JP3741428B2 - Support foundation structure of structure - Google Patents

Support foundation structure of structure Download PDF

Info

Publication number
JP3741428B2
JP3741428B2 JP2002205893A JP2002205893A JP3741428B2 JP 3741428 B2 JP3741428 B2 JP 3741428B2 JP 2002205893 A JP2002205893 A JP 2002205893A JP 2002205893 A JP2002205893 A JP 2002205893A JP 3741428 B2 JP3741428 B2 JP 3741428B2
Authority
JP
Japan
Prior art keywords
pile
sliding
foundation
pile head
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002205893A
Other languages
Japanese (ja)
Other versions
JP2004044312A (en
Inventor
光生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002205893A priority Critical patent/JP3741428B2/en
Publication of JP2004044312A publication Critical patent/JP2004044312A/en
Application granted granted Critical
Publication of JP3741428B2 publication Critical patent/JP3741428B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、構造物を支持する杭基礎と上部の建築構造物の耐震安全性能を同時に飛躍的且つ経済的に高める構造物の支持基礎構造に関するものである。
【0002】
【従来の技術】
1995年の阪神淡路大震災では、建築構造物本体と基礎構造体に甚大な被害が発生した。
建築構造物の耐震安全性能を飛躍的に改善できる構造方法として、積層ゴム等のアイソレータとエネルギー吸収を担うダンパーで構成する免震構造が実用化されている。しかし、免震構造では免震装置の費用が必要であると同時に、通常2重基礎となるために躯体費にも費用がかかり、ある程度のコストアップは避けられない。
【0003】
一方、軟弱地盤においてはこれまで多くの既製杭や場所打ちコンクリート杭など各種の杭基礎が採用されてきたが、過去の被害地震において杭の損傷事例が多数報告されてきた。近年、これら杭基礎の耐震安全性能の改善を図るために、杭頭ピン接合(文献1=特開平10-227040号、文献2=特開2001-348885)や杭頭回転自由接合工法(文献3=特許第3159380号) などの杭頭を拘束しない幾通りかの接合方法や接合装置が開発されてきている。
【0004】
また、構造物と杭基礎両者の耐震安全性能の改善・向上をめざす方法として、文献4(特開昭59-134230号)、文献5(特開平10-227039号)、文献6(特開平1-304223号)等がある。
【0005】
文献4は、杭頭に積層ゴム免震装置を配置することにより、杭に作用する地震力を低減させようとするものであるが、免震装置に水平変形δが発生するとその鉛直荷重Pの作用(Pδ効果)により大きな付加モーメントM=Pδを杭頭に与えることになり、却って杭の負担応力が厳しいものになる。また、上部建物に対しては、地盤内に構造物が埋め込まれているため、地盤を介して地震動が建物に入力され、免震効果は期待できない。
【0006】
文献5は、杭頭と基礎フ−ティング間にすべり機構を導入する提案であるが、地震時には杭自体が傾斜変形するため杭頭部のすべり面が傾斜するのに対し、上部基礎フーティング側は地中梁により回転拘束されているため傾斜せず、両者のすべり面は全面接触しなくなりすべり面の基本メカニズムが成立しない。そのためこの杭頭すべり支承が正常に機能することは期待できず、また文献4同様に基礎躯体が地盤に接触して埋設されているため、上部建物への入力は低減されず、上部建物の免震効果は期待できない。
【0007】
文献6は、文献4と5を包含する提案であり、上部建物は杭に支持され、建物底面は地盤から分離された説明図(文献6の第1図〜第3図)となっており、前記の2文献と比較すると明らかに免震効果を狙った意図が明瞭に示されている。しかし、上記文献6の第3図のように杭頭上面にすべり材を直結した場合、地震時には杭自体が傾斜するため、上記文献5について指摘したとおりすべり材とすべり板との正常な接触条件が成立しない。
【0008】
また同文献第2図は杭頭に積層ゴムを配置しているが、同図の積層ゴムは各ゴム層が極めて薄く描かれていることから判るように、積層ゴムは水平せん断変形を前提としたものであり、回転・傾斜変形は殆ど期待できず、また期待しない提案であると判断できる。従って、この提案も大地震時の大きな杭の傾斜には追随が困難なシステムである。また、上記文献4で指摘したとおり、積層ゴムの水平変形に伴うPδ効果により杭に大きな付加曲げモーメントが作用し、杭体の設計が困難になる。またその付加曲げにより杭頭が更に回転変形を起こすため、すべり面の接触条件が更に崩れ、すべり機構の成立条件としては力学的に極めて不明瞭な状況が発生する。
【0009】
更に文献6は、杭頭上面のすべり材の周囲を筒状支承板の垂下壁で囲み杭体とその周囲壁との間に用クッション材を介在させる為、現実には大きな許容変形を確保することが困難となり、その結果大地震時の強い地震動にも安全な高い耐震安全性能を実現することは困難となる。
【0010】
図7の上段(A)は杭3の頭部に、積層ゴム41を有する杭頭免震装置4を配置する上記文献4と6等の提案例である。図7(A)に示すように地震時に免震装置に水平変形δが発生するとPδ効果により大きな付加モーメントM=Pδを杭頭に与えることになり、杭の負担応力は却って厳しいものになる。また、基礎および地下躯体が地盤内に埋め込まれているため、地盤を介して地震動が建物に入力され、免震効果は期待できない。
【0011】
図7の下段(B)は、文献1と2等で提案されている球座による杭頭ピン接合を実現しようとする既提案の説明図である。図7(B)に示すとおり、地震時には杭自体が傾斜変形するが、上部の基礎フーチングは地中梁により回転が拘束されているため水平を保持し傾斜しない。杭傾斜の回転中心は球座の曲率中心とは殆どの場合一致しないため、球座の接触条件が崩れ、球座のすべり回転は正常に機能しない。この球座によるピン接合方式は、基本原理上致命的欠陥を有している。
【0012】
図8は、杭が傾斜した場合の杭頭部における不具合を拡大図で示したもので、(1)(2)は球座方式の問題点を、(3)は杭頭にすべり支承を配置した場合の不具合を示している。いずれも、杭の傾斜により杭頭の球座42やすべり面の接触条件が崩れることを示している。
【0013】
【発明が解決しようとする課題】
上記のとおり、これまでに実用化されている免震構造は、免震装置費と2重基礎の躯体費用がかかるためコストアップとなる。また杭頭ピンを実現する接合装置のみでは、上部建物の免震効果を発揮できない。また杭頭免震と銘打った既存提案は、杭頭部における免震機構の成立メカニズムが不完全であり、杭および上部構造体に対して確実且つ充分な免震効果・耐震安全性能を提供できるものは実現されていない。
【0014】
本発明は、杭の耐震安全性能を飛躍的に改善できる杭頭接合方法と上部建物の耐震安全性能を飛躍的に改善できる高性能の免震構造を同時に、確実且つ経済的に実現できる構造物の支持基礎構造を提供することを目的としている。
【0015】
杭の耐震性能改善を実現する杭頭回転自由接合工法は既に実用化されており、この工法を採用した免震構造建物も本発明者により既に幾棟も実現されているがこれまでのところ、接合装置の上に基礎フーティングを構築し、これを地中梁で拘束した上に免震装置を設置し、その上に更に構造物の基礎と梁を構築するという2重の基礎躯体を構成するものであった。従って、本発明の主課題は、杭と上部構造物の両者の高い耐震安全性能をより経済的に実現するために「2重基礎とならない杭も建物も安全な杭支持免震構造となる基礎構造方式」を実現することである。
【0016】
【課題を解決するための手段】
本発明は以上の点を解決するため次の構成を採用する。
〈構成1〉
基礎構造体を含む構造物を支持する杭頭部に、凹型受け台により回転自由に支持された、球体もしくは円柱体からなる回転体が配設され、上記回転体により、上記回転体の上方に位置する構造物を支持しており、上記構造物の底面に、上記回転体に接する平滑な平板が配置され、上記平板の周囲に位置する上記構造物の底面は、上記平板の外表面より下方には突出していないことを特徴とする構造物の支持基礎構造。
【0017】
〈構成2〉
基礎構造体を含む構造物を支持する杭頭上部に、上面が緩やかな凸面となっている接合装置が設けられ、上記接合装置により、上記すべり接合体の上方に位置する上記構造物を支持しており、上記構造物の底面に、上記接合体に接する平滑な平板が配置され、上記平板の周囲に位置する上記構造物の底面は、上記平板の外表面より下方には突出していないことを特徴とする構造物の支持基礎構造。
【0018】
〈構成3〉
基礎構造体を含む構造物を支持する杭頭部に、水平2軸(X・Y軸)及び鉛直1軸(Z軸)の座標系のうち、少なくとも水平1軸に回転変形可能且つ水平せん断力を伝達できる接合装置が設けられ、上記接合装置の上面で、すべり摩擦係数の低い潤滑面を有するすべり材を介して上記構造物を支持しており、上記構造物の底面に、上記すべり材の上面の潤滑面に接触する平滑なすべり板を配置しており、上記すべり板の周囲の上部構造物の底面は、上記すべり板の外表面より下には突出していないことを特徴とする構造物の支持基礎構造。
【0019】
〈構成4〉
構成2または構成3に記載の構造物の支持基礎構造において、上記接合装置の上面の潤滑面が純PTFE、充填材入りPTFE、ポリアミド樹脂、2硫化モリブデン、フッ素コーティング材のいずれかの被覆材料により構成されており、上記接合装置の上方に配置される上記すべり板のすべり面の表面がステンレス鋼板、2硫化モリブデン、フッ素コーティングのいずれかの被覆材料により構成されていることを特徴とする構造物の支持基礎構造。
【0020】
〈構成5〉
構成3に記載の構造物の支持基礎構造において、上記接合装置は、2枚以上の鉛直の平面板を水平方向の円柱型ピンで貫通したピン支点、球体もしくは疑似球体を挟み、その上下に凹曲面を配置したダブル球座、凹凸両曲面で接触し凸側先端曲面の曲率半径が凹面の曲率半径より小さくなっている曲率の異なる曲面で接触する接合体、接合部に厚肉単層ないし厚肉複数層のゴム層で構成される傾斜変形可能なゴム体乃至その他の弾性体層を介在させることのいずれかによって回転変形を実現してなることを特徴とする構造物の支持基礎構造。
【0021】
〈構成6〉
上記構成1乃至5のいずれかに記載の構造物の支持基礎構造において、杭頭部の支持点以外の構造物底面および地下躯体周囲を構造物下側および地下躯体周囲の地盤に直接に接しないように構築していることを特徴とする構造物の支持基礎構造。
【0022】
〈構成7〉
上記構成1乃至6のいずれかに記載の構造物の支持基礎構造において、地下躯体周囲の全周もしくはその一部の地盤もしくは擁壁と構造物の間に、発泡ウレタン、発泡スチロール等の弾性発泡材料、もしくはゴム板等の弾性材料、もしくはハニカム形状の金属スプリングや金属製板ばねを配置していることを特徴とする構造物の支持基礎構造。
【0023】
〈構成8〉
上記構成1乃至6のいずれかに記載の構造物の支持基礎構造において、杭基礎もしくは地盤と一体に挙動する地盤側躯体を構築し、地盤側躯体と構造物との間に積層ゴム、ゴム板等の復元力用免震装置と各種のエネルギー吸収用ダンパーを配置したことを特徴とする構造物の支持基礎構造。
【0024】
〈構成9〉
上記構成1乃至5のいずれかに記載の構造物の支持基礎構造において、回転部分とその上部の接合体およびその上部のすべり板を有する接合装置と同じ構成の支持装置で構造物を支持しており、その支持装置の下側に杭はなく、直接基礎のコンクリート基礎フーティングもしくは岩盤等の硬質地盤上に直接支持装置を配置しており、且つ支持点以外の構造物底面および地下躯体周囲を構造物下側および地下躯体周囲の地盤に直接に接しないように構築していることを特徴とする構造物の支持基礎構造。
【0025】
〈概要〉
本発明は、杭の耐震安全性能改善と上部構造物の免震性能を一システムによって同時に実現しようとするものである。先ず、杭体の耐震性能を改善するためには、▲1▼従来剛接合されていた杭頭部の固定度(回転拘束)を解除し杭頭モーメントの発生を抑制すること、および▲2▼上部構造物より杭頭に伝達される水平地震力を低減することである。▲2▼の杭頭に作用する地震力を低減するためには、上部建物に発生する地震力そのものを免震構造によって小さくすること、およびその地震力が杭頭に伝達されないようにすることの2対策を考慮し、この両者を同時に実現する方法として、本発明は杭頭部に免震機構を導入する。
【0026】
但し杭頭に免震装置を直結する場合、免震機構によりPδ効果による付加曲げモーメントを杭頭に作用させることは避けるべきである。そのために本発明では杭への鉛直荷重作用軸が移動する積層ゴム支承や杭とのずれが生じるすべり支承・転がり支承を排除し、杭体頭部の鉛直軸心と鉛直荷重作用点に大きなずれが発生しない杭側に受台を有する球体もしくはすべり部材を杭側に固定したすべり支承を採用する。
【0027】
また、地震時には杭頭付近において杭の鉛直軸が傾斜することに対する対策が必要である。即ち、杭の鉛直軸が傾斜するために、杭頭部にすべり支承を配置する場合、杭頭上面に上向き固定したすべり面が水平面から傾斜し、その上のすべり板との間に傾斜角および隙間が発生し、すべり材とすべり板との正常な接触条件が成立しなくなること。また、杭頭部に凹凸面が同一曲率の球座を配置してその球面の回転すべりによりピン支持条件を実現しようとする提案が多数あるが、杭頭部付近での地震時の杭の回転中心と球座の曲率中心は一致しない場合が殆どで、その結果球座の凹凸両面での正常な回転機構が成立せず、球座によるピン支持条件は成立しない。
【0028】
上記文献1,2やその他の球座式ピン支承を採用する既存の提案は、いずれもこの問題点を解決していない。本発明では、この問題を解決するために、2つの解決方法を採用する。即ち、杭自体が傾斜しても杭と杭の上部にある構造物底面(=水平面)での円滑な水平相対変位を可能とする方法として、▲1▼杭頭部に回転する球体を配置して杭の傾斜に関係なく構造物底面が球体上を水平移動する「杭頭回転支持機構」、もしくは▲2▼杭頭上面を緩やかな球面とし、杭が傾斜してもその上部のすべり板との接触条件が変化しない「杭頭球面すべり機構」、もしくは▲3▼杭体上部に回転可能のピン接合部を導入し、そのピン接合部の上部の接合体の上面をすべり面として構造物底面側にすべり板を配置する「ピン支持すべり体+すべり板」の「杭頭ピン支持すべり機構」のいずれかのメカニズムを採用する。
【0029】
その他に本発明で採用する基本条件は以下のとおりである。上記のすべり接合体と杭の接合部のピン接合は杭の傾斜によっても確実に機能するメカニズムとするために、
a)2枚以上の鉛直の平面板を水平方向の円柱型ピンで貫通したピン支点=「水平貫通ピン方式」、
b)球体もしくは上下2面に球面を有する疑似球体を挟みその上下に球体曲率とほぼ同一か若干曲率半径の大きな凹曲面を配置した「ダブル球座方式」、
c)凹凸両曲面で接触し凸側先端曲面の曲率半径が凹面の曲率半径より小さくなっている曲率の異なる曲面で接触する「凹凸異曲率点接触方式」、
d)接合部に厚肉単層ないし厚肉複数層のゴム層で構成される傾斜変形可能なゴム体乃至その他の弾性体層を介在させる「弾性体支持方式」のいずれかを採用する。
【0030】
また本発明による基礎構造は、地盤から構造物へ地震動が伝達されないように構造物底面と地下躯体周囲を地盤から明確に分離し、充分な相対変位用クリアランスを確保すること、更に杭頭支持部の周辺は杭頭回転面やすべり部分が万一すべり板領域を超えても相対変位可能とするためにすべり面と構造物底面を同一面とすること、地下躯体と周囲地盤の間のクリアランス部に構造物を原位置へ復帰させるための発泡性弾性材料を充填すること、従来の免震建物では免震クリアランス部の上部には通行用の特殊なエクスパンションジョイント金物等が必要であったが、この弾性材料充填により上部を歩行可能とし地表部における免震建物周囲の動線を確保することなど、多くの特徴を有している。
【0031】
【発明の実施の形態】
以下、本発明を、実施例を示す図面に基づいて説明する。
図1は本発明の構造物の支持基礎構造を示しており、(A)は建物下部と杭基礎、地盤を含む基礎部の全体構成を示し、(B)は杭頭部付近における「杭頭ピン支持すべり機構」の基本構成を拡大して示している。
【0032】
図1において、杭3の頭部に接合装置5が設けられている。この接合装置5は、杭3の頭部に対向配置された下部接合部材51及び上部接合部材52と、その両者間の相対回転変位を可能とするピン接合部50とから構成されている。
この接合装置5をすべり支承とするために、上部接合部材52の上面に摩擦係数の低い固体潤滑剤面を有するすべり材53が配置され、さらに、すべり材53の上側、即ち上部構造物1もしくは基礎構造体の底面に、すべり材53に接触するすべり板54が取り付けられている。
【0033】
すべり板54は、その下側の外表面がその周囲の構造物1の底面と同一面とされるか、もしくは同底面より下方には突出しないように仕上げられている。これにより、想定以上の大地震に遭遇して万一、すべり板54の領域以上の変位が発生した場合でもすべり材53との間で所定のすべり機能を維持することが可能となり、大地震に対する安全余裕度が飛躍的に高まる。
【0034】
図1(A)に示すように、構造物1の底面は下側の地盤2とは若干の隙間をあけてクリアランス11が構築され、下側地盤2から地震動が伝達されないようにする。構造物の底面にクリアランス11を設けるためには、構造物底面の捨て型枠やプレキャスト部材を支持する若干の支点を配置する必要があるが、水平剛性や水平抵抗力が大きくならない若干のサポートを配置することは性能上支障はない。
また地下躯体の周囲には、地震時における地盤2と構造物1との相対変位を許容できるクリアランス11を設け、ここに発泡ウレタン、発泡スチロール等の発泡材12、その他の弾性材料を配置し、構造物1に原位置に復帰する復元力を与えると同時に、構造物周囲のクリアランス部上を歩行できるように動線を確保する。
なお、符号15はすべり板54を固持するスタッドボルト、22はクリアランス11を確保する地盤側捨てコンクリートの擁壁をそれぞれ示している。
【0035】
地震時に杭3が傾斜した状態でも、構造物1を支持し且つ構造物1が地盤2に対して自由に水平変位できる杭基礎の支持方法として、本発明では図2〜図4に示す6種類9タイプの支持方式を採用することができる。
【0036】
図2のA1及びA2は「杭頭回転支持方式」の支持基礎構造を示している。図2のA1の支持基礎構造は、杭3の頭部に設けられた凹型受け台64上に球体60を配置し、この球体60の回転により水平2軸(X・Y軸)方向に自由に移動可能としたものである。受け台64と球体60の間にはグリースや潤滑油を充填するかあるいは2硫化モリブデン被膜などの摩擦係数を低下させる表面処理を行う。図2のA2の支持基礎構造は、受け台64に、球体の替わりに円柱型のローラー61を配置したローラー支承を採用したものである。この場合、回転による移動方向は1方向となり、ローラー61の軸と直交する方向はすべり支承となる。
【0037】
図2のBは、上面を緩やかな球面としたすべり接合体55を杭頭部に取り付ける方式で、杭3が傾斜してもその上部のすべり板54との接触条件が変化しない「杭頭球面すべり機構」の支持基礎構成を示している。
【0038】
図3及び図4は、杭3の上部に、回転可能のピン接合部を導入し、そのピン接合部の上部の接合体の上面をすべり面として構造物底面側にすべり板を配置する「ピン支持すべり体+すべり板」の「杭頭ピン支持すべり機構」の支持基礎構成を示したものである。その回転可能なピン接合部の構成方法としてC〜Fの4種類6タイプを採用する。
【0039】
図3のCは、杭3の頭部に対向配置され、2枚以上の鉛直の平面板を有する下部接合部材51及び上部接合部材52の中央を、水平方向の接合ピン50で貫通することによってピン支点とする「水平貫通ピン方式」の支持基礎構造を示している。
この構造も図2のA2のローラー支持と同じく回転方向が1方向に限定される。本発明では、回転は水平1方向以上としているが、ピン支持機能が1方向でよい場合としては、例えば杭基礎が連続地中壁で構成されている場合がある。連続地中壁の面外方向にはピン支点を必要とするが、連続地中壁の面内方向には傾斜変形が発生しないので、面外方向のみピン支持であれば良いことになる。
【0040】
図3のD1及びD2は、D1に示す球体60もしくはD2に示す上下2面に球面を有する疑似球体62を挟み、その上下に球体曲率とほぼ同一か若干曲率半径の大きな凹曲面を配置した杭側回転体受け座64と接合体側球面受け座65とによって2方向に回転自由のピン支点を構成した「ダブル球座方式」の支持基礎構造を示している。
【0041】
図4のE1は、杭側頭部に凹型受け部材71を配置し、その上側に、下に凸曲面を持つ接合体72を配置し、両者の接触面において凸側先端曲面の曲率半径を凹面の曲率半径より小さくする「凹凸異曲率点接触方式」によりピン支点を構成する支持基礎構造を示している。これはマクロな観点では点接触による回転(傾斜)機構によりピン支点を構成したものである。
また、図4のE1に示す構造とは上下逆の構造、すなわち、図4のE2に示すように、杭側頭部に、上に凸曲面を持つ凸型支持部材72を配置し、その上側に凹型接合体71を配置して「凹凸異曲率点接触方式」によりピン支点を構成する支持基礎構造としてもよい。
【0042】
図4のFは、杭側接合部材81と弾性体上部接合体82との間に、厚肉単層ないし厚肉複数層のゴム層で構成される傾斜変形可能なゴム体乃至その他の弾性体層80を介在させる「弾性体支持方式」によりピン支点を構成する支持基礎構造を示している。
上記図2の方法では杭頭部に構成される回転支持支持機構あるいは球面すべり機構により杭が傾斜しても上部構造物は正常に水平移動可能であり、また図3・図4の方法では回転自由のピン支点で支持されたすべり機構が構成できるので、杭3が地震時に傾斜しても接合体上部のすべり面と構造物底面のすべり板の接触条件は正常に保持され、すべり免震機構が正常に作動する。
【0043】
以上、本発明は杭基礎を前提として杭と上部構造物の両者を大地震から保護できる杭頭部での免震基礎構造の実現方法を示したが、本発明は杭を用いない直接基礎の場合にも適用できる。
【0044】
図5はその適用例を示したもので、支持地盤上に構築したコンクリート基礎フーチング35上に、本発明の接合装置部分を直接配置することができる。この場合、コンクリート基礎と接する部分はコンクリートへの適切な圧縮応力度となり、また固定用アンカ−ボルトが配置できるように底板(ベースプレート)形状を適切な形に変更することもある。また岩盤のような硬質地盤でコンクリート基礎フーチング35も不要である場合には岩盤上でのレベル調整用コンクリートあるいはモルタルのみを介して本接合装置を直接配置することも可能である。
【0045】
尚、図5(B)に破線で示した水平せん断力用の補助ストッパー17は、設けてもよいし、省略することも可能である。これは安全対策としての補助ストッパーであり、上部構造物のすべり板下面が水平に維持されている限り、ピン支点のためにピン上の接合体が回転・転倒する恐れはなく、すべり機能は正常に発揮され、水平せん断力はピン支点を介して地盤側へ伝達される。但し、工事中において、接合体が傾斜・回転しないように水平度を保持する補助機構、例えば図破線の水平耳部材18は、設けた方がよく、そのためにこの補助ストッパーを利用することもできる。
【0046】
図6は、免震構造としての復元力と減衰性能の性能調整を行うために既存の免震装置90を利用する場合を示したもので、積層ゴムや各種のダンパーなど既存の免震装置を適切に組み合わせることにより、免震構造としての性能を自由に設定、調整することが可能となる。
図6(A)中、左側には免震装置90の取り付け例を、右側にはその性能調整を意味するモデル概念図を示した。また図6(B)には、建物1の周囲のクリアランス11上部にハニカムメッシュ13やハニカム形状の金属製薄板を配置することで復元力調整と歩行用動線を同時に満足するクリアランス処理を行う例を示した。
【0047】
【発明の効果】
以上により、本発明の構造物支持基礎構造を採用すると、杭基礎上に杭頭接合装置を配置するのと殆ど同じコストで、構造物全体を免震構造とすることができ、杭と上部構造物両者の耐震安全性を飛躍的に高めることができる。本発明の効果とメリットを整理すると、以下のとおりである。
▲1▼杭頭部に接合装置を配置するだけで、杭頭ピン接合を実現でき、杭基礎の耐震安全性能を高めることができる。
▲2▼また単に杭頭をピン接合とするだけでなく、その上部接合体の上面が転がり支承もしくはすべり支承となっているため、その水平抵抗力以上の力は杭に伝達されず、杭基礎に作用する地震力を極めて小さな値に抑制できる。
▲3▼また杭頭接合装置が伝達する水平力が上部構造体に作用する水平力=ベースシアとなるので、上部構造体は極めて高性能の免震構造となる。
▲4▼即ち、上部構造体に発生する応答加速度および地震力が格段に小さく抑制されるので、構造物およびその内部収容物の耐震安全性能が飛躍的に向上し、上部構造体を経済的に設計することが可能となる。
▲5▼従来の免震構造でのコストアップ要因は、
イ)免震装置費用が高くつくこと、
ロ)基礎躯体が装置上下に2重となること、
ハ)クリアランス上部に高価なエキスパンションジョイントが必要になること、
ニ)配管類に可撓継手が必要になること
であったが、
本発明では、イ)に対しては杭頭部の接合装置が免震装置を兼ねており、従来の免震装置は不要になっていること、ロ)の2重の基礎躯体も不要となり、更にハ)の特殊なエクスパンション金物も不要としており、従来の免震建物のコストアップ要因を殆ど全て解消している。
▲6▼従って本発明では、コストアップ要因なしで極めて高い免震効果を実現しているため、非免震の在来構造と比較しても格段に低コストでの建設が可能となっている。
【0048】
以上のとおり、本発明は、▲1▼杭体の地震時応力を大幅に低減できる杭頭ピン接合を実現すると同時に、▲2▼杭頭の転がり機構やすべり機構により杭に作用する地震力そのものを小さく制限しており、更に▲3▼上部構造建物の高性能免震化を実現している。これら多くの高性能化を杭頭部に配置する接合装置のみで実現し、従来の免震装置および2重基礎などのコストアップ要因を排除した本発明は、耐震性能の観点からも経済性の観点からも格段に優れた新しい基礎構造方式を提供するものであり、耐震安全性能の優れた社会資本整備に大きく貢献するものである。
【図面の簡単な説明】
【図1】 本発明に係る構造物支持基礎構造の説明図で、
(A)は建物下部と杭基礎・地盤を含む基礎部の全体構成を示す断面図、
(B)は杭頭部付近の基本構成を示す断面図である。
【図2】 本発明に係る構造物支持基礎構造における杭頭部接合装置の断面構成と地震時変形状態を示す図表である。
【図3】 本発明に係る構造物支持基礎構造における他の杭頭部接合装置の断面構成と地震時変形状態を示す図表である。
【図4】本発明に係る構造物支持基礎構造におけるさらに他の杭頭部接合装置の断面構成と地震時変形状態を示す図表である。
【図5】 地盤が硬質で杭基礎を必要としない場合の本発明の構造物支持基礎構造の適用方法の説明図で、
(A)は建物下部と基礎・地盤を含む基礎部の全体構成を示す断面図、
(B)は基礎支持部付近の構成を示す断面図である。
【図6】 本発明の構造物支持基礎構造の建物周辺の構成の説明図で、
(A)は既存の免震装置を組み合わせて性能調整を行う例を示す断面図、
(B)は建物周囲クリアランス部に発泡材やハニカムメッシュを配置して復元力調整と歩行動線を同時に確保する例を示す断面図である。
【図7】 従来の構造物の支持基礎構造の説明図で、
(A)は杭頭に積層ゴムを配置する提案の説明図、
(B)は杭頭に球座を配置する杭頭ピン接合の説明図である。
【図8】 従来の杭頭ピンおよび杭頭すべり基礎構造の説明図である。
【符号の説明】
1 :構造物
11:建物と地盤とのクリアランス
12:クリアランス充填用発泡材
13:クリアランス用ハニカムメッシュ
15:スタッドボルト
17:水平せん断力用ストッパー
18:水平度保持用補助部材
2 :地盤
21:支持地盤
22:地盤側捨てコンクリートおよび擁壁
3 :杭
35:コンクリート基礎フーチング
4 :従来の杭頭免震装置
41:積層ゴム
42:従来型杭頭球座
43:従来型杭頭すべり支承
5 :接合装置
50:回転変位用ピン接合部
51:下部接合部材
52:上部接合体
53:すべり材
54:すべり板
55:上部球面すべり支承
60:球体
61:ローラー
62:上下両球面の疑似球体
64:杭側回転体受け座
65:接合体側球面受け座
71:凹型受け座、凹型接合体(E2)
72:凸型接合体、凸型支持部材(E2)
80:ゴム層
81:杭側接合部材
82:弾性体上部接合体
90:免震装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a support foundation structure for a structure that dramatically and economically enhances the seismic safety performance of a pile foundation that supports the structure and an upper building structure.
[0002]
[Prior art]
In 1995, the Great Hanshin-Awaji Earthquake caused enormous damage to the main body and foundation structure.
As a structural method that can dramatically improve the seismic safety performance of a building structure, a seismic isolation structure composed of an isolator such as laminated rubber and a damper that absorbs energy has been put into practical use. However, in the seismic isolation structure, the cost of the seismic isolation device is required, and at the same time, since it is usually a double foundation, the cost of the body is also increased, and a certain increase in cost is inevitable.
[0003]
On the other hand, many types of pile foundations such as pre-made piles and cast-in-place concrete piles have been used in soft ground, but many cases of pile damage have been reported in past earthquakes. In recent years, in order to improve the seismic safety performance of these pile foundations, pile head pin joining (Reference 1 = JP 10-227040, Reference 2 = JP 2001-348885) and pile head rotation free joining method (Reference 3) = Japanese Patent No. 3159380) Several joining methods and joining devices that do not restrain pile heads have been developed.
[0004]
As methods for improving the seismic safety performance of both the structure and the pile foundation, Document 4 (JP 59-134230), Document 5 (JP 10-227039), Document 6 (JP 1) -304223).
[0005]
Reference 4 attempts to reduce the seismic force acting on the pile by placing a laminated rubber seismic isolation device at the pile head. However, when horizontal deformation δ occurs in the seismic isolation device, the vertical load P Due to the action (Pδ effect), a large additional moment M = Pδ is given to the pile head, and on the contrary, the load stress of the pile becomes severe. In addition, since the structure is embedded in the ground for the upper building, seismic motion is input to the building through the ground, and the seismic isolation effect cannot be expected.
[0006]
Reference 5 is a proposal to introduce a sliding mechanism between the pile head and the foundation footing, but the pile head itself is inclined and deformed during an earthquake, and the sliding surface of the pile head is inclined. Since it is rotationally constrained by underground beams, it does not incline and the sliding surfaces of both do not come into full contact with each other, and the basic mechanism of the sliding surface is not established. For this reason, it is not expected that this pile head sliding support will function normally, and the foundation frame is buried in contact with the ground as in Reference 4, so input to the upper building is not reduced and The earthquake effect cannot be expected.
[0007]
Reference 6 is a proposal that includes References 4 and 5, the upper building is supported by a pile, and the bottom of the building is an explanatory diagram separated from the ground (Figures 1 to 3 of Reference 6). Compared with the above-mentioned two documents, the intention aimed at the seismic isolation effect is clearly shown. However, when sliding material is directly connected to the top of the pile head as shown in Fig. 3 of the above-mentioned document 6, the pile itself is inclined during an earthquake, so that the normal contact condition between the sliding material and the sliding plate as pointed out in the above-mentioned document 5 Does not hold.
[0008]
In Fig. 2 of the same document, laminated rubber is placed on the pile head. As can be seen from the laminated rubber shown in the figure, the laminated rubber assumes horizontal shear deformation. Therefore, it can be judged that the rotation / inclination deformation can hardly be expected and the proposal is not expected. Therefore, this proposal is also a system that is difficult to follow the inclination of a large pile during a large earthquake. In addition, as pointed out in the above-mentioned document 4, a large additional bending moment acts on the pile due to the Pδ effect accompanying horizontal deformation of the laminated rubber, making it difficult to design the pile body. In addition, the additional bending causes the pile head to undergo further rotational deformation, so that the contact condition of the sliding surface is further disrupted, and the condition for establishing the sliding mechanism is very unclear.
[0009]
Further, in Reference 6, since the cushion material is interposed between the pile body and the surrounding wall by surrounding the periphery of the sliding material on the top surface of the pile with the hanging wall of the cylindrical support plate, a large allowable deformation is actually secured. As a result, it is difficult to achieve high seismic safety performance that is safe against strong ground motion during a large earthquake.
[0010]
The upper part (A) of FIG. 7 is a proposal example of the above-mentioned documents 4 and 6 in which the pile head seismic isolation device 4 having the laminated rubber 41 is arranged at the head of the pile 3. As shown in FIG. 7A, when a horizontal deformation δ occurs in the seismic isolation device during an earthquake, a large additional moment M = Pδ is given to the pile head due to the Pδ effect, and the burden stress on the pile becomes severe. In addition, since the foundation and underground frame are embedded in the ground, seismic motion is input to the building through the ground, and the seismic isolation effect cannot be expected.
[0011]
The lower part (B) of FIG. 7 is an already-explained explanatory diagram for realizing pile head pin joining by a ball seat proposed in Documents 1 and 2 and the like. As shown in FIG. 7B, the pile itself is inclined and deformed at the time of the earthquake, but the upper foundation footing is kept horizontal and does not incline because rotation is constrained by underground beams. Since the center of rotation of the pile slope does not coincide with the center of curvature of the ball seat in most cases, the contact condition of the ball seat breaks, and the sliding rotation of the ball seat does not function normally. This pin joint method using a ball seat has a fatal defect on the basic principle.
[0012]
Fig. 8 shows an enlarged view of the failure in the pile head when the pile is tilted. (1) (2) is the problem of the ball seat system, and (3) is the sliding bearing on the pile head. This indicates a malfunction. Both have shown that the contact condition of the ball seat 42 and sliding surface of a pile head collapses by the inclination of a pile.
[0013]
[Problems to be solved by the invention]
As described above, the seismic isolation structure that has been put to practical use up to now has a cost increase due to the cost of seismic isolation equipment and the cost of the double foundation. Moreover, the seismic isolation effect of the upper building cannot be demonstrated only with the joining device that realizes the pile head pin. In addition, the existing proposal that has been named as a pile head seismic isolation is incomplete in the mechanism of the seismic isolation mechanism at the pile head, and can provide a reliable and sufficient seismic isolation effect and seismic safety performance for the pile and superstructure. Things are not realized.
[0014]
The present invention is a structure capable of reliably and economically realizing a pile head joining method capable of dramatically improving the seismic safety performance of the pile and a high performance seismic isolation structure capable of dramatically improving the seismic safety performance of the upper building. The purpose is to provide a supporting foundation structure.
[0015]
The pile head rotation free joint construction method that realizes the improvement of the seismic performance of the pile has already been put into practical use, and several seismic isolation structures that have adopted this construction method have already been realized by the present inventor. The foundation footing is constructed on the joining device, the seismic isolation device is installed after restraining the foundation footing with the underground beam, and the foundation of the structure and the beam are constructed on it. It was something to do. Accordingly, the main object of the present invention is to realize a high seismic safety performance of both the pile and the superstructure more economically. It is to realize the “structure method”.
[0016]
[Means for Solving the Problems]
The present invention adopts the following configuration in order to solve the above points.
<Configuration 1>
A rotary body made of a spherical body or a cylindrical body, which is supported rotatably by a concave cradle, is disposed on a pile head that supports a structure including a foundation structure, and the rotary body above the rotary body. A smooth flat plate that is in contact with the rotating body is disposed on the bottom surface of the structure, and the bottom surface of the structure located around the flat plate is below the outer surface of the flat plate. Support structure for structures characterized by not protruding.
[0017]
<Configuration 2>
A joining device having a gently convex upper surface is provided on the top of the pile head that supports the structure including the foundation structure, and the joining device supports the structure located above the sliding joint. A smooth flat plate in contact with the joined body is disposed on the bottom surface of the structure, and the bottom surface of the structure located around the flat plate does not protrude below the outer surface of the flat plate. Supporting foundation structure of the structure that is characterized.
[0018]
<Configuration 3>
The pile head that supports the structure including the foundation structure can be rotationally deformed to at least one horizontal axis in the horizontal 2-axis (X / Y-axis) and vertical 1-axis (Z-axis) coordinate systems, and the horizontal shear force Is connected to the upper surface of the bonding device via a sliding material having a lubricating surface with a low coefficient of sliding friction. A smooth sliding plate that is in contact with the lubricating surface on the upper surface, and the bottom surface of the upper structure around the sliding plate does not protrude below the outer surface of the sliding plate. Supporting foundation structure.
[0019]
<Configuration 4>
In the support basic structure of the structure according to Configuration 2 or Configuration 3, the lubrication surface on the upper surface of the joining device is made of a coating material of pure PTFE, filled PTFE, polyamide resin, molybdenum disulfide, or fluorine coating material. A structure characterized in that the surface of the sliding surface of the sliding plate disposed above the joining device is made of a coating material of any one of a stainless steel plate, molybdenum disulfide, and fluorine coating. Supporting foundation structure.
[0020]
<Configuration 5>
In the support basic structure of the structure according to Configuration 3, the joining device sandwiches a pin fulcrum, a sphere, or a pseudo sphere that penetrates two or more vertical plane plates with a horizontal cylindrical pin, and is recessed above and below the pin fulcrum. Double ball seats with curved surfaces, joined with curved surfaces with convex and concave curved surfaces, and curved surfaces with different curvatures where the radius of curvature of the convex curved surface on the convex side is smaller than the radius of curvature of the concave surface. A support base structure for a structure, wherein rotational deformation is realized by interposing an inclined deformable rubber body composed of a plurality of rubber layers or other elastic body layers.
[0021]
<Configuration 6>
In the structure supporting foundation structure according to any one of the above configurations 1 to 5, the bottom surface of the structure other than the support point of the pile head and the surrounding area of the underground enclosure are not in direct contact with the ground below the structure and the surrounding area of the underground enclosure. Supporting foundation structure for structures characterized by being constructed as follows.
[0022]
<Configuration 7>
In the supporting basic structure of the structure according to any one of the above-described configurations 1 to 6, an elastic foam material such as urethane foam or polystyrene foam is provided between the entire circumference or a part of the ground or retaining wall around the underground frame and the structure. Or a supporting base structure for a structure, wherein an elastic material such as a rubber plate, or a honeycomb-shaped metal spring or a metal leaf spring is disposed.
[0023]
<Configuration 8>
In the support foundation structure of the structure according to any one of the above configurations 1 to 6, a ground side frame that behaves integrally with a pile foundation or the ground is constructed, and laminated rubber and rubber plates are provided between the ground side frame and the structure. Supporting base structure of a structure, which is equipped with a seismic isolation device for restoring force and other energy absorbing dampers.
[0024]
<Configuration 9>
In the structure supporting base structure according to any one of the above configurations 1 to 5, the structure is supported by a supporting device having the same configuration as the connecting device having the rotating portion, the upper joined body, and the upper sliding plate. There are no piles under the support device, and the support device is placed directly on the hard foundation such as concrete foundation footing or bedrock directly on the foundation. A supporting foundation structure for a structure, which is constructed so as not to directly touch the ground below the structure and around the underground structure.
[0025]
<Overview>
The present invention intends to simultaneously realize the seismic safety performance improvement of the pile and the seismic isolation performance of the superstructure by one system. First, in order to improve the seismic performance of the pile body, (1) release the fixed degree (rotational constraint) of the pile head that has been rigidly joined to suppress the generation of the pile head moment, and (2) It is to reduce the horizontal seismic force transmitted from the superstructure to the pile head. In order to reduce the seismic force acting on the pile head in (2), the seismic force generated in the upper building itself should be reduced by the seismic isolation structure, and the seismic force should not be transmitted to the pile head. In consideration of two countermeasures, the present invention introduces a seismic isolation mechanism to the pile head as a method of realizing both of them simultaneously.
[0026]
However, when the seismic isolation device is directly connected to the pile head, it should be avoided to apply an additional bending moment due to the Pδ effect to the pile head by the seismic isolation mechanism. For this reason, the present invention eliminates the sliding rubber bearings and rolling bearings in which the vertical load acting axis on the pile moves and the slide bearings and rolling bearings causing the deviation from the pile, and the vertical displacement of the pile head and the vertical load acting point A slide bearing in which a sphere having a pedestal on the pile side where slip does not occur or a slide member fixed to the pile side is adopted.
[0027]
In addition, it is necessary to take measures against tilting of the vertical axis of the pile near the head of the pile during an earthquake. In other words, because the vertical axis of the pile is inclined, when a sliding bearing is placed on the pile head, the sliding surface fixed upward on the pile head upper surface is inclined from the horizontal plane, and the inclination angle and A gap occurs and normal contact conditions between the sliding material and the sliding plate are not met. In addition, there are many proposals to place a ball seat with the same curvature on the head of the pile and realize the pin support condition by rotating the spherical surface, but the rotation of the pile during an earthquake near the head of the pile In most cases, the center of curvature and the center of curvature of the ball seat do not coincide with each other. As a result, a normal rotation mechanism on both the concave and convex sides of the ball seat is not established, and the pin support condition by the ball seat is not established.
[0028]
None of the existing proposals adopting the above-mentioned documents 1 and 2 and other ball seat type pin bearings solve this problem. In the present invention, two solutions are adopted to solve this problem. That is, as a method to enable smooth horizontal relative displacement between the pile and the bottom of the structure (= horizontal plane) above the pile even when the pile is inclined, (1) a rotating sphere is placed on the pile head. "Pile head rotation support mechanism" in which the bottom of the structure moves horizontally on the sphere regardless of the inclination of the pile, or (2) The upper surface of the pile head is a gentle spherical surface, and even if the pile is inclined, "Pile head spherical sliding mechanism" that does not change the contact conditions, or (3) Introduce a rotatable pin joint at the top of the pile body, and use the upper surface of the joint at the top of the pin joint as the sliding surface Adopt one of the "Pile-supporting-sliding mechanism" of "Pin-supporting sliding body + sliding plate" that arranges the sliding plate on the side.
[0029]
Other basic conditions employed in the present invention are as follows. In order to make the pin joint of the above-mentioned sliding joint and the joint part of the pile function reliably by the inclination of the pile,
a) Pin fulcrum obtained by penetrating two or more vertical flat plates with horizontal cylindrical pins = “horizontal through pin method”,
b) A “double sphere seat system” in which a sphere or a pseudo sphere having spherical surfaces on both upper and lower surfaces is sandwiched and concave and curved surfaces having substantially the same or slightly larger radius of curvature are arranged on the upper and lower sides.
c) “Concave and convex irregular curvature point contact method” in which the curved surface has a curved surface having a different curvature and is in contact with both curved surfaces, and the curvature radius of the convex curved surface on the convex side is smaller than that of the concave surface.
d) Any one of the “elastic body support system” is employed in which an elastically deformable rubber body composed of a thick single layer or a plurality of thick rubber layers or another elastic body layer is interposed in the joint.
[0030]
In addition, the foundation structure according to the present invention clearly separates the bottom of the structure and the basement from the ground so that the ground motion is not transmitted from the ground to the structure, and ensures a sufficient clearance for relative displacement. In order to enable relative displacement even if the pile head rotation surface and the slip part exceed the slip plate area, the periphery of the ground must be the same surface, and the clearance between the underground frame and the surrounding ground In the conventional base-isolated building, a special expansion joint hardware for passing was required on the upper part of the base isolation clearance part. This elastic material filling makes it possible to walk on the upper part and to secure the flow line around the base-isolated building on the ground surface.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments.
FIG. 1 shows a supporting foundation structure of a structure according to the present invention, (A) shows the entire structure of the foundation including the lower part of the building, the pile foundation, and the ground, and (B) shows the “pile head in the vicinity of the pile head. The basic configuration of the “pin support sliding mechanism” is shown enlarged.
[0032]
In FIG. 1, a joining device 5 is provided on the head of the pile 3. The joining device 5 includes a lower joining member 51 and an upper joining member 52 that are disposed to face the head of the pile 3 and a pin joining portion 50 that enables relative rotational displacement between them.
In order to use the joining device 5 as a sliding bearing, a sliding material 53 having a solid lubricant surface with a low friction coefficient is disposed on the upper surface of the upper joining member 52, and further, on the upper side of the sliding material 53, that is, the upper structure 1 or A sliding plate 54 that contacts the sliding member 53 is attached to the bottom surface of the foundation structure.
[0033]
The slip plate 54 is finished such that the lower outer surface thereof is flush with the bottom surface of the surrounding structure 1 or does not protrude downward from the bottom surface. This makes it possible to maintain a predetermined sliding function with the sliding material 53 even in the event of a displacement exceeding the region of the sliding plate 54 in the event of a large earthquake exceeding the expected level. The safety margin increases dramatically.
[0034]
As shown in FIG. 1A, a clearance 11 is constructed on the bottom surface of the structure 1 with a slight gap from the lower ground 2 so that earthquake motion is not transmitted from the lower ground 2. In order to provide the clearance 11 on the bottom surface of the structure, it is necessary to arrange a few supporting points for supporting the discarded formwork and the precast member on the bottom surface of the structure, but some support that does not increase the horizontal rigidity and the horizontal resistance force. Arrangement does not hinder performance.
In addition, a clearance 11 that can allow relative displacement between the ground 2 and the structure 1 in the event of an earthquake is provided around the underground structure, and a foamed material 12 such as foamed urethane or foamed polystyrene, and other elastic materials are disposed therein. At the same time as giving the object 1 a restoring force to return to the original position, a flow line is secured so that the object 1 can walk on the clearance around the structure.
Reference numeral 15 denotes a stud bolt that holds the sliding plate 54, and 22 denotes a ground-side discarded concrete retaining wall that secures the clearance 11.
[0035]
In the present invention, there are six types shown in FIG. 2 to FIG. 4 as support methods for pile foundations that can support the structure 1 and the structure 1 can be freely horizontally displaced with respect to the ground 2 even when the pile 3 is inclined during an earthquake. Nine types of support systems can be employed.
[0036]
A1 and A2 of FIG. 2 have shown the support foundation structure of the "pile head rotation support system". In the supporting basic structure of A1 in FIG. 2, a sphere 60 is arranged on a concave cradle 64 provided on the head of the pile 3, and the sphere 60 can rotate freely in two horizontal axes (X and Y axes). It can be moved. Between the cradle 64 and the sphere 60 is filled with grease or lubricating oil, or a surface treatment such as a molybdenum disulfide coating is performed to reduce the friction coefficient. The support basic structure of A2 in FIG. 2 employs a roller support in which a cylindrical roller 61 is arranged instead of a sphere on the cradle 64. In this case, the moving direction by rotation is one direction, and the direction orthogonal to the axis of the roller 61 is a sliding bearing.
[0037]
B in FIG. 2 is a method in which a sliding joint body 55 having a gently spherical upper surface is attached to the pile head, and even if the pile 3 is inclined, the contact condition with the sliding plate 54 on the upper side does not change. It shows the basic support structure of the "slip mechanism".
[0038]
3 and 4 show a “pin” in which a rotatable pin joint portion is introduced into the upper portion of the pile 3, and a slip plate is disposed on the bottom surface side of the structure with the upper surface of the joined body at the upper portion of the pin joint portion as a slip surface This shows the support foundation structure of the “Pile head pin support slip mechanism” of “Support slide body + slip plate”. Four types and six types of C to F are adopted as a configuration method of the rotatable pin joint portion.
[0039]
C in FIG. 3 is disposed opposite to the head of the pile 3 and passes through the center of the lower joint member 51 and the upper joint member 52 having two or more vertical plane plates with the horizontal joint pin 50. It shows the support horizontal structure of “horizontal penetrating pin method” as a pin fulcrum.
In this structure, the rotation direction is limited to one direction as in the case of the roller support of A2 in FIG. In the present invention, the rotation is in one horizontal direction or more, but as a case where the pin support function may be in one direction, for example, the pile foundation may be composed of a continuous underground wall. Although a pin fulcrum is required in the out-of-plane direction of the continuous underground wall, no tilt deformation occurs in the in-plane direction of the continuous underground wall, so that pin support is only required in the out-of-plane direction.
[0040]
D1 and D2 in FIG. 3 are piles in which a sphere 60 shown in D1 or a pseudosphere 62 having a spherical surface is sandwiched between two upper and lower surfaces shown in D2, and concave curved surfaces having substantially the same or slightly larger radius of curvature are arranged on the upper and lower sides. The support base structure of the “double ball seat system” is shown in which the side rotator receiving seat 64 and the joined body side spherical receiving seat 65 constitute a pin fulcrum that can freely rotate in two directions.
[0041]
E1 of FIG. 4 arrange | positions the concave receiving member 71 in the pile side head, arrange | positions the conjugate | zygote 72 which has a convex curved surface below on the upper side, and makes the curvature radius of a convex tip curved surface concave on both contact surfaces. The support foundation structure which comprises a pin fulcrum by the "concave / convex irregular curvature point contact system" made smaller than the curvature radius of is shown. From a macro viewpoint, the pin fulcrum is configured by a rotation (tilting) mechanism by point contact.
Also, a structure upside down from the structure shown by E1 in FIG. 4, that is, as shown by E2 in FIG. 4, a convex support member 72 having a convex curved surface is arranged on the pile side head, and the upper side thereof. It is good also as a support basic structure which arrange | positions the concave-shaped joining body 71 and comprises a pin fulcrum by the "uneven | corrugated uneven curvature point contact system".
[0042]
In FIG. 4F, a sloped deformable rubber body or other elastic body composed of a single-walled or multiple-walled rubber layer is provided between the pile-side joining member 81 and the elastic body upper joined body 82. The support basic structure which comprises a pin fulcrum by the "elastic body support system" which interposes the layer 80 is shown.
In the method shown in FIG. 2, the upper structure can move normally even if the pile is tilted by the rotation support and support mechanism or the spherical sliding mechanism formed on the pile head. In the methods shown in FIGS. Since a sliding mechanism supported by a free pin fulcrum can be configured, even if the pile 3 is tilted during an earthquake, the contact condition between the sliding surface at the top of the joint and the sliding plate at the bottom of the structure is maintained normally. Operates normally.
[0043]
As described above, the present invention has shown the method of realizing the seismic isolation foundation structure at the pile head that can protect both the pile and the superstructure from a large earthquake on the premise of the pile foundation. It can also be applied to cases.
[0044]
FIG. 5 shows an application example thereof, and the joining device portion of the present invention can be directly arranged on the concrete foundation footing 35 constructed on the supporting ground. In this case, the portion in contact with the concrete foundation has an appropriate degree of compressive stress on the concrete, and the bottom plate (base plate) shape may be changed to an appropriate shape so that anchor bolts for fixing can be arranged. In addition, when the concrete foundation footing 35 is unnecessary in a hard ground such as a bedrock, it is possible to directly arrange the present joining apparatus through only the level adjusting concrete or mortar on the bedrock.
[0045]
Note that the auxiliary stopper 17 for horizontal shearing force indicated by a broken line in FIG. 5B may be provided or may be omitted. This is an auxiliary stopper as a safety measure. As long as the bottom surface of the upper structure slide plate is kept horizontal, there is no fear that the joint on the pin will rotate or fall because of the pin fulcrum, and the sliding function is normal. The horizontal shearing force is transmitted to the ground side through the pin fulcrum. However, it is better to provide an auxiliary mechanism for maintaining the horizontality so that the joined body does not tilt or rotate during construction, for example, the horizontal ear member 18 shown by a broken line in the figure. For this purpose, this auxiliary stopper can be used. .
[0046]
FIG. 6 shows the case where the existing seismic isolation device 90 is used to adjust the restoring force and damping performance of the seismic isolation structure. Existing seismic isolation devices such as laminated rubber and various dampers are used. By appropriately combining them, it is possible to freely set and adjust the performance as a seismic isolation structure.
In FIG. 6 (A), an example of installation of the seismic isolation device 90 is shown on the left side, and a model conceptual diagram meaning performance adjustment is shown on the right side. FIG. 6B shows an example in which a clearance process that satisfies the restoring force adjustment and the walking flow line at the same time is performed by arranging a honeycomb mesh 13 or a honeycomb-shaped metal thin plate on the clearance 11 around the building 1. showed that.
[0047]
【The invention's effect】
As described above, when the structure support foundation structure of the present invention is adopted, the entire structure can be made a seismic isolation structure at almost the same cost as the pile head joining device disposed on the pile foundation. The seismic safety of both goods can be dramatically improved. The effects and merits of the present invention are summarized as follows.
(1) A pile head pin joint can be realized only by arranging a joining device at the pile head, and the seismic safety performance of the pile foundation can be enhanced.
(2) In addition to simply connecting the pile head to the pin, the upper surface of the upper joint is a rolling bearing or a sliding bearing. The seismic force acting on can be suppressed to an extremely small value.
(3) Further, since the horizontal force transmitted by the pile head joining device is the horizontal force acting on the upper structure = base shear, the upper structure has a very high-performance seismic isolation structure.
(4) That is, since the response acceleration and seismic force generated in the upper structure are remarkably suppressed, the seismic safety performance of the structure and its internal housing is dramatically improved, and the upper structure is economically improved. It becomes possible to design.
(5) The cost increase factor in the conventional seismic isolation structure is
B) The cost of seismic isolation equipment is high,
B) The foundation housing is doubled up and down the device;
C) An expensive expansion joint is required above the clearance.
D) The need for flexible joints in piping
But
In the present invention, the joint device for the pile head also serves as a seismic isolation device for a), and the conventional seismic isolation device is unnecessary, and the double foundation frame of b) is also unnecessary. Furthermore, the special expansion hardware of c) is also unnecessary, eliminating almost all the factors that increase the cost of conventional seismic isolation buildings.
(6) Therefore, in the present invention, an extremely high seismic isolation effect is realized without a cost increase factor, so that it is possible to construct at a much lower cost compared to a non-base-isolated conventional structure. .
[0048]
As described above, the present invention achieves (1) pile head pin joint that can greatly reduce the stress of the pile body during an earthquake, and (2) the seismic force acting on the pile by the pile head rolling mechanism and sliding mechanism itself. And (3) high-performance seismic isolation of superstructure buildings. The present invention, which realizes many of these high performances only with the joining device arranged on the pile head and eliminates the cost increase factors such as conventional seismic isolation devices and double foundations, is economical from the viewpoint of seismic performance. It provides a new basic structure method that is remarkably superior from a viewpoint, and greatly contributes to the development of social capital with excellent seismic safety performance.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a structure support foundation structure according to the present invention,
(A) is a cross-sectional view showing the overall structure of the foundation including the lower part of the building and the pile foundation / ground,
(B) is sectional drawing which shows the basic composition of a pile head vicinity.
FIG. 2 is a chart showing a cross-sectional configuration of a pile head joint device and a deformation state during an earthquake in a structure support foundation structure according to the present invention.
FIG. 3 is a chart showing a cross-sectional configuration of another pile head joining device and a deformation state during an earthquake in a structure supporting foundation structure according to the present invention.
FIG. 4 is a chart showing a cross-sectional configuration of another pile head joint device and a deformation state during an earthquake in the structure support foundation structure according to the present invention.
FIG. 5 is an explanatory diagram of an application method of the structure support foundation structure of the present invention when the ground is hard and does not require a pile foundation;
(A) is a cross-sectional view showing the overall structure of the foundation including the lower part of the building and the foundation / ground,
(B) is sectional drawing which shows the structure of a foundation support part vicinity.
FIG. 6 is an explanatory diagram of a configuration around the building of the structure supporting foundation structure of the present invention,
(A) is a sectional view showing an example of performing performance adjustment by combining existing seismic isolation devices,
(B) is sectional drawing which shows the example which arrange | positions a foam material and a honeycomb mesh in a building periphery clearance part, and ensures a restoring force adjustment and a walk flow line simultaneously.
FIG. 7 is an explanatory view of a conventional support base structure of a structure,
(A) is an explanatory diagram of a proposal for placing laminated rubber on a pile head,
(B) is explanatory drawing of pile head pin joining which arrange | positions a ball seat to a pile head.
FIG. 8 is an explanatory view of a conventional pile head pin and pile head sliding foundation structure.
[Explanation of symbols]
1: Structure
11: Clearance between building and ground
12: Foam for filling clearance
13: Honeycomb mesh for clearance
15: Stud bolt
17: Stopper for horizontal shear force
18: Auxiliary member for maintaining horizontality
2: Ground
21: Support ground
22: Ground-side discarded concrete and retaining wall
3: Pile
35: Concrete foundation footing
4: Conventional pile head seismic isolation device
41: Laminated rubber
42: Conventional pile head base
43: Conventional pile head sliding support
5: Joining device
50: Pin joint for rotational displacement
51: Lower joint member
52: Upper joined body
53: Sliding material
54: Sliding plate
55: Upper spherical sliding bearing
60: Sphere
61: Roller
62: Pseudosphere with both upper and lower spherical surfaces
64: Pile side rotating body receiving seat
65: Joint side spherical seat
71: Concave seat, concave joint (E2)
72: Convex joint, convex support member (E2)
80: Rubber layer
81: Pile side joining member
82: Elastic body upper joined body
90: Seismic isolation device

Claims (9)

基礎構造体を含む構造物を支持する杭頭部に、凹型受け台により回転自由に支持された、球体もしくは円柱体からなる回転体が配設され、
前記回転体により、前記回転体の上方に位置する構造物を支持しており、
前記構造物の底面に、前記回転体に接する平滑な平板が配置され、
前記凹型受け台の上部が、前記杭頭部が傾斜した状態でも前記平板に接触しない程度に前記平板から離間しており、
前記平板の周囲に位置する前記構造物の底面は、前記平板の外表面より下方には突出していないことを特徴とする構造物の支持基礎構造。
On the pile head that supports the structure including the foundation structure, a rotating body consisting of a sphere or a cylindrical body, which is freely supported by the concave cradle, is disposed.
The rotating body supports a structure located above the rotating body,
A smooth flat plate in contact with the rotating body is disposed on the bottom surface of the structure,
The upper part of the concave cradle is separated from the flat plate to the extent that it does not contact the flat plate even when the pile head is inclined,
A support base structure for a structure, wherein a bottom surface of the structure located around the flat plate does not protrude downward from an outer surface of the flat plate.
基礎構造体を含む構造物を支持する杭頭上部に、上面が緩やかな凸面となっているすべり接合体が設けられ、
前記すべり接合体により、前記すべり接合体の上方に位置する前記構造物を支持しており、
前記構造物の底面に、前記接合体に接する平滑な平板が配置され、
前記平板の周囲に位置する前記構造物の底面は、前記平板の外表面より下方には突出していないことを特徴とする構造物の支持基礎構造。
On the top of the pile head that supports the structure including the foundation structure, a sliding joint with a gently convex upper surface is provided,
The sliding joint is supporting the structure located above the sliding joint,
A smooth flat plate in contact with the joined body is disposed on the bottom surface of the structure,
A support base structure for a structure, wherein a bottom surface of the structure located around the flat plate does not protrude downward from an outer surface of the flat plate.
基礎構造体を含む構造物を支持する杭頭部に、水平2軸(X・Y軸)及び鉛直1軸(Z軸)の座標系のうち、少なくとも水平1軸に回転変形可能且つ水平せん断力を伝達できる接合装置が設けられ、
前記接合装置の上面で、すべり摩擦係数の低い潤滑面を有するすべり材を介して前記構造物を支持しており、
前記構造物の底面に、前記すべり材の上面の潤滑面に接触する平滑なすべり板を配置しており、
前記すべり板の周囲の上部構造物の底面は、前記すべり板の外表面より下には突出していないことを特徴とする構造物の支持基礎構造。
The pile head that supports the structure including the foundation structure can be rotationally deformed to at least one horizontal axis in the horizontal 2-axis (X / Y-axis) and vertical 1-axis (Z-axis) coordinate systems, and the horizontal shear force A joining device capable of transmitting
On the upper surface of the joining device, the structure is supported via a sliding material having a lubricating surface with a low sliding friction coefficient,
A smooth sliding plate that is in contact with the lubricating surface of the upper surface of the sliding material is disposed on the bottom surface of the structure,
A supporting base structure for a structure, wherein a bottom surface of an upper structure around the sliding plate does not protrude below an outer surface of the sliding plate.
請求項2または請求項3に記載の構造物の支持基礎構造において、
前記接合装置の上面の潤滑面が純PTFE、充填材入りPTFE、ポリアミド樹脂、2硫化モリブデン、フッ素コーティング材のいずれかの被覆材料により構成されており、前記接合装置の上方に配置される前記すべり板のすべり面の表面がステンレス鋼板、2硫化モリブデン、フッ素コーティングのいずれかの被覆材料により構成されていることを特徴とする構造物の支持基礎構造。
In the support base structure of the structure according to claim 2 or claim 3,
The sliding surface disposed above the joining device, wherein the upper surface of the joining device is made of a coating material of pure PTFE, filled PTFE, polyamide resin, molybdenum disulfide, or fluorine coating material. A support base structure for a structure, wherein the surface of the sliding surface of the plate is made of a coating material of a stainless steel plate, molybdenum disulfide, or fluorine coating.
請求項3に記載の構造物の支持基礎構造において、
前記接合装置は、2枚以上の鉛直の平面板を水平方向の円柱型ピンで貫通したピン支点、球体もしくは疑似球体を挟み、その上下に凹曲面を配置したダブル球座、凹凸両曲面で接触し凸側先端曲面の曲率半径が凹面の曲率半径より小さくなっている曲率の異なる曲面で接触する接合体、接合部に厚肉単層ないし厚肉複数層のゴム層で構成される傾斜変形可能なゴム体乃至その他の弾性体層を介在させることのいずれかによって回転変形を実現してなることを特徴とする構造物の支持基礎構造。
In the support basic structure of the structure according to claim 3,
The joining device has a pin fulcrum penetrating two or more vertical flat plates with a horizontal cylindrical pin, a sphere or a pseudo sphere, and a double sphere seat with concave and convex surfaces above and below, and contact with both concave and convex curved surfaces. The curved radius of curvature of the tip of the convex side is smaller than the radius of curvature of the concave surface. The joint is in contact with curved surfaces with different curvatures, and the joint can be inclined and deformed with a thick single layer or multiple thick rubber layers. A support base structure for a structure, wherein a rotational deformation is realized by either interposing a rubber body or other elastic body layer.
上記請求項1乃至5のいずれかに記載の構造物の支持基礎構造において、
杭頭部の支持点以外の構造物底面および地下躯体周囲を構造物下側および地下躯体周囲の地盤に直接に接しないように構築していることを特徴とする構造物の支持基礎構造。
In the support base structure of the structure according to any one of claims 1 to 5,
A supporting foundation structure for a structure that is constructed so that the bottom of the structure and the surrounding area of the basement other than the support points of the pile head are not in direct contact with the ground under the structure and the surrounding area of the underground structure.
上記請求項1乃至6のいずれかに記載の構造物の支持基礎構造において、
地下躯体周囲の全周もしくはその一部の地盤もしくは擁壁と構造物の間に、発泡ウレタン、発泡スチロール等の弾性発泡材料、もしくはゴム板等の弾性材料、もしくはハニカム形状の金属スプリングや金属製板ばねを配置していることを特徴とする構造物の支持基礎構造。
In the supporting base structure of the structure according to any one of claims 1 to 6,
Elastic foam material such as urethane foam or polystyrene, elastic material such as rubber plate, or honeycomb-shaped metal spring or metal plate between the entire circumference of the surrounding area of the underground enclosure or a part of the ground or retaining wall and the structure A supporting base structure for a structure, characterized by arranging a spring.
上記請求項1乃至6のいずれかに記載の構造物の支持基礎構造において、杭基礎もしくは地盤と一体に挙動する地盤側躯体を構築し、地盤側躯体と構造物との間に積層ゴム、ゴム板等の復元力用免震装置と各種のエネルギー吸収用ダンパーを配置したことを特徴とする構造物の支持基礎構造。The support foundation structure for a structure according to any one of claims 1 to 6, wherein a ground side frame that behaves integrally with a pile foundation or the ground is constructed, and a laminated rubber or rubber is provided between the ground side frame and the structure. Supporting foundation structure for structures, which is equipped with seismic isolation devices such as plates and various energy absorption dampers. 上記請求項1乃至5のいずれかに記載の構造物の支持基礎構造において、
回転部分とその上部の接合体およびその上部のすべり板を有する接合装置と同じ構成の支持装置で構造物を支持しており、その支持装置の下側に杭はなく、直接基礎のコンクリート基礎フーティングもしくは岩盤等の硬質地盤上に直接支持装置を配置しており、且つ支持点以外の構造物底面および地下躯体周囲を構造物下側および地下躯体周囲の地盤に直接に接しないように構築していることを特徴とする構造物の支持基礎構造。
In the support base structure of the structure according to any one of claims 1 to 5,
The structure is supported by a support device having the same structure as the joining device having the rotating part and the upper joined body and the upper sliding plate. There is no pile below the supporting device, and the concrete foundation foot of the direct foundation is supported. Supporting devices are placed directly on the hard ground such as rocking or rock, and the bottom of the structure and the surrounding area of the basement other than the supporting points are constructed so that they do not directly touch the bottom of the structure and the ground around the basement. Supporting foundation structure for structures characterized by
JP2002205893A 2002-07-15 2002-07-15 Support foundation structure of structure Expired - Lifetime JP3741428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002205893A JP3741428B2 (en) 2002-07-15 2002-07-15 Support foundation structure of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205893A JP3741428B2 (en) 2002-07-15 2002-07-15 Support foundation structure of structure

Publications (2)

Publication Number Publication Date
JP2004044312A JP2004044312A (en) 2004-02-12
JP3741428B2 true JP3741428B2 (en) 2006-02-01

Family

ID=31711071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205893A Expired - Lifetime JP3741428B2 (en) 2002-07-15 2002-07-15 Support foundation structure of structure

Country Status (1)

Country Link
JP (1) JP3741428B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4595545B2 (en) * 2005-01-11 2010-12-08 Jfeスチール株式会社 Joint structure of footing and pile
DE102005060375A1 (en) 2005-12-16 2007-06-21 Steelpat Gmbh & Co. Kg Bearing for protection for structures, formed as sliding pendulum bearing, has slide material which comprises a plastic with elasto-plastic compensating quality, especially plastic with low friction
GB2462249B (en) * 2008-07-26 2012-07-18 Shire Structures Ltd Adjustable pile head
JP5360971B2 (en) * 2009-03-31 2013-12-04 三谷セキサン株式会社 Pile cap and pile cap / pile head joint structure
CN102828645B (en) * 2011-06-15 2018-01-05 赵世峰 Structure vertical earthquake isolating, shock absorption system
JP5403720B2 (en) * 2013-01-24 2014-01-29 三谷セキサン株式会社 Pile cap and connected pile cap
JP6924639B2 (en) * 2017-07-10 2021-08-25 システム計測株式会社 Pile head connection structure
CN110468867A (en) * 2019-07-25 2019-11-19 安徽智恒节能材料科技有限公司 A kind of structure foundation shockproof structure and construction method
CN111270699B (en) * 2020-02-18 2021-07-23 兰州理工大学 Filter type cushion shock insulation foundation treatment method
CN113700021B (en) * 2020-09-23 2023-01-24 中顾国际工程咨询有限公司 Building foundation pile with high anti-seismic performance
CN114182648A (en) * 2021-12-23 2022-03-15 中铁十局集团第七工程有限公司 Swivel construction spherical hinge support based on tension bridge
JP7419411B2 (en) 2022-01-14 2024-01-22 株式会社ダイナミックデザイン Sliding bearing for seismic isolation structure

Also Published As

Publication number Publication date
JP2004044312A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP3741428B2 (en) Support foundation structure of structure
US6324795B1 (en) Seismic isolation system between floor and foundation comprising a ball and socket joint and elastic or elastomeric element
US4644714A (en) Earthquake protective column support
JP3467513B2 (en) Seismic isolation bearing with ball inside cone
US6631593B2 (en) Directional sliding pendulum seismic isolation systems and articulated sliding assemblies therefor
CA2672314A1 (en) Seismic controller for friction bearing isolated structures
JPH01174737A (en) Earthquakeproof device utilizing coulomb friction
JP3623168B2 (en) Pile foundation structure
JP4545920B2 (en) Seismic isolation system for bridges
JP3195512B2 (en) Seismic isolation structure
JP3976423B2 (en) Vibration suppression device
JPH10280730A (en) Insulation bearing device and construction of vibration isolation using it
JP2001180797A (en) Support structure for storage tank
JP2000120776A (en) Floating preventing device in base isolating device for structure
JP2007247167A (en) Base isolation supporting device
CN116163574A (en) Friction sliding self-resetting three-dimensional shock insulation and vibration reduction support
JP4439694B2 (en) High-damping frame of high-rise building
JP3713645B2 (en) Seismic isolation device using laminated rubber
JP2927357B2 (en) Seismic isolation support device
JP4137127B2 (en) Seismic isolation structure
JP3862174B2 (en) Basic structure of the structure
JP2001288930A (en) Seismically isolated structure
JP2000104420A (en) Base isolation structure
RU2217559C1 (en) Shock-proof seismic facility
JP2000304087A (en) Base isolation device and base isolation structure furnished with base isolation device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Ref document number: 3741428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060307

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term