US3826694A - Thermal treatment of steel - Google Patents

Thermal treatment of steel Download PDF

Info

Publication number
US3826694A
US3826694A US00254454A US25445472A US3826694A US 3826694 A US3826694 A US 3826694A US 00254454 A US00254454 A US 00254454A US 25445472 A US25445472 A US 25445472A US 3826694 A US3826694 A US 3826694A
Authority
US
United States
Prior art keywords
temperature
steel
pearlite
carbide
carbides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00254454A
Inventor
J Woodilla
G Hunt
W Green
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Timken US LLC
Original Assignee
Torrington Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torrington Co filed Critical Torrington Co
Priority to US00254454A priority Critical patent/US3826694A/en
Priority to CA168,665A priority patent/CA994656A/en
Priority to AU54589/73A priority patent/AU477404B2/en
Priority to GB5210375A priority patent/GB1439072A/en
Priority to GB2306473A priority patent/GB1439071A/en
Priority to DE19732324750 priority patent/DE2324750B2/en
Priority to BR3565/73A priority patent/BR7303565D0/en
Priority to JP5480473A priority patent/JPS568889B2/ja
Priority to US468497A priority patent/US3895972A/en
Priority to US468495A priority patent/US3922181A/en
Application granted granted Critical
Publication of US3826694A publication Critical patent/US3826694A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above

Definitions

  • the process includes high temperature solid solution of the carbide phase present in the material, controlled cooling through a selected area of the time-temperature-transformation for the material to form pearlite, (a ferrite and carbide lamellar structure) and cementite reheating to austenitize the material, and finally, quenching to produce a structure with an ultrafine grain and a natural dispersion of very small excess carbides that results in an improvement of fatigue life and an increase in compressive yield strength.
  • the present invention relates to a method of treating steel to improve mechanical properties. More particularly the invention is a heat treatment for hypereutectoid steel which develops a structure with an ultra-fine grain and a natural dispersion of predominantly very small excess carbides.
  • FIG. 1a and b are photomicrographs showing pearlite and spheroidized carbides, respectively, in AISI 52100 steel;
  • FIG. 2 is the iron-carbon equilibrium diagram
  • FIG. 3 is the time-temperature-transformation curve for alloy AISI 52100 steel
  • FIG. 4 is another photomicrograph showing conventionally hardened AISI 52100 steel
  • FIG. 5 is a photomicrograph showing the' same steel heat treated according to our invention.
  • FIG. 6 is a photomicrograph showing two microcracks in AISI 52100 steel.
  • FIG. 7 is a time-temperature profile comparing our method with other heat treating cycles.
  • Carbides in low alloy compositions of steel can form platelets or spheroids as shown in FIGS. 1a and b, respectively.
  • One of these structures is the usual starting condition for the heat treatments to be described.
  • the well-known iron-carbon equilibrium diagram, FIG. 2 shows that when a hypereutectoidl composition is heated and allowed to reach equilibrium at an elevated temperature, it will undergo transformations in phase from pearlite and cementite to austenite and cementite, then to anstenite, a solid solution of carbon in gamma iron. Cooling slowly enough to establish equilibrium at any particular temperature will restore the phase normal to that temperature.
  • time-temperature-transformation curves (commonly called S curves) shown in FIG. 3 vary with different composition. Those illustrated are typical for a steel designated as AISI 52100, a low alloy steel having the composition shown in TABLE 1. They show that transformation at 700 F. begins and is completed sooner if the metal is conventionally austenitized at 1550 F. (the broken curves in FIG. 3) than at 1950 F. (the solid pair of curves).
  • AISI 52100 a low alloy steel having the composition shown in TABLE 1. They show that transformation at 700 F. begins and is completed sooner if the metal is conventionally austenitized at 1550 F. (the broken curves in FIG. 3) than at 1950 F. (the solid pair of curves).
  • Path X in FIGS 3 and 7, and taught by Pat. No. 3,337,376, the carbon is retained in the structure and does not form a carbide. Instead a needle-like structure, called martensite, is formed.
  • the pearlite transformation range For a better understanding of the pearlite transformation range, it is helpful to refer to the iron-carbon equilibrium diagram, FIG. 2, where it can be seen that pearlite is not stable above 1333 F. (the A line), and therefore, will not form above this temperature. Further, the S curve shows that the time for pearlite transformation becomes unattractively long as the upper temperature limit is approached.
  • the lower temperature limit of the pearlite forming range is more difiicult to define since pearlite and bainite coexist over a range of temperatures. This range of coexistence is dependent on the amount of carbon in solution, the temperature range rising as the carbon in solution increases.
  • theamount of carbon in solution is directly dependent on the completeness of the high temperature solid solution process.
  • the carbon content varies throughout the case and this gradient of composition correspondingly varies the range of coexistence of pearlite and bainite as one proceeds into the core region of the workpiece.
  • the pearlite lamellae that coexist with the bainite are very closely spaced, whereas the bainite, known as upper bainite when formed in this temperature range, is coarse.
  • the fine pearlite produces very small excess carbide particles, while the coarse bainite transforms during this heat treatment to large coarse particles (however, still smaller than the conventional spheroidized particles).
  • the presence of upper bainite in the microstructure prior to the final heat treatment is undesirable.
  • the lower temperature limit of the pearlite forming range can be defined as that temperature immediately below which upper bainite will form. This observation for upper bainite can be made only with an electron microscope. Since the spacing between the carbide lamellae decreases as the transformation temperature decreases, the optimum temperature for producing pearlite is near the low temperature limit. In this way, the thin carbide lamellae in the pearlite ultimately produce the finest excess carbide particles.
  • the remaining steps in the process are an austenitizing treatment and subsequent quench which produce a microstructure as depicted in FIG. 5, a natural dispersal of very small excess carbides in an ultrafine grained matrix.
  • This austenitizing treatment may be performed directly after producing the pearlite, that is, reheating from the pearlite forming temperature; or, if the part is cooled to room temperature after producing pearlite, any time thereafter.
  • the heating rate for the final ausenitizing treatment is important, since there is a critical temperature range through which the parts must be heated rapidly. Failure to pass through this temperature range with rapidity will cause the pearlite lamellae to break up into excess carbides which will then grow in size, since the carbide phase is stable in this temperaure range.
  • the critical temperature range of any hypereutectoid steel lies between the A and A boundaries of its equilibrium diagram. For a one percent carbon alloy such as AISI 52100 these boundaries are approximately 1333 F. and 1440 F., respectively. The upper limit will be higher if the part has a carburized case with more than one percent carbon content.
  • the critical temperature range has been shaded in FIG. 2 and our hardening heat treating cycle is depicted by path Z'in FIG. 7.
  • This rapid temperature transition may be accomplished in several ways.
  • One isby the use of a two-step heat treatment with a salt or lead bath, where the first bath is a preheat to just below the A and the second is the final desired temperature.
  • Other acceptable methods include induction heating and resistance heating.
  • FIGS. 4 and 5 are photomicrographs illustrating the microstructures produced by conventional, heat treating andby the new method of heat treating, respectively.
  • the material in both cases is AISI 52100.
  • Rolling contact fatigue life testing has shown a 250% o 300% improvement in B life when material with the new microstructure, FIG. 5, is used.
  • the compressive yield strength was increased about 30 to 35 percent.
  • One of the primary features of this process which contributes to the extended fatigue life is the ultra-fine grain size.
  • a substantial increase in the number of grains within a given volume of metal is believed to be a primary strengthening mechanism and an important contributor to the improved fatigue life of a material.
  • grain boundaries are preferred sites for the nucleation of phase transformations, and with ultra-fine grained material, an enormous increase in the number of preferred sites results.
  • An undesirable transformation may occur during the quench from the final austenitizing temperature. This is the formation of an aggregate of ferrite plus carbide known as slow quench product which precipitates at the boundaries of the ultra-fine grained material, thereby weakening this important strengthening agent.
  • alloying elements such as manganese and silicon, which increase the hardenability of steel, suppress the formation of the undesirable slow quench products.”
  • the ultra-fine grain size reduces the effectiveness of these alloying elements.
  • Modified AISI 52100 (ASTM A485, grade No. 2) containing 1.40% to 1.70% manganese and 0.50% to 0.80% silicon, which is normally used when greater hardenability is required, has shown slow quench product formation at the center of a cross section of only A of an inch when observed with an electron microscope.
  • Another modification to our process provides for the insertion of an additional step involving cold work and plastic deformation after the formation of pearlite.
  • this may involve drawing a wire through a series of dies to produce a wire of smaller cross section.
  • This wire would have been given the high temperature carbide solution heat treatment and the quench to the pearlite-forming temperature.
  • the rapid austenitizing heat treatment is then performed, by which the ultra-fine grained material with refined carbides is produced.
  • other means of mechanical deformation which may be introduced include swaging, cold-rolling, and shaping and forming operations which must be performed before the final rapid austenitizing heat treatment, while the part is still in the unhardened condition.
  • compositions of steel have been successfully heat treated according to our process, the method is not limited to these alone. Many hypereutectoid steels having less than 10% total alloy content will respond to this method.
  • a method for producing hardened hypereutectoid steels of less than about 10% total alloy resulting in a structure with an ultra-fine grain size free from microcracks, and very small well dispersed excess carbides comprising the steps of:

Abstract

A METHOD OF HARDENING HYPEREUTECTOID STEELS HAVING LESS THAN ABOUT 10% TOTAL ALLOY CONTENT IS DISCRIBED WHICH RESULTS IN A STRUCTURE WITH AN ULTRA-FINE GRAIN SIZE (FINER THAN ASTM #10) AND A NATURAL DISPERSION OF VERY SMALL EXCESS CARBIDES. THE PROCESS INCLUDES HIGH TEMPERATURE SOLID SOLUTION OF THE CARBIDE PHASE PRESENT IN THE MATERIAL, CONTROLLED COOLING THROUGH A SELECTED AREA OF THE TIME-TEMPERATURE-TRANSFORMATION FOR THE MATERIAL TO FORM PEARLITE, (A FERRITE AND CARBIDE LAMELLAR STRUCTURE) AND CEMINTITE REHEATING TO AUSTENITIZE THE MATERIAL, AND FINALLY, QUENCHING TO PRODUCE A STRUCTURE WITH AN ULTRAFINE GRAIN AND A NATURAL DISPERSION OF VERY SMALL EXCESS CARBIDES THAT RESULTS IN AN IMPROVEMENT OF FATIGUE LIFE AND AN INCREASE IN COMPRESSIVE YIELD STRENGTH.

Description

My 3.0. 1974 J. E. WOODILLA; JR.. 3,326,694
THERIAL TREA'I'IENT OF STEEL Shoots-Sheet 1 Filed May 18, 1972 F76. IA (2500 x memncmom (2500 X MAG N l FICATION) (5000 X MAGNIFICNI'ION) (5000 XMAGNIFICATION) X o o o 5 MAGNIFICATION) y 30,. 197 J. E. WOQDILLA, m" ETM 398259694 THERMAL TREATENT OF STEEL Filed May 18, 1972 4 Sheets-Sheet 2 2400" AUSTENITE AND LIQUID 2200 souous AUSTENITE L 2000 2066F ACW1 AUSTENITE A AND\ VFERRITE 3 CEMENTITE M00 AND AUSTENITE A l A ;l333F o |2OO 'EUTECTOID 1 (7236) FERR|TE nfl EARUTE) PE'ARLITE PEARLBTE I000 AND AND FERRITE CEMENTITE A, m I n I i i 0% 0.5% 1% CARBON 2% "--HYPO-EUTECTOID A HYPER-EUTECTOlD- m 30 1974 J, WOQDELLA, ETAL 3.826 694 THERMAL TREATMENT OF STEEL 4 Shams-Sheet :5
Filed May 18, 1972 DAY I HOUR m wmnk mmmimk THVIE F o w 93 w o.| S d n 2. mm HG e .T S U A LEGEND A= Austeniie M =Mcw1ensite F= Ferrite B=Buinite C= Carbide P=Pecrliie Ausieniiized at 1550F Grain Size: 9
July 30, 1974 J. E. WODILLA, JR, ETAI. 3 8263694 T E MAL TREATMENT OF STEEL Filed May 18, 1972 4, Sheets-Sheet 4 TIME IN MINUTES United States Patent F 7 a THERMALTREATMENT OF STEEL John E. Woodilla, .Jr. and Gordon W. Hunt, Torrington,
and Willard B. Green, Jr., Harwinton, Conm, assignors to The Torrington Company, Torrington, Conn.
Filed May 18, 1972, Ser. No. 254,454 Int. Cl. C21d N46 US. Cl. 148-15 2 Claims ABSTRACT OF THE DISCLOSURE A method of hardening hypereutectoid steels having less than about total alloy content-is described which results in a structure with an ultra-fine grain size (finer than ASTM #10) and a natural dispersion of very small excess carbides. The process includes high temperature solid solution of the carbide phase present in the material, controlled cooling through a selected area of the time-temperature-transformation for the material to form pearlite, (a ferrite and carbide lamellar structure) and cementite reheating to austenitize the material, and finally, quenching to produce a structure with an ultrafine grain and a natural dispersion of very small excess carbides that results in an improvement of fatigue life and an increase in compressive yield strength.
The present invention relates to a method of treating steel to improve mechanical properties. More particularly the invention is a heat treatment for hypereutectoid steel which develops a structure with an ultra-fine grain and a natural dispersion of predominantly very small excess carbides.
The strength and wear resistance of many steels is improved by hardening them through heat treatment. For bearing applications and other uses where extended fatigue life is desirable, hypereutectoid steels (those with carbon content of 0.8% or more) having a low total alloy content to improve hardenability have been found superior. It is known that a refinement of grain size can improve fatigue life. Approaches to refinement of grain size are described in Pat. No. 3,337,376. Investigation has shown that one method may create microcracks, as shown in FIG. 6, which can diminish the effect of grain refinement in improving the fatigue life of the material. A crack-free alternative method requires such long times at elevated temperatures as to make that method economically unattractive. We have developed a process for producing ultrafine grained material with refined carbides in the microstructure that it free from microcracks and which can be accomplished in minutes, thereby improving the rolling contact fatigue life and the compressive yield strength of the material. Our process comprises controlled cooling from a high austenitizing temperature through an isothermal pearlitic transformation range and rapid reheating through a critical temperature range to a lower austenitizing temperature, at which both the carbide phase and the grain size are refined. This is followed by a final quench within a short time period to near room temperature and a subsequent tempering to develop the desired properties.
The invention, as well as its advantages, may be further understood by reference to the following detailed description and drawings in which:
FIG. 1a and b are photomicrographs showing pearlite and spheroidized carbides, respectively, in AISI 52100 steel;
FIG. 2 is the iron-carbon equilibrium diagram;
FIG. 3 is the time-temperature-transformation curve for alloy AISI 52100 steel;
FIG. 4 is another photomicrograph showing conventionally hardened AISI 52100 steel;
3,826,694 Patented July 30, 1974 FIG. 5 is a photomicrograph showing the' same steel heat treated according to our invention;
FIG. 6 is a photomicrograph showing two microcracks in AISI 52100 steel; and,
FIG. 7 is a time-temperature profile comparing our method with other heat treating cycles.
Carbides in low alloy compositions of steel can form platelets or spheroids as shown in FIGS. 1a and b, respectively. One of these structures is the usual starting condition for the heat treatments to be described. The well-known iron-carbon equilibrium diagram, FIG. 2, shows that when a hypereutectoidl composition is heated and allowed to reach equilibrium at an elevated temperature, it will undergo transformations in phase from pearlite and cementite to austenite and cementite, then to anstenite, a solid solution of carbon in gamma iron. Cooling slowly enough to establish equilibrium at any particular temperature will restore the phase normal to that temperature.
However, rapid cooling creates radically different changes. The time-temperature-transformation curves (commonly called S curves) shown in FIG. 3 vary with different composition. Those illustrated are typical for a steel designated as AISI 52100, a low alloy steel having the composition shown in TABLE 1. They show that transformation at 700 F. begins and is completed sooner if the metal is conventionally austenitized at 1550 F. (the broken curves in FIG. 3) than at 1950 F. (the solid pair of curves). When quenched quickly below the Ms temperature as depicted by Path X in FIGS 3 and 7, and taught by Pat. No. 3,337,376, the carbon is retained in the structure and does not form a carbide. Instead a needle-like structure, called martensite, is formed. Small patches of austenite between the martensite needles remain, and this is called retained austenite. Upon reheating to about 700 F. for a prolonged time period this structure will transform to ferrite plus particles of carbide; specifically, the martensite becomes tempered and the retained austenite transforms to bainite. Reheating to the lower austenitizing temperature (15 50 F.) for a time sufficient to transform the ferrite to austenite and refine the excess carbides and then cooling to room temperature quickly will result in a structure similar to that shown in FIG. 5. Structural examination with the electron microscope has shown that severe quenching below the M, temperature on the first leg of path X may result in microcracks within the material, FIG. 6, and these can be detrimental to fatigue life.
Modifying the cycle along path Y in FIGS. 3 and 7 (taught by Pat. No. 3,337,376) has been found to eliminate microcracks and produce the same ultrafine grain size which is desirable from a fatigue standpoint. However, the time-temperature-transformation (S") curve tells us that this transformation is about half done in less than an hour, but requires: more than two hours for completion. Although the final product will be crackfree and look like the structure in FIG. 5, the length of time required for this bainite producing cycle is uneconomical for the mass production of heat treated parts.
In laboratory tests, we have found that the prior history of the material influences the time and temperature necessary to dissolve the original carbides. Thus, the steel received in the spheroidized condition (FIG. lb) required 2100 F. for 10 minutes. whereas a lower temperature or less time was found adequate to dissolve the carbides in hot-rolled stock (FIG. la). Further, we have that quenching into a suitable quench medium such as salt or lead in the approximate range 900 F. to 1333 F. for an appropriate length of time will form pearlite, a metallurgical phase distinct both in microstructure and 3 mechanical properties from bainite or martensite. Whereas the transformation to bainite at 700 F. as taught by the prior art takes two to three hours for completion, the pearlite transformation takes less than minutes at 1075 F. for standard AISI 52100 steel. Besides the direct economic advantage of our cycle, path Z in FIGS. 3 and 7, this process eliminates the possibility of microcracks that result from a severe quenching operation.
For a better understanding of the pearlite transformation range, it is helpful to refer to the iron-carbon equilibrium diagram, FIG. 2, where it can be seen that pearlite is not stable above 1333 F. (the A line), and therefore, will not form above this temperature. Further, the S curve shows that the time for pearlite transformation becomes unattractively long as the upper temperature limit is approached. The lower temperature limit of the pearlite forming range is more difiicult to define since pearlite and bainite coexist over a range of temperatures. This range of coexistence is dependent on the amount of carbon in solution, the temperature range rising as the carbon in solution increases. In addition, for a through-hardening steel, such as AISI 52100, theamount of carbon in solution is directly dependent on the completeness of the high temperature solid solution process. For a carburizing grade of steel, the carbon content varies throughout the case and this gradient of composition correspondingly varies the range of coexistence of pearlite and bainite as one proceeds into the core region of the workpiece.
For purposes of difinition, the pearlite lamellae that coexist with the bainite are very closely spaced, whereas the bainite, known as upper bainite when formed in this temperature range, is coarse. After the final heat treatment, the fine pearlite produces very small excess carbide particles, while the coarse bainite transforms during this heat treatment to large coarse particles (however, still smaller than the conventional spheroidized particles). The presence of upper bainite in the microstructure prior to the final heat treatment is undesirable. Thus, the lower temperature limit of the pearlite forming range can be defined as that temperature immediately below which upper bainite will form. This observation for upper bainite can be made only with an electron microscope. Since the spacing between the carbide lamellae decreases as the transformation temperature decreases, the optimum temperature for producing pearlite is near the low temperature limit. In this way, the thin carbide lamellae in the pearlite ultimately produce the finest excess carbide particles.
The remaining steps in the process are an austenitizing treatment and subsequent quench which produce a microstructure as depicted in FIG. 5, a natural dispersal of very small excess carbides in an ultrafine grained matrix. This austenitizing treatment may be performed directly after producing the pearlite, that is, reheating from the pearlite forming temperature; or, if the part is cooled to room temperature after producing pearlite, any time thereafter. The heating rate for the final ausenitizing treatment is important, since there is a critical temperature range through which the parts must be heated rapidly. Failure to pass through this temperature range with rapidity will cause the pearlite lamellae to break up into excess carbides which will then grow in size, since the carbide phase is stable in this temperaure range. By rapidly reaching the pure austenite region of the phase diagram (above the A boundary), the pearlite lamellae break up into excess carbides which are unstable and will have a tendency to become smaller in size and dissolve. Proper control of temperature and time insures that the lamellae completely break up but that a large percentage of the newly formed excess carbides do not dissolve, but rather remain as excess carbides. The critical temperature range of any hypereutectoid steel lies between the A and A boundaries of its equilibrium diagram. For a one percent carbon alloy such as AISI 52100 these boundaries are approximately 1333 F. and 1440 F., respectively. The upper limit will be higher if the part has a carburized case with more than one percent carbon content. The critical temperature range has been shaded in FIG. 2 and our hardening heat treating cycle is depicted by path Z'in FIG. 7.
This rapid temperature transition may be accomplished in several ways. One isby the use of a two-step heat treatment with a salt or lead bath, where the first bath is a preheat to just below the A and the second is the final desired temperature. Other acceptable methods include induction heating and resistance heating. j
FIGS. 4 and 5 are photomicrographs illustrating the microstructures produced by conventional, heat treating andby the new method of heat treating, respectively. The material in both cases is AISI 52100. Rolling contact fatigue life testing has shown a 250% o 300% improvement in B life when material with the new microstructure, FIG. 5, is used. Also, the compressive yield strength was increased about 30 to 35 percent. One of the primary features of this process which contributes to the extended fatigue life is the ultra-fine grain size. A substantial increase in the number of grains within a given volume of metal is believed to be a primary strengthening mechanism and an important contributor to the improved fatigue life of a material. However, grain boundaries are preferred sites for the nucleation of phase transformations, and with ultra-fine grained material, an enormous increase in the number of preferred sites results.
An undesirable transformation may occur during the quench from the final austenitizing temperature. This is the formation of an aggregate of ferrite plus carbide known as slow quench product which precipitates at the boundaries of the ultra-fine grained material, thereby weakening this important strengthening agent. We have found that alloying elements such as manganese and silicon, which increase the hardenability of steel, suppress the formation of the undesirable slow quench products." However, the ultra-fine grain size reduces the effectiveness of these alloying elements. Modified AISI 52100 (ASTM A485, grade No. 2) containing 1.40% to 1.70% manganese and 0.50% to 0.80% silicon, which is normally used when greater hardenability is required, has shown slow quench product formation at the center of a cross section of only A of an inch when observed with an electron microscope.
Our research has shown that the best mechanical properties are contained when slow quench product" i's'not' present in ultra fine grained materials. Therefore, theme of alloys withhigh hardenability is preferred, even for manufactured items with small cross section that under normal processing conditions might not required such hardenability.
For certain articles of manufacture it is advantageous to produce a high carbon case on the exposed surfaces of low carbon steel. Our process is applicable to the carburizing grades of steel by quenching from the carburizing furnace to the pearlite transformation temperature. The process otherwise is the same as for hypereutectoid steels and achieves the same results in the carbon enriched case.
Another modification to our process provides for the insertion of an additional step involving cold work and plastic deformation after the formation of pearlite. For exam ple, this may involve drawing a wire through a series of dies to produce a wire of smaller cross section. This wire would have been given the high temperature carbide solution heat treatment and the quench to the pearlite-forming temperature. Following an interruption during which the cold work is performed, the rapid austenitizing heat treatment is then performed, by which the ultra-fine grained material with refined carbides is produced. Besides wire drawing, other means of mechanical deformation which may be introduced include swaging, cold-rolling, and shaping and forming operations which must be performed before the final rapid austenitizing heat treatment, while the part is still in the unhardened condition.
It is to be understood that while the following compositions of steel have been successfully heat treated according to our process, the method is not limited to these alone. Many hypereutectoid steels having less than 10% total alloy content will respond to this method.
TABLE I Percent ASTM- ASTM- 52100 Grade 2 H11 1 A2 C- 98/1. 10 85/1. 35/. 45 95/1. Mn 45 1. 40/1. 70 10/. 40 40/. 85 P 5 025 025 S 025 025 V 50 15/. 50 16111 204. 504. 80 90/1. 10 10/. oil "I: 1. 30 1: 1. 40 1: so "5667535)"?357535 M0.. .08 .06 1. 20/1.50 /1. 15 Cu 35 36 1 This alloy must be carburized to be applicable. 3 Maximum.
What is claimed is:
1. A method for producing hardened hypereutectoid steels of less than about 10% total alloy resulting in a structure with an ultra-fine grain size free from microcracks, and very small well dispersed excess carbides comprising the steps of:
heating the material to a temperature not to exceed the solidus for a time sufficient to dissolve the carbides present in the initial microstructure,
quenching quickly into a suitable liquid quench me- 6 dium within the approximate range of 900 F. to 1,333 F. to form pearlite, and, when the pearlite transformation is complete, rapidly heating through the A and A temperature range of its equilibrium diagram to the austenitzing temperature for the material for a controlled time only sufiicient to convert the carbide lamellae within the pearlite into very small excess carbides and transform the ferrite to austenite, and quenching to harden the steel. 2. The method of claim 1, further including the step of cooling to room temperature after producing pearlite and prior to austenitizing.
References Cited UNITED STATES PATENTS 2,125,128 7/ 1938 Robinson 148-143 X 2,260,249 10/1941 Harder 148-165 2,563,672 8/1951 Boyce 148-143 X 2,825,669 3/1958 Herzog 148-143 X 3,131,097 4/1964 Mantel 148-143 X 3,337,376 8/1967 Grange 148-143 3,595,706 7/1971 Faunce et al. 148-123 3,595,707 7/1971 Faunce et a1. 148-123 3,595,711 7/1971 Faunce et al 148-134 3,663,314 5/1972 Monma et a1 148-144 CHARLES N. LOVELL, Primary Examiner US. Cl. X.R. 148-134
US00254454A 1972-05-18 1972-05-18 Thermal treatment of steel Expired - Lifetime US3826694A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US00254454A US3826694A (en) 1972-05-18 1972-05-18 Thermal treatment of steel
CA168,665A CA994656A (en) 1972-05-18 1973-04-11 Thermal treatment of steel
AU54589/73A AU477404B2 (en) 1972-05-18 1973-04-17 Process for hardening hypereutectoid steels and hypereutectoid carburised cases
GB2306473A GB1439071A (en) 1972-05-18 1973-05-15 Thermal treatment of steel
GB5210375A GB1439072A (en) 1972-05-18 1973-05-15 Thermal treatment of steel
DE19732324750 DE2324750B2 (en) 1972-05-18 1973-05-16 HEAT TREATMENT PROCESS FOR STEEL
BR3565/73A BR7303565D0 (en) 1972-05-18 1973-05-16 PROCESS TO PRODUCE TEMPERED HYPERAUTECTOID ACES, LGA AND PROCESS TO PRODUCE A CASE
JP5480473A JPS568889B2 (en) 1972-05-18 1973-05-18
US468497A US3895972A (en) 1972-05-18 1974-05-09 Thermal treatment of steel
US468495A US3922181A (en) 1972-05-18 1974-05-09 Thermal treatment of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00254454A US3826694A (en) 1972-05-18 1972-05-18 Thermal treatment of steel

Publications (1)

Publication Number Publication Date
US3826694A true US3826694A (en) 1974-07-30

Family

ID=22964374

Family Applications (1)

Application Number Title Priority Date Filing Date
US00254454A Expired - Lifetime US3826694A (en) 1972-05-18 1972-05-18 Thermal treatment of steel

Country Status (6)

Country Link
US (1) US3826694A (en)
JP (1) JPS568889B2 (en)
BR (1) BR7303565D0 (en)
CA (1) CA994656A (en)
DE (1) DE2324750B2 (en)
GB (2) GB1439072A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021272A (en) * 1974-04-19 1977-05-03 Hitachi Metals, Ltd. Method of isothermal annealing of band steels for tools and razor blades
US10894992B2 (en) 2018-01-25 2021-01-19 Toyota Jidosha Kabushiki Kaisha Method for producing steel member

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57137790U (en) * 1981-02-23 1982-08-28
NO854396L (en) * 1985-11-05 1987-05-06 Kverneland As PROCEDURE FOR STEEL Curing.
JP3646467B2 (en) * 1996-07-31 2005-05-11 日本精工株式会社 Rolling bearing
FR2761699B1 (en) * 1997-04-04 1999-05-14 Ascometal Sa STEEL AND METHOD FOR MANUFACTURING A BEARING PART
DE19849679C1 (en) 1998-10-28 2000-01-05 Skf Gmbh Heat treatment of steel workpieces through hardening

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4021272A (en) * 1974-04-19 1977-05-03 Hitachi Metals, Ltd. Method of isothermal annealing of band steels for tools and razor blades
US10894992B2 (en) 2018-01-25 2021-01-19 Toyota Jidosha Kabushiki Kaisha Method for producing steel member

Also Published As

Publication number Publication date
CA994656A (en) 1976-08-10
DE2324750A1 (en) 1973-11-29
JPS568889B2 (en) 1981-02-26
AU5458973A (en) 1974-10-17
JPS4966524A (en) 1974-06-27
DE2324750B2 (en) 1976-05-20
GB1439071A (en) 1976-06-09
GB1439072A (en) 1976-06-09
BR7303565D0 (en) 1974-06-27

Similar Documents

Publication Publication Date Title
JPS62192532A (en) Production of steel wire
US3907614A (en) Bainitic ferrous alloy and method
US3895972A (en) Thermal treatment of steel
US4457789A (en) Process for annealing steels
US4202710A (en) Carburization of ferrous alloys
US3337376A (en) Method of hardening hypereutectoid steels
US3826694A (en) Thermal treatment of steel
JPH0156124B2 (en)
JPH06271930A (en) Production of high strength and high toughness steel excellent in fatigue property
US3922181A (en) Thermal treatment of steel
US3288657A (en) Special heat treating method of steels
JPH0236648B2 (en) KOKYODOKOENSEIKONOSEIHO
US3502514A (en) Method of processing steel
JPH0576524B2 (en)
US3567527A (en) Metallurgical process and product
US2363736A (en) Stainless steel process
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH01104718A (en) Manufacture of bar stock or wire rod for cold forging
JPS6196054A (en) Spheroidal graphite cast iron and manufacture thereof
JP2835057B2 (en) Spring steel and manufacturing method thereof
JPS648051B2 (en)
JPH02274810A (en) Production of high tensile untempered bolt
KR102326245B1 (en) Steel wire rod for cold forging and methods for manufacturing thereof
US3009843A (en) Steel products and method for producing same
JPH0576522B2 (en)