JPS5821007B2 - Kokiyoujinseikouzainoseizouhou - Google Patents

Kokiyoujinseikouzainoseizouhou

Info

Publication number
JPS5821007B2
JPS5821007B2 JP13066075A JP13066075A JPS5821007B2 JP S5821007 B2 JPS5821007 B2 JP S5821007B2 JP 13066075 A JP13066075 A JP 13066075A JP 13066075 A JP13066075 A JP 13066075A JP S5821007 B2 JPS5821007 B2 JP S5821007B2
Authority
JP
Japan
Prior art keywords
transformation point
temperature
temperature range
rate
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13066075A
Other languages
Japanese (ja)
Other versions
JPS5274520A (en
Inventor
相原賢治
大野鉄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13066075A priority Critical patent/JPS5821007B2/en
Publication of JPS5274520A publication Critical patent/JPS5274520A/en
Publication of JPS5821007B2 publication Critical patent/JPS5821007B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 この発明は、すぐれた靭性、延性、ならびに100〜2
00 kq/−の引張り強さを有する低合金鋼材の製造
法に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention provides excellent toughness, ductility, and
The present invention relates to a method for producing a low alloy steel material having a tensile strength of 0.00 kq/-.

高強度鋼材を得る方法として、従来から焼入れ、焼もど
しをはじめとする各種調質熱処理や、冷間加工による力
目工強化などがあるが、それらは強度の上昇に対しては
有効であるが、高強度と高靭性および高延性を兼備させ
ることは十分ではなかった。
Conventional methods for obtaining high-strength steel materials include various tempering heat treatments such as quenching and tempering, and mechanical strength strengthening through cold working, but these methods are effective in increasing strength. However, it was not sufficient to combine high strength with high toughness and high ductility.

この発明は、低合金鋼の熱処理および加工について種々
検討を加え、上記の諸問題点を解決した高靭性、高延性
を有する高強度鋼材の製造法を提案するものである。
This invention proposes a method for manufacturing high-strength steel materials with high toughness and high ductility that solves the above-mentioned problems by conducting various studies on heat treatment and processing of low-alloy steel.

この発明の特徴は、鋼の化学成分、熱処理、加工の三者
の条件を適当に選択して組合せることにより、従来の方
法では得ることのできなかった微細結晶粒組織とし、高
い強度とすぐれた靭性、延性を付与し得ることにある。
The feature of this invention is that by appropriately selecting and combining the three conditions of steel chemical composition, heat treatment, and processing, a fine grain structure that could not be obtained by conventional methods is achieved, resulting in high strength and excellent It is possible to impart additional toughness and ductility.

この発明の対象とする低合金鋼とは、炭素0.1〜10
%、けい素0.01〜2.0%、マンガン0.1〜2.
0%、酸可溶性アルミニウム0.01〜0.2%を含有
し、さらにバナジウム0.005〜0.3%、ニオブ0
.002〜0.2%、チタン0.005〜03%、ジル
コニウム0.002〜0.2%のうち1種または2種以
上を含む鋼で、必要に応じてクロム0.1〜2.0%、
ニッケル0.1〜2.0%、鋼0.1〜1.0%、モリ
ブデン0.05〜1.0%、ボロン0.0005〜0.
01%のうち1種または2種以上を含む低合金鋼を対象
とし、この鋼をAc3変態点以上、好ましくは1050
〜1300℃の高温加熱後の焼入れによる前処理によっ
て合金元素を完全かつ均一に固溶させてマルテンサイト
組織またはマルテンサイトとベイナイトの混合組織とし
たものを、Ac3変態点〜Ac3変態点+200℃の温
度域に5℃/秒以上の昇温速度で加熱して、きわめて微
細なオーステナイト粒と、きわめて微細に分散析出した
化合物からなるオーステナイト組織にし、これをMs点
点前A3変態点間温度に冷却速度4℃/秒以上で急冷し
、その温度域にて減面率15%以上(好ましくは該減面
率の50%以上は変態が完了する以前に加工する)の加
工を加えて非常に微細な結晶粒と炭化物からなる組織と
し、さらに30秒〜10分間保持することを特徴とする
高強靭性鋼材の製造法である。
The low alloy steel targeted by this invention is carbon 0.1-10
%, silicon 0.01-2.0%, manganese 0.1-2.
0%, acid-soluble aluminum 0.01-0.2%, further contains vanadium 0.005-0.3%, niobium 0.
.. Steel containing one or more of the following: 0.002-0.2%, titanium 0.005-03%, zirconium 0.002-0.2%, and chromium 0.1-2.0% as necessary. ,
Nickel 0.1-2.0%, steel 0.1-1.0%, molybdenum 0.05-1.0%, boron 0.0005-0.
The target is low alloy steel containing one or more of 0.01% and 1050
Pretreatment by quenching after high-temperature heating at ~1,300°C completely and uniformly dissolves the alloying elements into a martensite structure or a mixed structure of martensite and bainite, which has an Ac3 transformation point ~ Ac3 transformation point +200°C. Heating in a temperature range at a heating rate of 5°C/second or more produces an austenitic structure consisting of extremely fine austenite grains and extremely finely dispersed precipitated compounds, and cools this to a temperature between the A3 transformation point before the Ms point. It is rapidly cooled at a rate of 4°C/second or more, and processed at a reduction rate of 15% or more (preferably, 50% or more of the area reduction is processed before the transformation is completed) in that temperature range to form a very fine material. This is a method for producing a high-strength steel material, which is characterized by forming a structure consisting of crystal grains and carbides, and holding the steel material for 30 seconds to 10 minutes.

上記の製造法において、Ac3変態点〜Ac3変態。In the above production method, Ac3 transformation point to Ac3 transformation.

点+200℃の温度域における減面率10%以上の加工
、あるいは製造終了後常温において減面率10〜95%
の加工を加えると鋼質はさらに改善される。
Processing with an area reduction rate of 10% or more in the temperature range of point +200℃, or an area reduction rate of 10 to 95% at room temperature after production.
The quality of the steel can be further improved by adding processing.

この発明の製造法において、まずAc3変態点以。In the production method of this invention, first, the Ac3 transformation point or higher.

−上に加熱して焼入れし、マルテンサイトまたはマルテ
ンサイトとベイナイトの混合組織とするのは、微細なオ
ーステナイト粒を得るための前処理として必要であり、
この際1050〜1300℃の温度範囲に加熱すること
が望ましい。
-Heating and quenching the top to form martensite or a mixed structure of martensite and bainite is necessary as a pretreatment to obtain fine austenite grains,
At this time, it is desirable to heat to a temperature range of 1050 to 1300°C.

すなわち、鋼をオーステナイト化させるために、Ac3
変態点以上に加熱しなければならないが、その場合1
050℃以上だと、バナジウム、チタン、ジルコニウム
などの炭化物生成元素がオーステナイト組織中に均一に
固溶することができるが、1300℃を越えると加熱時
鋼のバーニングなどにより鋼に割れが発生する。
That is, in order to austenitize steel, Ac3
It must be heated above the transformation point, but in that case 1
If the temperature exceeds 050°C, carbide-forming elements such as vanadium, titanium, and zirconium can be uniformly dissolved in the austenite structure, but if the temperature exceeds 1300°C, cracks will occur in the steel due to burning of the steel during heating.

次いで、焼入れを行なって鋼の組織をマルテンサイト組
織ないしはマルテンサイトとベイナイトとの混合組織と
するが、これは以後の工程を実施して、この発明の目的
を達成するのに必要な条件である。
Next, quenching is performed to change the structure of the steel to a martensitic structure or a mixed structure of martensite and bainite, which is a necessary condition for carrying out the subsequent steps and achieving the object of the present invention. .

焼入れを行なった後、5℃/秒以上の加熱速度でAc3
変態点〜Ac3変態点+200℃の温度域に加熱するの
は、所望の微細オーステナイト粒組織を得るために必要
であり、Ac3変態点以上で組織をオーステナイト化し
、かつAc3変態点+200℃の温度以下にすることに
より結晶粒の粗大化を防止するのである。
After quenching, Ac3
Heating to a temperature range from the transformation point to the Ac3 transformation point +200°C is necessary to obtain the desired fine austenite grain structure, and the structure must be austenitized at a temperature higher than the Ac3 transformation point and at a temperature lower than the Ac3 transformation point +200°C. This prevents crystal grains from becoming coarser.

また、再加熱後、Ac3変態点〜Ac3変態点+200
℃の温度域において、減面率10%以上の加工を行なう
ことにより、変態前のオーステナイト粒をより細かくし
、鋼の靭性および強度などの向上に好影響を与えること
ができる。
In addition, after reheating, Ac3 transformation point ~ Ac3 transformation point +200
By performing processing with an area reduction rate of 10% or more in the temperature range of °C, the austenite grains before transformation can be made finer, and this can have a positive effect on improving the toughness, strength, etc. of the steel.

上記のようにして得た鋼をAc3変態点〜Ms変態点間
の温度域に冷却速度4℃/秒以上で急冷し、該温度域で
15%以上の加工を加えて変態させる。
The steel obtained as described above is rapidly cooled to a temperature range between the Ac3 transformation point and the Ms transformation point at a cooling rate of 4° C./sec or more, and is transformed by processing at least 15% in the temperature range.

上記温度域に急冷するのは変態前のオーステナイト粒を
より微細化させるのに有効で、この処理により従来のオ
ースフォーミングやアイソフォーミングによって製造さ
れたものに比べ格段にすぐれた性質が得られる。
Rapid cooling to the above temperature range is effective in making the austenite grains finer before transformation, and this treatment provides properties that are significantly superior to those produced by conventional ausforming or isoforming.

また、減面率15%以上の熱間加工を行なうのは、たと
えば添加されたバナジウム、ニオブ、チタン、ジルコニ
ウムなどの化合物は一層析出が促進され、微細な化合物
を基地中に分散させることができる。
In addition, performing hot working with an area reduction rate of 15% or more is because the precipitation of added compounds such as vanadium, niobium, titanium, and zirconium is further promoted, and fine compounds can be dispersed in the matrix. .

このために、その後の変態において生ずる生成物は、よ
り一層均一微細化され、鋼材の諸性質の改善に寄与する
For this reason, the products generated in the subsequent transformation are made more uniform and finer, contributing to improvement of various properties of the steel material.

そして、Ac3変態点温度以上の温度から4℃/秒以上
の速度で冷却するのは、4℃/秒以下だと低合金鋼の場
合、冷却中に変態が完了してしまい、強度の低下が著し
いからであり、Ms変態点〜A3変態点の温度域に保持
するのはMss態点以下では組織中にマルテンサイトが
生じ、A3変態点を越えると鋼組織の変態が起らず、と
もに所望の鋼組織が得られないからである。
When cooling at a rate of 4°C/sec or more from a temperature above the Ac3 transformation point temperature, if it is less than 4°C/sec, the transformation will complete during cooling for low-alloy steel, resulting in a decrease in strength. This is because martensite occurs in the structure below the Mss transformation point, and no transformation of the steel structure occurs above the A3 transformation point. This is because the steel structure cannot be obtained.

また、上記Ms変態点〜A3変態点の温度域に保持して
減面率15%以上(ただし、全減面率の50%以上は変
態完了前に加えることが望ましく、))の加工を施すの
は、強度上昇および組織の微細化による靭性の向上に必
要である。
In addition, processing is performed with an area reduction rate of 15% or more (however, it is desirable to add 50% or more of the total area reduction rate before the completion of transformation) by maintaining the temperature in the above Ms transformation point to A3 transformation point. This is necessary to increase strength and improve toughness by refining the structure.

特に変態完了前に全減面率の50%以上の加工を行なえ
ば靭性の向上は著しい。
In particular, if the processing is performed to a total area reduction rate of 50% or more before the transformation is completed, the toughness will be significantly improved.

さらに、上記Ms変態点〜A3 変態点の温度域に30
秒〜10分間保持するのは、変態を十分に完了させるた
めであるが、保持時間が10分を越えるとセメンタイト
が球状化して強度が低下するから望ましくない。
Furthermore, in the temperature range of Ms transformation point to A3 transformation point, 30
The purpose of holding the cementite for 10 seconds to 10 minutes is to sufficiently complete the transformation, but if the holding time exceeds 10 minutes, the cementite becomes spheroidal and its strength decreases, which is not desirable.

ここで、さらに機械的性質を向上させるには、常温にお
いて減面率10〜95%の加工を施す。
Here, in order to further improve the mechanical properties, processing with an area reduction rate of 10 to 95% is performed at room temperature.

この場合減面率10%以下では、その効果が十分に発揮
されず、また95%を越えると繰返し曲げ性、絞り性が
低下するから望ましくない。
In this case, if the area reduction rate is less than 10%, the effect will not be fully exhibited, and if it exceeds 95%, the repeatability of bending and drawability will deteriorate, which is not desirable.

なお、この発明における対象鋼の変態点はAc3点およ
びA3点が720〜900℃、Ms点が220〜400
℃、にある。
In addition, the transformation points of the target steel in this invention are Ac3 point and A3 point of 720 to 900°C, and Ms point of 220 to 400°C.
It is located in ℃.

この発明により処理されて得られる鋼材はその組織が均
一な微細粒組織からなり、従来の製造法により得られる
鋼材に比べ、すぐれた機械的性質が得られる。
The steel material obtained by processing according to the present invention has a uniform fine grain structure, and has superior mechanical properties compared to steel material obtained by conventional manufacturing methods.

次に、この発明の実施例について説明する。Next, embodiments of the invention will be described.

炭素0.61%、けい素0.33%、マンガン1.18
凪バナジウム0.06%、ニオブ0.06%、固溶アル
ミニウム0.055%を含有し、残部は鉄よりなる厚さ
10.5mm、 15mm、 25mmの熱間圧延
鋼板を用いて、この発明法および比較法により製造し、
機械的性質の試験をした。
Carbon 0.61%, silicon 0.33%, manganese 1.18
This invention method was carried out using hot-rolled steel plates with thicknesses of 10.5 mm, 15 mm, and 25 mm containing 0.06% Nagi vanadium, 0.06% niobium, and 0.055% solid solution aluminum, with the remainder made of iron. and produced by comparative methods;
Mechanical properties were tested.

その結果を第1表に示す。The results are shown in Table 1.

なお、第1表に示す高温カロエとはAc3変態点〜Ac
3変態点+200℃の温度域での加工をいい、変態温度
域での加工とはMs変態点〜A3変態点の温度域での加
工をいう。
In addition, the high-temperature Caloe shown in Table 1 refers to the temperature between Ac3 transformation point and Ac3 transformation point.
It refers to processing in the temperature range of 3 transformation point + 200°C, and processing in the transformation temperature range refers to processing in the temperature range of Ms transformation point to A3 transformation point.

そして、上記低合金鋼のA3点お びAC3点は745
℃、Ms点は283℃である。
The A3 point and AC3 point of the above low alloy steel are 745.
°C, Ms point is 283 °C.

また、変態温度域での保持は塩浴中で行なった。Further, maintenance in the transformation temperature range was performed in a salt bath.

さらに、比較法における試験番号6゜7.11,12は
Ac3変態点以上の加熱後焼入れの前処理を行なってい
ないが、いずれの供試材も熱間圧延後放冷されたもので
ある。
Further, test numbers 6°7.11 and 12 in the comparative method were not pretreated by quenching after heating to a temperature above the Ac3 transformation point, but all test materials were allowed to cool after hot rolling.

第1表の処理により作られた鋼材からJI814号引張
り試験片、J ISl 4号引張り試験片の中央部に深
さ2mm、底曲率0.05mmの切欠溝を有する切欠き
引張り試験片、直径10m1長さ340mの棒状試験片
の中央部に深さ1wrrL1底曲率0.05y++mの
切欠溝を有する遅れ破壊試験片を作り、それぞれ試験し
た。
JI814 tensile test piece, JISl No.4 tensile test piece made from steel material made by the treatment shown in Table 1. A notched tensile test piece with a notch groove with a depth of 2 mm and a bottom curvature of 0.05 mm in the center of the JISI No. 4 tensile test piece, diameter 10 m1. Delayed fracture test pieces having a notch groove with a depth of 1 wrr L and a bottom curvature of 0.05 y++ m in the center of a rod-shaped test piece with a length of 340 m were prepared and tested.

なお、レラクセージョン試験にはJI814号引張り試
験片を用いた。
Note that a JI814 tensile test piece was used for the relaxation test.

遅れ破壊試験は0.1規定塩酸液中で4点支持曲げによ
り、切欠底に公称応力150 kyf /vtyjを負
荷して240時間まで試験し、レラクセージョン試験は
初期応力を引張り強さの70%にとり、℃で10時間後
のレラクセージョン値を(1)式より求めて示した。
The delayed fracture test was carried out by four-point support bending in a 0.1N hydrochloric acid solution for up to 240 hours with a nominal stress of 150 kyf/vtyj applied to the notch bottom. %, and the relaxation value after 10 hours at °C was calculated from equation (1) and shown.

0.7XTs−σ レラクセージョン値−X100(%) 0.7XTs ・・・・・・(1) Ts :引張り強さく ky f /、vj )σ:レ
ラクセーシジョ試験開始後10時間での応力値 繰返し抽げ試験は得られた鋼材を厚さ2叫、巾20間に
研摩仕上げし、この試験片を半径10mmの1対のロー
ル間に挾み、前後90°に繰返し曲げを行ない、割れ発
生までの曲げ回数を数えた。
0.7XTs - σ Relaxation value - In the drawing test, the obtained steel material was polished to a thickness of 2 mm and a width of 20 mm, and the specimen was sandwiched between a pair of rolls with a radius of 10 mm and repeatedly bent back and forth at 90 degrees until cracking occurred. The number of bends was counted.

なお板が90°曲げられると曲げ回数1回とした。Note that when the plate was bent by 90°, the number of bends was counted as one.

第1表の結果より、この発明によるものは、この発明に
よらない比較法によるものに比べ、機械的性質が格段に
すぐれていることがわかる。
From the results shown in Table 1, it can be seen that the mechanical properties of the products produced by this invention are significantly superior to those produced by a comparative method that does not depend on this invention.

Claims (1)

【特許請求の範囲】 1 低合金鋼をAc3変態点以上に加熱した後、焼入れ
してマルテンサイト組織もしくはマルテンサイトとベイ
ナイトの混合組織とし、次いでAc3変態点〜Ac3変
態点+200℃の温度域に加熱速度5℃/秒以上で昇温
し、MS変態点〜A3変態点の温度域に冷却速度4℃/
秒以上で急冷し、該温度域において減面率15%以上の
加工を施して30秒〜10分間保持することを特徴とす
る高強靭性鋼材の製造法。 2 低合金鋼をAc3変態点以上に力日熱した後、焼入
れしてマルテンサイト組織もしくはマルテンサイトとベ
イナイトの混合組織とし、次いでAc3変態点〜Ac3
変態点+200℃の温度域に加熱速度5℃/秒以上で昇
温し、該温度域において減面率10%以上の熱間加工を
施し、次いでMs変態点−A3変態点の温度域に冷却速
度4℃/秒以上で急冷し、該温度域において減面率15
%以上の加工を施して30秒〜10分間保持することを
特徴とする高強靭性鋼材の製造法。 3 低合金鋼をAc3変態点以上に加熱した後、焼入れ
してマルテンサイト組織もしくはマルテンサイトとベイ
ナイトの混合組織とし、次いでAc3変態点〜A c3
変態点+200℃の温度域に加熱速度5℃/秒以上で昇
温し、MS変態点〜A3変態点の温度域に冷却速度4℃
/秒以上で急冷し、該温度域において減面率15%以上
の加工を施して30秒〜10分間保持し、次いで常温に
て減面率10〜95%の加工を施すことを特徴とする高
強靭性鋼材の製造法。 4 低合金鋼をAc3変態点以上に加熱した後、焼入れ
しマルテンサイト組織もしくはマルテンサイトとベイナ
イトの混合組織とし、次いでAc3変態点〜Ac3変態
点+200℃の温度域に加熱速度5℃/秒以上で昇温し
、該温度域において減面率10%以上の熱間加工を実施
し、次いでMs変態点〜A3変態点の温度域に冷却速度
4℃/秒以上で急冷し、該温度域において減面率15%
以上の加工を施した後30秒〜10分間保持し、次いで
常温にて減面率10〜95%の加工を施すことを特徴と
する高強靭性鋼材の製造法。
[Claims] 1. After heating the low alloy steel to the Ac3 transformation point or higher, it is quenched to form a martensitic structure or a mixed structure of martensite and bainite, and then heated to a temperature range of Ac3 transformation point to Ac3 transformation point + 200°C. Raise the temperature at a heating rate of 5°C/second or higher, and cool it at a cooling rate of 4°C/sec to the temperature range from the MS transformation point to the A3 transformation point.
1. A method for producing a high strength and toughness steel material, which comprises rapidly cooling the material for at least 1 second, subjecting it to processing with an area reduction rate of at least 15% in the temperature range, and holding the product for 30 seconds to 10 minutes. 2. After heating the low alloy steel to a temperature above the Ac3 transformation point, it is quenched to form a martensite structure or a mixed structure of martensite and bainite, and then heated to a temperature between the Ac3 transformation point and Ac3.
The temperature is raised to a temperature range of transformation point +200 °C at a heating rate of 5 °C/second or more, hot working is performed with an area reduction rate of 10% or more in this temperature range, and then cooled to a temperature range of Ms transformation point - A3 transformation point. Rapid cooling at a rate of 4°C/sec or higher, with an area reduction rate of 15 in the temperature range
A method for producing a high strength and toughness steel material, which is characterized by subjecting the material to a process of % or more and holding it for 30 seconds to 10 minutes. 3. After heating the low alloy steel to the Ac3 transformation point or above, it is quenched to form a martensitic structure or a mixed structure of martensite and bainite, and then the Ac3 transformation point ~A c3
Raise the temperature at a heating rate of 5°C/sec or more to the temperature range of transformation point +200°C, and cool at a cooling rate of 4°C to the temperature range of MS transformation point to A3 transformation point.
It is characterized by rapidly cooling at a temperature of 15% or more in the temperature range, holding for 30 seconds to 10 minutes, and then processing at room temperature with an area reduction of 10 to 95%. Manufacturing method for high strength steel materials. 4 After heating the low alloy steel to the Ac3 transformation point or higher, it is quenched to form a martensitic structure or a mixed structure of martensite and bainite, and then heated at a heating rate of 5°C/sec or more in the temperature range of Ac3 transformation point to Ac3 transformation point + 200°C. The temperature is increased at Area reduction rate 15%
A method for producing a high strength and toughness steel material, which comprises holding the above-described processing for 30 seconds to 10 minutes, and then processing the area reduction rate of 10 to 95% at room temperature.
JP13066075A 1975-10-29 1975-10-29 Kokiyoujinseikouzainoseizouhou Expired JPS5821007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13066075A JPS5821007B2 (en) 1975-10-29 1975-10-29 Kokiyoujinseikouzainoseizouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13066075A JPS5821007B2 (en) 1975-10-29 1975-10-29 Kokiyoujinseikouzainoseizouhou

Publications (2)

Publication Number Publication Date
JPS5274520A JPS5274520A (en) 1977-06-22
JPS5821007B2 true JPS5821007B2 (en) 1983-04-26

Family

ID=15039547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13066075A Expired JPS5821007B2 (en) 1975-10-29 1975-10-29 Kokiyoujinseikouzainoseizouhou

Country Status (1)

Country Link
JP (1) JPS5821007B2 (en)

Also Published As

Publication number Publication date
JPS5274520A (en) 1977-06-22

Similar Documents

Publication Publication Date Title
JP4189133B2 (en) High strength and high ductility steel sheet with ultrafine grain structure obtained by low strain processing and annealing of ordinary low carbon steel and method for producing the same
JP2011256456A (en) Method for manufacturing steel for cold forging
US4457789A (en) Process for annealing steels
JPH05320749A (en) Production of ultrahigh strength steel
US3895972A (en) Thermal treatment of steel
JPS62199718A (en) Direct softening method for rolling material of steel for machine structural use
JP3677972B2 (en) Method for producing steel material for cold forging containing boron
US3288657A (en) Special heat treating method of steels
US3826694A (en) Thermal treatment of steel
JPS6383249A (en) Hot working tool steel and its manufacture
JPS5821007B2 (en) Kokiyoujinseikouzainoseizouhou
JPS6137333B2 (en)
JP2802155B2 (en) Method for producing high-strength steel wire without heat treatment and excellent in fatigue resistance and wear resistance
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH01104718A (en) Manufacture of bar stock or wire rod for cold forging
JPH0576522B2 (en)
JP3688311B2 (en) Manufacturing method of high strength and high toughness steel
JPS63121621A (en) Production of bainite steel sheet having excellent spring characteristic
JP2852810B2 (en) Manufacturing method of high carbon cold rolled steel strip with excellent workability
JPS5952207B2 (en) Manufacturing method of low yield ratio, high toughness, high tensile strength steel plate
JPH1088237A (en) Production of cold rolled high carbon steel strip
JPS6156268A (en) High toughness and high tensile steel and its manufacture
JPS59159971A (en) Steel for cold forging with superior hardenability
JPS58141328A (en) Manufacture of high strength high toughness steel
JPS61279620A (en) Working heat treating method for steel