in close contact with each other is usually passed through the base isolation structure. Since it is transmitted to the member below, the upper part of the crane does not swing, and the driver does not feel uncomfortable.
[0078]
(5) In addition, when an earthquake occurs, the support legs that are divided vertically are bent at the base of the base isolation structure to absorb and attenuate the excitation force, so it is located above the base isolation structure. It is possible to reduce the response acceleration of the existing members and avoid breakage of the members and collapse of the crane.
[0079]
(6) Furthermore, since the contact surfaces of the upper and lower flange portions return to the state of close contact with the load of the member above the base isolation structure, the cargo handling operation can be resumed immediately after the earthquake has converged. .
[Brief description of the drawings]
FIG. 1 is a schematic front view showing a traveling unit of a first example of a crane to which a seismic isolation structure of the present invention is applied.
FIG. 2 is a front view showing details of a first example of a crane to which the seismic isolation structure of the present invention is applied.
3 is a view taken in the direction of arrows III-III in FIG. 2;
4 is a front view showing an operating state of the seismic isolation structure in FIG. 2. FIG.
FIG. 5 is a diagram showing the relationship between the displacement of the upper part of the crane and the exciting force in the horizontal direction.
FIG. 6 is a front view showing details of a second example of a crane to which the seismic isolation structure of the present invention is applied.
7 is a VII-VII arrow view of FIG. 6;
FIG. 8 is a front view showing details of a third example of a crane to which the seismic isolation structure of the present invention is applied.
FIG. 9 is a schematic front view showing a support leg of a fourth example of a crane to which the seismic isolation structure of the present invention is applied.
FIG. 10 is a schematic front view showing support legs of a fifth example of a crane to which the seismic isolation structure of the present invention is applied.
FIG. 11 is a schematic front view showing support legs of a sixth example of a crane to which the seismic isolation structure of the present invention is applied.
12 is a front view showing details of the lower seismic isolation structure in FIG. 11. FIG.
FIG. 13 is a front view showing a modification of the seismic isolation structure of the present invention.
FIG. 14 is a front view showing a modification of the seismic isolation structure of the present invention.
FIG. 15 is a front view showing a modification of the seismic isolation structure of the present invention.
16 is a view taken along arrow XVI-XVI in FIG.
FIG. 17 is a front view showing a modification of the seismic isolation structure of the present invention.
18 is a view taken along arrow XVIII-XVIII in FIG.
FIG. 19 is a schematic configuration diagram showing an example of a container crane.
20 is a schematic view showing a state in which the container crane of FIG. 19 collapses.
[Explanation of symbols]
1,25 Crane 2 Traveling part 5,6 Rail 8 Sea side support leg (support column)
9 Land-side support legs (support columns)
12, 13 Flange portion 14 Contact surface 14a, 14b Width end portion 15, 16 Gap 17 Elastic material 17A Disc spring 17B Compression spring 17C Elastic rubber 18 Connector 20 Inclined surface 21, 22 Support pin 23, 24 Stopper 26 Support leg ( Support pillar)
27 Bracket (fixed structure)
28 Support Pin 29 Convex Curved Surface 31, 33 Stopper L Contact Width

Claims (9)

支持柱を上下へ2分割し且つ各分割端にフランジ部を設け、上下に対峙するフランジ部の中央部分に、所要の接触幅を有して相互に接し且つ鉛直方向の荷重を伝達する当接面を形成し、上下のフランジ部の少なくとも一方の両側縁寄り部分の形状を、他方のフランジ部から離隔するように設定して隙間を形成し、上下のフランジ部の両側縁寄り部分を、上下への相対変位を許容する連結具によって連結し、上下のフランジ部の間に、当接面幅端部に沿って延びる支点ピンを介在させたことを特徴とする免震構造。The support pillar is divided into two parts in the vertical direction, and flanges are provided at each split end, and the center part of the flange part facing up and down is in contact with each other with the required contact width and transmitting the load in the vertical direction Forming a gap, forming a gap by separating the shape of at least one side edge of the upper and lower flanges away from the other flange, and A seismic isolation structure characterized in that a fulcrum pin that extends along the abutting surface width end portion is interposed between the upper and lower flange portions and is connected by a connector that allows relative displacement to the upper and lower flange portions . 支持柱の下端部を、略水平に且つフランジ部接触幅に対して交差する方向へ延びる支持ピンにより固定構造物に枢支した請求項1に記載の免震構造。  The seismic isolation structure according to claim 1, wherein the lower end portion of the support column is pivotally supported on the fixed structure by a support pin extending substantially horizontally and in a direction intersecting with the flange contact width. 支持柱を上下へ3分割し且つ各分割端にフランジ部を設け、上下に対峙するフランジ部の中央部分に、所要の接触幅を有して相互に接し且つ鉛直方向の荷重を伝達する当接面を形成し、上下のフランジ部の少なくとも一方の両側縁寄り部分の形状を、他方のフランジ部から離隔するように設定して隙間を形成し、上下のフランジ部の両側縁寄り部分を、上下への相対変位を許容する連結具によって連結し、上下のフランジ部の間に、当接面幅端部に沿って延びる支点ピンを介在させたことを特徴とする免震構造。The support pillar is divided into three parts in the vertical direction, and flanges are provided at each split end, and the center part of the flange part facing up and down is in contact with each other with the required contact width and transmitting the load in the vertical direction Forming a gap, forming a gap by separating the shape of at least one side edge of the upper and lower flanges away from the other flange, and A seismic isolation structure characterized in that a fulcrum pin that extends along the abutting surface width end portion is interposed between the upper and lower flange portions and is connected by a connector that allows relative displacement to the upper and lower flange portions . 上下のフランジ部を相互に押圧する弾性材を設けた請求項1乃至請求項3のいずれかに記載の免震構造。  The seismic isolation structure according to any one of claims 1 to 3, further comprising an elastic material that presses the upper and lower flange portions. 上下のフランジ部の少なくとも一方に、他方のフランジ部の水平方向への変位を抑制するストッパを設けた請求項1乃至請求項4のいずれかに記載の免震構造。  The seismic isolation structure according to any one of claims 1 to 4, wherein a stopper that suppresses displacement of the other flange portion in the horizontal direction is provided on at least one of the upper and lower flange portions. 上下のフランジ部の少なくとも一方の両側縁寄り部分の形状を、当接面側より両側縁へ向かって他方のフランジ部に対する離隔量が増大する傾斜面状に設定した請求項1乃至請求項5のいずれかに記載の免震構造。The shape of at least one of the side edges near portions of the upper and lower flange portions, contact surface side than toward the both side edges other separation quantity relative to the flange portion of the claims 1 to 5 is set to the inclined surface shape to increase Any seismic isolation structure. 上下のフランジ部の少なくとも一方の両側縁寄り部分の形状を、当接面側より両側縁へ向かって他方のフランジ部に対する離隔量が増大する凸曲面状に設定した請求項1乃至請求項5のいずれかに記載の免震構造。The shape of at least one of the side edges near portions of the upper and lower flange portions, the contact surface side than towards the opposite side edges claims 1 to 5 was set to a convex curved surface weight separation for the other flange portion is increased Any seismic isolation structure. 支持柱がクレーン支持脚である請求項1乃至請求項7のいずれかに記載の免震構造。The seismic isolation structure according to any one of claims 1 to 7 , wherein the support column is a crane support leg. クレーン支持脚が走行部に組み込まれ、上下のフランジ部の当接面が走行用レールの真上に位置し且つ隙間が当接面の走行部移動方向左右に位置している請求項8に記載の免震構造。Crane support legs is incorporated into the running unit, according to claim 8 the abutment surface of the upper and lower flange portions are positioned to and gap directly above the travel rail is positioned on the traveling unit moving direction lateral abutment surface Seismic isolation structure.
JP2001106203A 2001-04-04 2001-04-04 Seismic isolation structure Expired - Lifetime JP4739567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001106203A JP4739567B2 (en) 2001-04-04 2001-04-04 Seismic isolation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001106203A JP4739567B2 (en) 2001-04-04 2001-04-04 Seismic isolation structure

Publications (2)

Publication Number Publication Date
JP2002302376A JP2002302376A (en) 2002-10-18
JP4739567B2 true JP4739567B2 (en) 2011-08-03

Family

ID=18958752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001106203A Expired - Lifetime JP4739567B2 (en) 2001-04-04 2001-04-04 Seismic isolation structure

Country Status (1)

Country Link
JP (1) JP4739567B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051702A1 (en) * 2011-10-06 2013-04-11 Ihi運搬機械株式会社 Seismic isolation support device for traveling crane

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4792284B2 (en) * 2005-12-26 2011-10-12 Ihi運搬機械株式会社 Crane seismic isolation device
JP5352962B2 (en) * 2007-03-28 2013-11-27 株式会社Ihi Application method of swing regulating member to cargo handling apparatus and apparatus constituted thereby
JP5000392B2 (en) * 2007-06-19 2012-08-15 Ihi運搬機械株式会社 Crane seismic isolation device
JP2009057754A (en) * 2007-08-31 2009-03-19 Sansei Kenki Kk Strut unit connection device adaptable to base-isolated structure
JP2009214950A (en) * 2008-03-07 2009-09-24 Ishikawajima Transport Machinery Co Ltd Base isolated supporting structure of crane
CN102491167B (en) * 2011-12-21 2014-01-15 中铝国际技术发展有限公司 Flexible connection device for portal transport truck
JP5746126B2 (en) * 2012-11-20 2015-07-08 三井造船株式会社 Quay crane
JP6232803B2 (en) * 2013-07-25 2017-11-22 株式会社Ihi Seismic isolation structure for pillars constituting the structure
JP6398281B2 (en) * 2014-04-17 2018-10-03 株式会社Ihi Seismic isolation structure
JP6414271B2 (en) * 2017-04-25 2018-10-31 株式会社Ihi Seismic isolation structure for pillars constituting the structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393382U (en) * 1986-12-10 1988-06-16
JPS63265082A (en) * 1987-04-21 1988-11-01 橋本 庄市 Earthquakeproof structure
JPH0336700A (en) * 1989-07-03 1991-02-18 Mitsubishi Heavy Ind Ltd Peripheral monitoring device
JP2000266119A (en) * 1999-03-18 2000-09-26 Gaea Tech Corp Spherical joint coupling with braking function and base isolation device using this coupling

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393382A (en) * 1986-10-08 1988-04-23 Toppan Printing Co Ltd Production of decorative steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393382U (en) * 1986-12-10 1988-06-16
JPS63265082A (en) * 1987-04-21 1988-11-01 橋本 庄市 Earthquakeproof structure
JPH0336700A (en) * 1989-07-03 1991-02-18 Mitsubishi Heavy Ind Ltd Peripheral monitoring device
JP2000266119A (en) * 1999-03-18 2000-09-26 Gaea Tech Corp Spherical joint coupling with braking function and base isolation device using this coupling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013051702A1 (en) * 2011-10-06 2013-04-11 Ihi運搬機械株式会社 Seismic isolation support device for traveling crane
TWI490158B (en) * 2011-10-06 2015-07-01 Ihi Transport Machinery Co Ltd Seismic isolation supporting device in traveling crane

Also Published As

Publication number Publication date
JP2002302376A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
JP4739567B2 (en) Seismic isolation structure
JP5226816B2 (en) crane
JP6275591B2 (en) Quay crane
JP2009214950A (en) Base isolated supporting structure of crane
JP5809915B2 (en) Seismic isolation support device for traveling crane
JP2008114985A (en) Truss support device of passenger conveyer
JP4536895B2 (en) Seismic isolation structure for traveling crane
JP6464000B2 (en) Seismic isolation structure for rail-type traveling machines
JP4759855B2 (en) Horizontal two-axis seismic isolation device for steel structures
TWI487655B (en) Seismic isolation supporting apparatus of traveling crane
JP3609041B2 (en) Isolation structure of container crane
JP2001226068A (en) Base isolating structure of traveling crane
TWI529112B (en) Seismic isolation of structure-constituting pillar and structure
JP2002302377A (en) Base isolation type crane
JP3210739U (en) Vehicle overturn prevention device
JP2001192197A (en) Base solating crane with hinged leg
JP2003040574A (en) Base isolation device for traveling crane
JP6311733B2 (en) Deck under cabin
JP2014152004A (en) Seismic isolator and crane equipped with seismic isolator
JPS5827194B2 (en) Equalizer for overhead crane
JP2009127653A (en) Mount device
JPH08324967A (en) Vibration damping structure for crane
JP5519255B2 (en) Quay crane
JP2006037546A (en) Seismically isolated structure of building
JP2014152007A (en) Seismic isolator and crane equipped with seismic isolator

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051125

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Ref document number: 4739567

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term