JPH06271930A - Production of high strength and high toughness steel excellent in fatigue property - Google Patents

Production of high strength and high toughness steel excellent in fatigue property

Info

Publication number
JPH06271930A
JPH06271930A JP8247093A JP8247093A JPH06271930A JP H06271930 A JPH06271930 A JP H06271930A JP 8247093 A JP8247093 A JP 8247093A JP 8247093 A JP8247093 A JP 8247093A JP H06271930 A JPH06271930 A JP H06271930A
Authority
JP
Japan
Prior art keywords
steel
weight
temperature
retained austenite
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8247093A
Other languages
Japanese (ja)
Inventor
Satoshi Tagashira
聡 田頭
Shoichi Kadani
昇一 甲谷
Toshiro Yamada
利郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP8247093A priority Critical patent/JPH06271930A/en
Publication of JPH06271930A publication Critical patent/JPH06271930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain high strength and high toughness steel excellent in strength and ductility and having good fatigue properties. CONSTITUTION:Steel contg., as essential elements, by weight, 0.4 to 1.2% C, 1.0 to 3.0% Si and 0.1 to 3.0% Mn and furthermore contg, as necessary 0.1 to 3.0% Cr, 0.2 to 2.0% Ni and 0.05 to 2.0% of one or >=two kinds among Mo, V, Nb and W, and the balance Fe with inevitable impurities is heated to the Ac3 point or above, is austenitized, is thereafter cooled from the same temp. to the temp. range of the Ms point to <=500 deg.C and is held in the same temp. range for required time to form a composite structure constituted of, as the main phases, bainite and retained austenite of >=10% volume ratio. The surface of the steel having the obtd. composite structure is subjected to shot peening treatment, and the retained austenitic phase on the surface layer part is subjected to strain reduced transformation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ショットピーニングに
よって強靱鋼の表面に高い圧縮残留応力を付与する高強
度高靭性鋼の製法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a high-strength and high-toughness steel which imparts a high compressive residual stress to the surface of the tough steel by shot peening.

【0002】[0002]

【従来の技術】ショットピーニング加工は,鋼球などの
ショット材を材料表面に高速で衝突させることによって
表面層に塑性変形を加える加工方法である。塑性変形層
が表層に限られることから,ショットピーニング加工後
には材料の表面には圧縮残留応力が発生するが,圧縮残
留応力の発生は多くの場合疲労特性の向上をもらたす。
このため,ショットピーニング加工を用いて積極的に疲
労特性を向上させようとする試みが数多くなされてい
る。
2. Description of the Related Art Shot peening is a processing method in which a shot material such as a steel ball is collided with the surface of a material at high speed to thereby plastically deform the surface layer. Since the plastically deformed layer is limited to the surface layer, compressive residual stress occurs on the surface of the material after shot peening, but the occurrence of compressive residual stress often improves fatigue properties.
For this reason, many attempts have been made to positively improve fatigue properties by using shot peening.

【0003】鋼材の場合,疲労特性が重視される歯車や
バネなどには工業的にはほとんどのケースでショットピ
ーニングが利用されているのが現状であり,ショットピ
ーニング加工を施す対象材料としては浸炭焼入材が多く
用いられる。特公平1-306521号公報や特公平1-306545号
公報は,歯車に浸炭焼入を施して表層に残留オーステナ
イトを生成させ,これにショットピーニングを施して疲
労特性を改善する方法を開示する。
In the case of steel, shot peening is currently used industrially in most cases for gears and springs where fatigue characteristics are important. Charcoal quenching material is often used. Japanese Examined Patent Publication No. 1-306521 and Japanese Examined Patent Publication No. 1-306545 disclose a method of carburizing and quenching a gear to generate retained austenite in the surface layer, and subjecting this to shot peening to improve fatigue characteristics.

【0004】浸炭焼入材は表層の浸炭層に高濃度の炭素
原子が固溶しているために,内部に比べて多量の残留オ
ーステナイトが存在する。従って, ショットピーニング
加工による表層の塑性変形に伴う硬さの上昇と圧縮残留
応力の発生に加えて, 表面の浸炭層の残留オーステナイ
トが歪誘起変態するさいの圧縮残留応力が重畳し,非常
に大きな圧縮残留応力が得られる。
In the carburized and hardened material, a large amount of residual austenite is present as compared with the inside because a high concentration of carbon atoms is dissolved in the surface carburized layer. Therefore, in addition to the increase in hardness and the generation of compressive residual stress due to the plastic deformation of the surface layer due to shot peening, the compressive residual stress during the strain-induced transformation of the residual austenite in the carburized layer on the surface is superposed, which is very large. A compressive residual stress is obtained.

【0005】浸炭層中の残留オーステナイトを歪誘起変
態させると圧縮残留応力が発生するのは次のような理由
による。すなわち,浸炭焼入後の残留オーステナイトは
室温では準安定相であり, 熱的, 機械的外因によってマ
ルテンサイトに変態する。マルテンサイト変態は体積膨
張を伴うので,組織中の残留オーステナイトがマルテン
サイトに変態すると周囲の相に圧縮応力を与える。浸炭
焼入材の場合, 残留オーステナイトは表面に多く存在す
るため,なんらかの方法で表層の残留オーステナイトの
みをマルテンサイト変態せしめることができれば大きな
圧縮残留応力を発生させることができるのである。
The reason why the compressive residual stress is generated when the strain-induced transformation of the retained austenite in the carburized layer occurs is as follows. In other words, the retained austenite after carburizing and quenching is a metastable phase at room temperature and transforms to martensite due to thermal and mechanical external factors. Since martensitic transformation involves volume expansion, when retained austenite in the structure transforms to martensite, compressive stress is applied to the surrounding phases. In the case of carburized and quenched materials, a large amount of retained austenite is present on the surface, so if it is possible to transform only the retained austenite in the surface layer by some method, a large compressive residual stress can be generated.

【0006】従って,表層のみに塑性変形を与えること
を特徴とするショットピーニング加工は,浸炭焼入材に
圧縮残留応力を発生させるために非常に有効な方法であ
る。このように,浸炭焼入材を用いてショットピーニン
グ加工を施すことで,表面に大きな圧縮残留応力を発生
せしめることができ,疲労特性の大幅な向上など機械的
性質の改善に大きな効果がもたらされる。
Therefore, the shot peening process, which is characterized in that only the surface layer is subjected to plastic deformation, is a very effective method for generating compressive residual stress in the carburized and quenched material. In this way, by performing shot peening using a carburized and quenched material, it is possible to generate a large compressive residual stress on the surface, which has a great effect on improving mechanical properties such as a significant improvement in fatigue properties. .

【0007】[0007]

【発明が解決しようとする課題】しかし,浸炭焼入材に
ショットピーニング加工を施す場合には,浸炭処理中に
浸炭異常層が生成するとショットピーニングの効果が現
れ難くなるという問題がある。また,浸炭層中の残留オ
ーステナイトは安定度が低いので残留オーステナイト量
の経時変化が起こり, このため寸法や形状に狂いが生じ
やすいという問題がある。
However, when the carburized and hardened material is subjected to shot peening, there is a problem that the effect of shot peening becomes difficult to appear when an abnormal carburized layer is formed during the carburizing treatment. In addition, since the retained austenite in the carburized layer has low stability, the amount of retained austenite changes with time, which causes a problem that the size and shape are likely to be distorted.

【0008】加えて,浸炭焼入した材料そのものはかな
り硬質であるため,用途が限られるという問題がある。
すなわち,曲げなどの成型性が悪くまた衝撃靭性に劣る
等,材料自体の延・靭性に欠けており,歯車のように加
工後に浸炭焼入れの熱処理を施す場合には適している
が,熱処理後に曲げ等の加工を付与する部品や衝撃荷重
の加わる部品に適用するのは困難である。そして浸炭焼
入処理は長時間の工程と浸炭ガスなど厳密なライン管理
を必要とするために,コストの上昇を招くことは否めな
い。
In addition, since the carburized and quenched material itself is quite hard, there is a problem that its use is limited.
In other words, the material itself lacks in ductility and toughness, such as poor formability such as bending and poor impact toughness, and is suitable for carburizing and quenching heat treatment after processing such as gears, but bending after heat treatment It is difficult to apply it to parts to which machining is applied or parts to which an impact load is applied. The carburizing and quenching process requires a long process and strict line control such as carburizing gas, which inevitably leads to an increase in cost.

【0009】本発明は,以上のような浸炭焼入材に付随
する数々の問題点を解決することを目的としたものであ
り,単純な熱処理工程のみで製造可能であり, 安定した
ショットピーニング効果が得られ, かつ曲げなど加工性
と衝撃靭性を具備し,ショットピーニングによって大き
な圧縮残留応力を発生することのできる高強度高靭性鋼
材の開発を意図したものである。
The present invention is intended to solve various problems associated with the above-mentioned carburized and quenched material, can be manufactured only by a simple heat treatment process, and has a stable shot peening effect. It is intended to develop a high-strength, high-toughness steel material that has the following properties: workability such as bending and impact toughness, and can generate a large compressive residual stress by shot peening.

【0010】[0010]

【課題を解決するための手段】本発明によれば,C:0.
4〜1.2重量%, Si:1.0〜3.0重量%, Mn:0.1〜3.0重
量%を必須元素として含有し,場合によってはさらにC
r:0.1〜3.0重量%,Ni:0.2〜2.0重量%, Mo,V,N
b,Wの1種または2種以上:0.05〜2.0重量%を含有
し,残部がFeおよび不可避的不純物からなる鋼をAc3
点以上の温度に加熱してオーステナイト化した後, この
温度からMs点以上500℃以下の温度域に冷却しこの
温度域に所要の時間保持してベイナイトと体積率10%
以上の残留オーステナイトを主相とする複合組織を生成
せしめ,得られた複合組織の鋼の表面をショットピーニ
ング処理して表層部の残留オーステナイト相を歪誘起変
態させることからなる疲労特性に優れた高強度高靭性鋼
の製法を提供する。該複合組織の鋼をショットピーニン
グ処理した表層部は500N/mm2以上の圧縮残留応力を有す
る。
According to the present invention, C: 0.
4 to 1.2% by weight, Si: 1.0 to 3.0% by weight, Mn: 0.1 to 3.0% by weight as essential elements, and in some cases, further C
r: 0.1 to 3.0% by weight, Ni: 0.2 to 2.0% by weight, Mo, V, N
One or two or more of b and W: a steel containing 0.05 to 2.0% by weight, the balance being Fe and inevitable impurities, Ac 3
After heating to a temperature above the point to austenite, it is cooled from this temperature to a temperature range above the Ms point and below 500 ° C and kept in this temperature range for the required time, and bainite and a volume ratio of 10%
The composite structure with retained austenite as the main phase was generated, and the surface of the obtained composite structure steel was shot peened to perform strain-induced transformation of the retained austenite phase in the surface layer. A method of manufacturing high strength and high toughness steel is provided. The surface layer obtained by shot peening the steel having the composite structure has a compressive residual stress of 500 N / mm 2 or more.

【0011】[0011]

【作用】本発明に従う鋼がショットピーニング加工によ
って大きな圧縮残留応力の発生をみるのは,ベイナイト
と残留オーステナイトの混合組織における残留オーステ
ナイトの歪誘起変態によるものである。その残留オース
テナイトは,浸炭焼入材の場合には浸炭処理によって表
層に非常に高濃度の炭素原子を濃縮させることによって
得られていたのに対して,Si含有鋼のベイナイト変態
に特有のセメンタイトを含まないベイニティックフエラ
イトの生成と,それに伴う未変態オーステナイト中への
炭素原子の濃縮現象によって残留オーステナイトを得て
いることが本発明の特徴である。
The occurrence of large compressive residual stress in the steel according to the present invention by shot peening is due to the strain-induced transformation of retained austenite in the mixed structure of bainite and retained austenite. The retained austenite was obtained by carburizing and concentrating very high concentration of carbon atoms in the surface layer in the case of carburized and hardened material, while the cementite peculiar to bainite transformation of Si-containing steel was obtained. It is a feature of the present invention that residual austenite is obtained by the formation of bainitic ferrite not containing it and the accompanying phenomenon of concentration of carbon atoms in untransformed austenite.

【0012】まず,本発明に従う鋼がオーステンパー熱
処理によって残留オーステナイトを生成する挙動は次の
とおりである。Siを多量に含む炭素鋼をベイナイト変
態させた場合,Siが炭化物の生成を抑制する作用を有
するために未変態オーステナイト中にベイニティックフ
エライト中の炭素原子が排出される。このために未変態
オーステナイト中の炭素濃度は上昇し,マルテンサイト
変態温度(Ms点) が室温以下にまで低下する。この時
点以降(恒温変態以降)では鋼を室温まで冷却してもマ
ルテンサイトは生成せず,ベイナイトと残留オーステナ
イトの混合組織が得らる。
First, the behavior of the steel according to the present invention for producing retained austenite by the austempering heat treatment is as follows. When a carbon steel containing a large amount of Si is transformed into bainite, Si has an action of suppressing the formation of carbides, so that carbon atoms in bainitic ferrite are discharged into untransformed austenite. For this reason, the carbon concentration in untransformed austenite rises and the martensitic transformation temperature (Ms point) falls to below room temperature. After this point (after the isothermal transformation), martensite does not form even when the steel is cooled to room temperature, and a mixed structure of bainite and retained austenite is obtained.

【0013】こうして生成した残留オーステナイトは室
温では準安定相であり,熱的, 機械的な外因を与えると
マルテンサイトに歪誘起変態を起こすことができる。残
留オーステナイトの歪誘起変態は,ある条件のもとで非
常に良好な延性をもたらす。これをTRIP (Transfor
mation Induced-Plasticity:変態誘起塑性) 現象と呼
び, 特公昭58-42246号公報や特開平3-215623号公報で
は,この現象を利用した高延性鋼の製造方法が示されて
いる。
The retained austenite thus produced is a metastable phase at room temperature and can give strain-induced transformation to martensite when given a thermal or mechanical external factor. The strain-induced transformation of retained austenite leads to very good ductility under certain conditions. TRIP (Transfor
mation Induced-Plasticity (transformation-induced plasticity) phenomenon, which is disclosed in Japanese Patent Publication No. 58-42246 and Japanese Patent Laid-Open No. 3-215623, which describes a method for manufacturing high ductility steel using this phenomenon.

【0014】本発明者等が注目したのは, Siを多量に
含む炭素鋼をベイナイト変態させたときに得られる残留
オーステナイトは, ショットピーニング加工によっても
歪誘起変態を起こし得ること,また,その時にマルテン
サイト変態に伴う体積膨張によって圧縮残留応力が発生
すること,さらには,この鋼に含まれる残留オーステナ
イトは強度延性バランスの向上にも有効に働き, 曲げや
軽度の絞り加工なども可能であることである。
The present inventors have paid attention to the fact that the retained austenite obtained when the carbon steel containing a large amount of Si is transformed into bainite can cause strain-induced transformation even by shot peening. Compressive residual stress occurs due to volume expansion associated with martensitic transformation. Furthermore, the retained austenite contained in this steel also works effectively to improve the strength-ductility balance, and is capable of bending and light drawing. Is.

【0015】本発明によれば,従来は浸炭焼入鋼にショ
ットピーニング加工を施し, 圧縮残留応力を導入して疲
労特性の向上を図ってきたところを, 単純なオーステン
パー熱処理鋼にショットピーニング加工を施すため,熱
処理工程が大幅に簡略化できる。さらに浸炭焼入処理を
行った部品は硬質で靭性に乏しかったが,本発明の場合
には残留オーステナイトのTRIP現象によって素材自
体の靭性が極めて高いので,部品加工後の軽度の成型性
も確保できる。このように, 本発明はショットピーニン
グ処理に供する素材として最適の特性を持つものである
と考えられ,工業上極めて有用である。
According to the present invention, conventionally, the carburized and quenched steel is shot peened and the compressive residual stress is introduced to improve the fatigue characteristics. As a result, the heat treatment process can be greatly simplified. Further, the carburized and quenched parts were hard and poor in toughness, but in the case of the present invention, the TRIP phenomenon of retained austenite causes the material itself to have extremely high toughness, so that it is possible to secure a mild formability after processing the parts. . As described above, the present invention is considered to have optimum properties as a material to be subjected to shot peening treatment, and is extremely useful industrially.

【0016】以下に, 本発明法を適用する鋼の各合金元
素の作用と添加量範囲について個別に説明する。
The action of each alloying element of steel to which the method of the present invention is applied and the range of addition amount will be individually described below.

【0017】Cはオーステナイト安定化元素であり,ベ
イナイト変態を起こさせるに不可欠な元素である。その
含有量は最終的に生成する残留オーステナイト(以下,
γRと略記することがある)量に大きく影響し,C含有
量が 0.4%以下ではγRを含有した状態で高強度を得る
ことができない。また,C量が 1.2%以上では生成する
γR量が多すぎ, YSが著しく低下するのみか,材料の
靭性もかえって低下してしまう。従って, 適切なγR
を含みつつ高い強度を得た上で, その後のプリストレス
加工に供するためには,C量は 0.4〜1.2%の範囲にす
る必要がある。
C is an austenite stabilizing element and is an element essential for causing bainite transformation. The content of retained austenite (hereinafter,
(It may be abbreviated as γ R ), and if the C content is 0.4% or less, high strength cannot be obtained with γ R contained. Further, if the amount of C is 1.2% or more, the amount of γ R produced is too large, which not only significantly reduces YS, but also deteriorates the toughness of the material. Therefore, in order to obtain a high strength while containing an appropriate amount of γ R and to use it for the subsequent prestress processing, the amount of C must be in the range of 0.4 to 1.2%.

【0018】Siは炭化物の生成を抑制する元素であり,
C濃度の高い安定なγRを得るうえで極めて有効に作用
する。Si量が 1.0%未満では上記の効果は希薄であ
り,反対にSi量が3.0%を超えるとベイナイト変態が著
しく抑制されるばかりでなく,熱間圧延−冷間圧延等の
製造性が悪くなる。従って, Si量は 1.0〜3.0%の範囲
に限定される。
Si is an element that suppresses the formation of carbides,
It acts extremely effectively in obtaining stable γ R having a high C concentration. If the Si content is less than 1.0%, the above effect is diminished. On the contrary, if the Si content exceeds 3.0%, not only bainite transformation is significantly suppressed, but also the manufacturability such as hot rolling-cold rolling deteriorates. . Therefore, the Si content is limited to the range of 1.0 to 3.0%.

【0019】Mnは, オーステナイト安定化元素であ
り,焼入れ性を向上させることによってパーライト等の
生成を抑制する作用がある。しかし,Mn量が0.1%未満
では焼入れ性が不十分で, パーライト等の生成によって
十分なγRが得られなくなる。また,Mn量が 3.0%を超
えるとベイナイト変態の速度が遅くなり,やはり十分な
γRを得られなくなる。この理由からMn量は 0.1〜3.0
%とする。
Mn is an austenite stabilizing element, and has an action of suppressing the formation of pearlite by improving the hardenability. However, if the amount of Mn is less than 0.1%, the hardenability is insufficient and sufficient γ R cannot be obtained due to the formation of pearlite. Moreover, if the amount of Mn exceeds 3.0%, the bainite transformation rate becomes slow, and it is also impossible to obtain sufficient γ R. For this reason, the amount of Mn is 0.1-3.0
%.

【0020】Crは, 熱延板の軟化焼鈍が必要な場合,
焼鈍中に起こる黒鉛化を抑制する作用がある。またベイ
ナイト変態を遅らせる作用があり,ベイナイト変態の制
御をしやすくする元素である。前記の黒鉛化を防止する
ためにはCr量は最低 0.1%は必要であるが,3.0%を超
えて添加してもそれ以上の効果は望めないばかりか軟化
焼鈍時のセメンタイトの球状化を困難にし,ベイナイト
自体の靭性を劣化させる傾向があるために, その含有量
は 0.1〜3.0%の範囲とする。
Cr is used when softening annealing of hot rolled sheet is required,
It has the effect of suppressing graphitization that occurs during annealing. It also acts to delay bainite transformation and is an element that facilitates control of bainite transformation. In order to prevent the above graphitization, the Cr content must be at least 0.1%, but even if it is added in excess of 3.0%, no further effect can be expected and it is difficult to spheroidize the cementite during softening annealing. However, since the bainite itself tends to deteriorate the toughness, its content is in the range of 0.1 to 3.0%.

【0021】Mo,V,NbおよびWは,ベイナイト変態の
形態を大きく変える元素であり,適量添加することによ
りベイナイト組織を微細化し,TSと靭性を高める効果
を発揮する。さらにはVとNbはオーステナイト域に加
熱したときのオーステナイト粒径を微細化する作用があ
るために,ベイナイト変態を促進することができる。M
o,V,NbおよびWは0.05%未満の添加量ではTSの向上
とオーステナイト粒径の微細化の効果は少なく,また2.
0%を超えて添加してもそれ以上の効果は望めず, かえ
って健全なベイナイト組織の生成に支障となるので,0.
05〜2.0%に限定する。
Mo, V, Nb and W are elements that greatly change the morphology of bainite transformation, and when added in appropriate amounts, the bainite structure is refined and TS and toughness are enhanced. Furthermore, since V and Nb have the function of refining the austenite grain size when heated to the austenite region, they can promote the bainite transformation. M
When the content of o, V, Nb and W is less than 0.05%, the effects of improving TS and refining the austenite grain size are small, and 2.
Even if added in excess of 0%, no further effect can be expected, which rather hinders the formation of a sound bainite structure.
Limited to 05-2.0%.

【0022】Niは, Mnと同様オーステナイト形成元素
であり,焼入れ性を向上させることによってパーライト
等の生成を抑制する作用を有するが,それとともに残留
オーステナイトを安定化させる効果が大きいためにC量
の少ない成分鋼の場合やベイナイト変態量を少なくした
場合でも十分な残留オーステナイト量を得ることができ
る。従って, Niを添加することによって, より軟質な
強度レベルで多量の残留オーステナイトを得ることがで
きる。しかし,Niには黒鉛化を助長する作用が大きい
ために2.0%を越える添加は避けなければならない。ま
た,0.2%未満の添加量では残留オーステナイトの安定
化効果は希薄である。このためNiの添加量は 0.2〜2.0
%とする。
Ni, like Mn, is an austenite-forming element and has the effect of suppressing the formation of pearlite and the like by improving the hardenability, but at the same time, it has a large effect of stabilizing the retained austenite, so that the amount of C A sufficient amount of retained austenite can be obtained even in the case of a low component steel or a small amount of bainite transformation. Therefore, by adding Ni, it is possible to obtain a large amount of retained austenite at a softer strength level. However, since Ni has a large effect of promoting graphitization, addition of more than 2.0% must be avoided. In addition, the effect of stabilizing retained austenite is diminished when the added amount is less than 0.2%. Therefore, the amount of Ni added is 0.2 to 2.0.
%.

【0023】以上の成分組成を有する鋼を複合組織の鋼
にするには,Ac3点以上の温度域でオーステナイト化し
た後, Ms点以上, 500℃以下の温度域に保持してベイナ
イト変態させ,体積率10%以上のγRとベイナイトの混
合組織とすることが必要である。変態生成物を十分に生
成させて強度を確保するためには,オーステナイト化温
度はAc3点以上が必要である。保持温度が500℃を超え
ると, ベイナイトは生成しない。また,保持温度がMs
点未満ではベイナイトの生成に先立ってマルテンサイト
が生成するために,本発明の特徴であるγRを含む混合
組織が得られない。従って, 保持温度はMs点以上500℃
以下の温度域に限定される。
In order to make a steel having the above-mentioned composition into a steel having a composite structure, after austenitizing in the temperature range of Ac 3 point or more, it is retained in the temperature range of Ms point or more and 500 ° C. or less to perform bainite transformation. It is necessary to have a mixed structure of γ R and bainite with a volume ratio of 10% or more. The austenitizing temperature must be Ac 3 or higher in order to sufficiently generate the transformation product and secure the strength. Bainite does not form when the holding temperature exceeds 500 ℃. In addition, the holding temperature is Ms
Below the point, martensite is formed prior to the formation of bainite, so that the mixed structure containing γ R , which is a feature of the present invention, cannot be obtained. Therefore, the holding temperature is above the Ms point and is 500 ° C.
It is limited to the following temperature range.

【0024】本発明の成分鋼を当該熱処理条件でベイナ
イト変態させ,体積率10%以上の残留オーステナイトと
ベイナイトを主相とする複合組織を生成せしめた場合,
この複合組織は強度−延性ともに良好なものとなり, さ
らにショットピーニングを施すことによって鋼材表層部
に500N/mm2以上の圧縮残留応力を発生させることができ
る。残留オーステナイトの体積率が10%以下の場合, 残
留オーステナイトの歪誘起変態が起こっても組織中に導
入される体積膨脹の効果は小さく, 発生する圧縮残留応
力も小さい。従って, 残留オーステナイトの体積率は10
%以上必要である。
When the component steel of the present invention is transformed into bainite under the heat treatment conditions to produce a composite structure having a retained austenite with a volume ratio of 10% or more and bainite as a main phase,
This composite structure has good strength and ductility, and by applying shot peening, a compressive residual stress of 500 N / mm 2 or more can be generated in the surface layer of the steel material. When the volume ratio of retained austenite is less than 10%, the effect of volume expansion introduced into the structure is small and the compressive residual stress generated is small even if the strain-induced transformation of retained austenite occurs. Therefore, the volume ratio of retained austenite is 10
% Or more is required.

【0025】[0025]

【実施例】表1に供試材の化学成分値(重量%)を示
す。鋼No.A,BおよびCはいずれか一つの成分の含有
量が本発明で規定する範囲を外れる比較鋼であり,No.
D,E,F,GおよびHは本発明で規定する成分組成範
囲内の鋼である。いずれも通常の熱間圧延,軟化焼鈍,
冷間圧延を経て厚さ2mmの鋼板とした。
[Examples] Table 1 shows the chemical component values (% by weight) of the test materials. Steel Nos. A, B and C are comparative steels in which the content of any one of the components is out of the range specified in the present invention.
D, E, F, G and H are steels within the composition range defined in the present invention. In both cases, normal hot rolling, softening annealing,
A steel plate having a thickness of 2 mm was obtained through cold rolling.

【0026】これらの鋼板から所定の大きさに切出した
試片を,オーステンパ熱処理,焼入焼戻し処理または浸
炭焼入れのいずれかの熱処理を行った。オーステンパ熱
処理はAc3点以上の温度に加熱してオーステナイト化し
た後, Ms点以上500℃以下の範囲における或る所定
温度に保持した浴中に投入し,その温度に所定の時間恒
温保持し,常温まで放冷する処理である。各鋼に対して
行ったオーステンパ熱処理条件は表2に示した熱処理N
o.1〜6のいずれかである。また,比較のために行った
焼入焼戻処理の条件を表3の熱処理No.7および8に,浸
炭焼入れの条件を表4の熱処理No.9に示した。
Specimens cut into a predetermined size from these steel sheets were subjected to austempering, quenching and tempering, or carburizing and quenching. In the austempering heat treatment, after heating to a temperature of Ac 3 points or more to austenite, it is placed in a bath kept at a certain temperature in the range of Ms point or more and 500 ° C. or less, and kept at that temperature for a predetermined time, This is a process of cooling to room temperature. The austempering heat treatment conditions applied to each steel are the heat treatment N shown in Table 2.
o. Any of 1 to 6. In addition, the conditions of quenching and tempering treatment performed for comparison are shown in heat treatment Nos. 7 and 8 of Table 3, and the conditions of carburizing and quenching are shown in heat treatment No. 9 of Table 4.

【0027】鋼A〜Hに対して,熱処理No.1〜9のいず
れかを行ったときの熱処理ままでの機械的性質(JIS 13
Bに従う引張試験値) を測定し,また残留オーステナイ
ト量(γR 量) をX線回折によって測定した。その結果
を表5に示した。
Steels A to H were subjected to any of heat treatment Nos. 1 to 9 and had mechanical properties as they were (JIS 13
The tensile test value according to B) was measured, and the retained austenite amount (γ R amount) was measured by X-ray diffraction. The results are shown in Table 5.

【0028】また,各熱処理材をショットピーニング
し,ショットピーニング後の鋼材表層部の最大圧縮残留
応力値と平面曲げ疲労限の測定結果も表5に示した。シ
ョットピーニングは粒径0.6mmφ,硬さがHRC 60のスチ
ールショットを用い,アークハイト0.4mmA のピーニン
グを行った。圧縮残留応力値はピーニング後の鋼材につ
いてX線回折を用いて測定し,鋼材の表面から50μm深
さにおける圧縮残留応力値を表5に記した。
Table 5 also shows the measurement results of the maximum compressive residual stress value and the plane bending fatigue limit of the surface layer portion of the steel material after shot peening after shot peening each heat treated material. For shot peening, steel shot with a grain size of 0.6 mmφ and hardness of HRC 60 was used, and peening was performed at an arc height of 0.4 mmA. The compressive residual stress value was measured for the steel material after peening using X-ray diffraction, and the compressive residual stress value at a depth of 50 μm from the surface of the steel material is shown in Table 5.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【表4】 [Table 4]

【0033】[0033]

【表5】 [Table 5]

【0034】表5の結果から次のことがわかる。From the results shown in Table 5, the following can be seen.

【0035】比較鋼AとBは通常の焼入焼戻し熱処理を
施して使用される鋼であり,いずれもSiが添加されて
いない。これを用いた比較例A・7およびB・7の場
合,熱処理条件が焼入焼戻し処理であるために残留オー
ステナイトが生成せず,高い延性靭性は得られないうえ
に,ショットピーニングによる圧縮残留応力の発生量も
小さくて高い疲労強度が得られない。
The comparative steels A and B are steels which are used after being subjected to normal quenching and tempering heat treatment, and no Si is added. In the case of Comparative Examples A.7 and B.7 using this, since retained austenite is not generated because the heat treatment condition is quenching and tempering, high ductile toughness is not obtained, and compressive residual stress due to shot peening is not obtained. The amount of occurrence of is small and high fatigue strength cannot be obtained.

【0036】比較例B・2の場合は熱処理条件は本発明
で規定する範囲内であるものの,本発明で規定するより
も低いSi量の比較鋼Bを用いたものであり,残留オー
ステナイトが生成しない。このために高い延性靭性を得
ることはできない。
In the case of Comparative Example B.2, although the heat treatment conditions were within the range specified by the present invention, Comparative Steel B having a lower Si content than that specified by the present invention was used, and residual austenite was formed. do not do. Therefore, it is not possible to obtain high ductility toughness.

【0037】比較鋼Cは通常浸炭焼入処理を施す鋼であ
るが,比較例C・9に見られるように,表層に生成した
残留オーステナイトがショットピーニングによって圧縮
残留応力の発生をもたらし,高い疲労強度を得ることが
できる。しかし,この表層の残留オーステナイトは母材
そのものの延性靭性改善には効果はなく,引張延性,衝
撃靭性に劣っている。
Comparative Steel C is a steel which is normally carburized and quenched, but as seen in Comparative Example C.9, the retained austenite generated in the surface layer causes compressive residual stress due to shot peening, resulting in high fatigue. Strength can be obtained. However, the retained austenite in this surface layer is not effective in improving the ductility and toughness of the base metal itself, and is inferior in tensile ductility and impact toughness.

【0038】これに対し,本発明鋼D,E,F,G,H
に対してオーステンパー熱処理を施した本発明材D・
3,E・3,F・2,G・2〜4およびH・5は,ベイ
ナイトと残留オーステナイトの混合組織が生成するため
に,強度延性,衝撃靭性に極めて優れており,さらに,
ショットピーニング加工によって表層部の残留オーステ
ナイトが歪誘起変態することによる圧縮残留応力の発生
により,その疲労特性は非常に優れたものとなってい
る。
On the other hand, the steels of the present invention D, E, F, G, H
Inventive material D, which has been subjected to austempering heat treatment against
3, E.3, F.2, G.2-4 and H.5 are extremely excellent in strength ductility and impact toughness due to the formation of a mixed structure of bainite and retained austenite.
Due to the generation of compressive residual stress due to strain-induced transformation of the retained austenite in the surface layer due to shot peening, its fatigue properties are extremely excellent.

【0039】しかし,本発明鋼D,E,F,G,Hの場
合でも,本発明で規定する範囲外の条件で熱処理を施し
た場合には優れた特性を得ることはできない。例えば比
較例D・8の場合は,オーステンパーではなく焼入焼戻
し処理を行ったために残留オーステナイトを得ることが
できず,このために強度は高いが延性靭性およびショッ
トピーニングによる効果が得られない。
However, even in the case of the steels D, E, F, G and H of the present invention, excellent properties cannot be obtained when the heat treatment is performed under the conditions outside the range specified in the present invention. For example, in the case of Comparative Example D.8, the retained austenite cannot be obtained because the quenching and tempering treatment is performed instead of the austempering. Therefore, although the strength is high, the effects of ductile toughness and shot peening cannot be obtained.

【0040】また比較例D・1の場合は,オーステンパ
ーにおける恒温保持温度が低すぎてMs点以下になった
ためにマルテンサイトが多量に生成し,ベイナイトと残
留オーステナイトの混合組織が生成しなかったために強
度−延性靭性が低い。比較例D・6の場合は,恒温保持
温度が高すぎたために保持中にパーライトが生成し,残
留オーステナイトが生成しなかったために強度−延性靭
性が低い。
Further, in the case of Comparative Example D.1, since the isothermal holding temperature in the austemper was too low and was below the Ms point, a large amount of martensite was formed and a mixed structure of bainite and retained austenite was not formed. In addition, strength-ductility and toughness are low. In the case of Comparative Example D.6, pearlite was formed during holding because the isothermal holding temperature was too high, and retained austenite was not formed, so the strength-ductility toughness is low.

【0041】[0041]

【発明の効果】以上の実施例から明らかなように,本発
明によれば強度−延性靭性に優れた鋼材であって且つシ
ョットピーニングによって大きな圧縮残留応力が発生し
高い疲労強度を示す高強度高靭性鋼材が得られる。
As is apparent from the above examples, according to the present invention, a steel material excellent in strength-ductility and toughness and having a high compressive residual stress due to shot peening and high fatigue strength. A tough steel material can be obtained.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 C:0.4〜1.2重量%, Si:1.0〜3.0重
量%, Mn:0.1〜3.0重量%,残部がFeおよび不可避的
不純物からなる鋼をAc3点以上の温度に加熱してオース
テナイト化した後, この温度からMs点以上500℃以
下の温度域に冷却しこの温度域に所要の時間保持してベ
イナイトと体積率10%以上の残留オーステナイトを主
相とする複合組織を生成せしめ,得られた複合組織の鋼
の表面をショットピーニング処理して表層部の残留オー
ステナイト相を歪誘起変態させることからなる疲労特性
に優れた高強度高靭性鋼の製法。
1. A steel comprising C: 0.4 to 1.2% by weight, Si: 1.0 to 3.0% by weight, Mn: 0.1 to 3.0% by weight, the balance being Fe and inevitable impurities, heated to a temperature of Ac 3 or higher. After austenitizing, it is cooled from this temperature to a temperature range above the Ms point and below 500 ° C and held in this temperature range for the required time to form a composite structure consisting of bainite and retained austenite with a volume ratio of 10% or more as the main phase. , A method for producing high-strength, high-toughness steel with excellent fatigue properties, which consists of subjecting the surface of the obtained composite steel to shot peening and subjecting the retained austenite phase in the surface layer to strain-induced transformation.
【請求項2】 C:0.4〜1.2重量%, Si:1.0〜3.0重
量%, Mn:0.1〜3.0重量%,Cr:0.1〜3.0重量%,残
部がFeおよび不可避的不純物からなる鋼をAc3点以上
の温度に加熱してオーステナイト化した後, この温度か
らMs点以上500℃以下の温度域に冷却しこの温度域
に所要の時間保持してベイナイトと体積率10%以上の
残留オーステナイトを主相とする複合組織を生成せし
め,得られた複合組織の鋼の表面をショットピーニング
処理して表層部の残留オーステナイト相を歪誘起変態さ
せることからなる疲労特性に優れた高強度高靭性鋼の製
法。
Wherein C: 0.4 to 1.2 wt%, Si: 1.0 to 3.0 wt%, Mn: 0.1 to 3.0 wt%, Cr: 0.1 to 3.0 wt%, the steel balance consisting of Fe and unavoidable impurities Ac 3 After being heated to a temperature above the point to austenite, it is cooled from this temperature to a temperature range above the Ms point and below 500 ° C and held in this temperature range for the required time to maintain bainite and residual austenite with a volume ratio of 10% Of high strength and high toughness steel with excellent fatigue properties by forming a composite structure with a phase and subjecting the surface of the resulting composite structure to shot peening to cause strain-induced transformation of the retained austenite phase in the surface layer .
【請求項3】 C:0.4〜1.2重量%, Si:1.0〜3.0重
量%, Mn:0.1〜3.0重量%,Cr:0.1〜3.0重量%,M
o,V,Nb,Wの1種または2種以上:0.05〜2.0重量%,
残部がFeおよび不可避的不純物からなる鋼をAc3点以
上の温度に加熱してオーステナイト化した後, この温度
からMs点以上500℃以下の温度域に冷却しこの温度
域に所要の時間保持してベイナイトと体積率10%以上
の残留オーステナイトを主相とする複合組織を生成せし
め,得られた複合組織の鋼の表面をショットピーニング
処理して表層部の残留オーステナイト相を歪誘起変態さ
せることからなる疲労特性に優れた高強度高靭性鋼の製
法。
3. C: 0.4 to 1.2% by weight, Si: 1.0 to 3.0% by weight, Mn: 0.1 to 3.0% by weight, Cr: 0.1 to 3.0% by weight, M
one or more of o, V, Nb, W: 0.05 to 2.0% by weight,
After heating the steel with the balance Fe and unavoidable impurities to a temperature of Ac 3 or higher to austenite, it is cooled from this temperature to a temperature range of Ms or higher and 500 ° C or lower and kept at this temperature for the required time. The bainite and the retained austenite with a volume fraction of 10% or more as the main phase are formed, and the steel surface of the obtained composite structure is shot-peened to transform the retained austenite phase in the surface layer into strain-induced transformation. Of high strength and high toughness steel with excellent fatigue characteristics.
【請求項4】 C:0.4〜1.2重量%, Si:1.0〜3.0重
量%, Mn:0.1〜3.0重量%,Cr:0.1〜3.0重量%,N
i:0.2〜2.0重量%, Mo,V,Nb,Wの1種または2種以
上:0.05〜2.0重量%,残部がFeおよび不可避的不純物
からなる鋼をAc3点以上の温度に加熱してオーステナイ
ト化した後, この温度からMs点以上500℃以下の温
度域に冷却しこの温度域に所要の時間保持してベイナイ
トと体積率10%以上の残留オーステナイトを主相とす
る複合組織を生成せしめ,得られた複合組織の鋼の表面
をショットピーニング処理して表層部の残留オーステナ
イト相を歪誘起変態させることからなる疲労特性に優れ
た高強度高靭性鋼の製法。
4. C: 0.4 to 1.2% by weight, Si: 1.0 to 3.0% by weight, Mn: 0.1 to 3.0% by weight, Cr: 0.1 to 3.0% by weight, N
i: 0.2 to 2.0% by weight, one or more of Mo, V, Nb, W: 0.05 to 2.0% by weight, the balance being Fe and unavoidable impurities, and heating the steel to a temperature of Ac 3 or higher. After austenitizing, it is cooled from this temperature to a temperature range above the Ms point and below 500 ° C and held in this temperature range for the required time to form a composite structure consisting of bainite and retained austenite with a volume ratio of 10% or more as the main phase. , A method for producing high-strength, high-toughness steel with excellent fatigue properties, which consists of subjecting the surface of the obtained composite steel to shot peening and subjecting the retained austenite phase in the surface layer to strain-induced transformation.
【請求項5】 ショットピーニング処理した表層部は50
0N/mm2以上の圧縮残留応力を有する請求項1,2,3ま
たは4に記載の高強度高靭性鋼の製法。
5. The surface layer portion subjected to shot peening is 50
The method for producing a high-strength and high-toughness steel according to claim 1, 2, 3 or 4, which has a compressive residual stress of 0 N / mm 2 or more.
JP8247093A 1993-03-18 1993-03-18 Production of high strength and high toughness steel excellent in fatigue property Pending JPH06271930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8247093A JPH06271930A (en) 1993-03-18 1993-03-18 Production of high strength and high toughness steel excellent in fatigue property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8247093A JPH06271930A (en) 1993-03-18 1993-03-18 Production of high strength and high toughness steel excellent in fatigue property

Publications (1)

Publication Number Publication Date
JPH06271930A true JPH06271930A (en) 1994-09-27

Family

ID=13775402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8247093A Pending JPH06271930A (en) 1993-03-18 1993-03-18 Production of high strength and high toughness steel excellent in fatigue property

Country Status (1)

Country Link
JP (1) JPH06271930A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355715A (en) * 1999-04-13 2000-12-26 Honda Motor Co Ltd Strengthening method of carbon steel material
GB2352726A (en) * 1999-08-04 2001-02-07 Secr Defence A steel and a heat treatment for steels
US6475118B1 (en) * 1998-01-20 2002-11-05 American Sports International, Ltd. Gymnastics bar and method of making the same
KR100401985B1 (en) * 1998-12-01 2004-02-18 주식회사 포스코 Method of manufacturing high strength abnormal composite tissue steel
JP2004285474A (en) * 2003-03-04 2004-10-14 Komatsu Ltd Rolling member and its manufacturing method
JP2004292945A (en) * 2003-03-11 2004-10-21 Komatsu Ltd Rolling member, and its production method
JP2009102733A (en) * 2003-03-04 2009-05-14 Komatsu Ltd Method for producing rolling member
GB2462197A (en) * 2008-07-31 2010-02-03 Secr Defence A super bainite steel
CN102906282A (en) * 2010-08-05 2013-01-30 新东工业株式会社 A method for shot peening
WO2013146214A1 (en) * 2012-03-28 2013-10-03 日本発條株式会社 Steel for spring and method for producing same, and spring
JP2017057458A (en) * 2015-09-16 2017-03-23 新日鐵住金株式会社 High strength low alloy steel material
JP2018059193A (en) * 2016-10-03 2018-04-12 新日鐵住金株式会社 Manufacturing method of high strength low alloy steel material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475118B1 (en) * 1998-01-20 2002-11-05 American Sports International, Ltd. Gymnastics bar and method of making the same
KR100401985B1 (en) * 1998-12-01 2004-02-18 주식회사 포스코 Method of manufacturing high strength abnormal composite tissue steel
JP2000355715A (en) * 1999-04-13 2000-12-26 Honda Motor Co Ltd Strengthening method of carbon steel material
GB2352726A (en) * 1999-08-04 2001-02-07 Secr Defence A steel and a heat treatment for steels
JP2009102733A (en) * 2003-03-04 2009-05-14 Komatsu Ltd Method for producing rolling member
JP2004285474A (en) * 2003-03-04 2004-10-14 Komatsu Ltd Rolling member and its manufacturing method
JP2004292945A (en) * 2003-03-11 2004-10-21 Komatsu Ltd Rolling member, and its production method
GB2462197A (en) * 2008-07-31 2010-02-03 Secr Defence A super bainite steel
GB2462197B (en) * 2008-07-31 2010-09-22 Secr Defence Bainite steel and methods of manufacture thereof
JP2011529530A (en) * 2008-07-31 2011-12-08 イギリス国 Bainite steel and manufacturing method thereof
US8956470B2 (en) 2008-07-31 2015-02-17 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Bainite steel and methods of manufacture thereof
CN102906282A (en) * 2010-08-05 2013-01-30 新东工业株式会社 A method for shot peening
WO2013146214A1 (en) * 2012-03-28 2013-10-03 日本発條株式会社 Steel for spring and method for producing same, and spring
JP2017057458A (en) * 2015-09-16 2017-03-23 新日鐵住金株式会社 High strength low alloy steel material
JP2018059193A (en) * 2016-10-03 2018-04-12 新日鐵住金株式会社 Manufacturing method of high strength low alloy steel material

Similar Documents

Publication Publication Date Title
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP4268079B2 (en) Ultra-high strength steel sheet having excellent elongation and hydrogen embrittlement resistance, method for producing the same, and method for producing ultra-high strength press-formed parts using the ultra-high strength steel sheet
US8926768B2 (en) High-strength and high-ductility steel for spring, method for producing same, and spring
US5108518A (en) Method of producing thin high carbon steel sheet which exhibits resistance to hydrogen embrittlement after heat treatment
US4946516A (en) Process for producing high toughness, high strength steel having excellent resistance to stress corrosion cracking
JP4772496B2 (en) High-strength cold-rolled thin steel sheet excellent in hole expansibility and manufacturing method thereof
US6673171B2 (en) Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
JP2009108398A (en) Forging steel
JPH06271930A (en) Production of high strength and high toughness steel excellent in fatigue property
JPH0250910A (en) Production of steel plate for die having good heat fatigue characteristic
JP2000054107A (en) Steel having improved core toughness in carburized hardened parts
US3423252A (en) Thermomechanical treatment of steel
JPH05320749A (en) Production of ultrahigh strength steel
JP4539447B2 (en) High strength hot rolled steel sheet and method for producing the same
KR102222614B1 (en) Cold-rolled steel sheet having high resistance for hydrogen embrittlement and manufacturing method thereof
JPH039168B2 (en)
JP4828321B2 (en) Induction hardened steel and induction hardened parts with excellent low cycle fatigue properties
JP5747243B2 (en) Warm working steel
US3502514A (en) Method of processing steel
JPH04124217A (en) Production of high strength gear steel excellent in softening property
JPS63161117A (en) Production of hot rolled steel products having high strength and high toughness
JPH0459941A (en) High strength steel having toughness
JPH0598356A (en) Production of tempering-free-type ti-b type high carbon steel sheet
JPH0533301B2 (en)
JPH10183296A (en) Steel material for induction hardening, and its production

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020730