JPS61279620A - Working heat treating method for steel - Google Patents

Working heat treating method for steel

Info

Publication number
JPS61279620A
JPS61279620A JP12032985A JP12032985A JPS61279620A JP S61279620 A JPS61279620 A JP S61279620A JP 12032985 A JP12032985 A JP 12032985A JP 12032985 A JP12032985 A JP 12032985A JP S61279620 A JPS61279620 A JP S61279620A
Authority
JP
Japan
Prior art keywords
steel
working
point
heated
superplasticity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12032985A
Other languages
Japanese (ja)
Inventor
Masaharu Tokizane
時実 正治
Tomohito Iikubo
知人 飯久保
Yukio Ito
伊藤 幸生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP12032985A priority Critical patent/JPS61279620A/en
Publication of JPS61279620A publication Critical patent/JPS61279620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce superplasticity and to obtain a practicable steel by subjecting a hypereutectic steel to heating to a specified temp., rapid cooling, cold working and heating to a specified temp. to form a structure consisting of fine ferrite grains and spheroidal cementite. CONSTITUTION:A hypereutectic steel is heated to a temp. above the A3 point and rapidly cooled to form a structure contg. a large amount of carbide in the matrix as solid soln. such as a martensite or bainite structure. The heated steel may be slowly cooled to form a pearlite structure. The steel is then cold or warm worked at about 100 deg.C-A1 point and heated to a temp. just below the A1 point to form a structure consisting of fine ferrite grains and spheroidal cementite. Thus, superplasticity is provided to a practical hypereutectic steel such as a bearing steel.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、鋼の加工熱処理法に係り、より詳細には、特
に軸受鋼等々の実用鋼に特定の加工熱処理を施すことに
よって、所謂超塑性を発現させ。 その実用化を可能にする鋼の加工熱処理法に関するもの
である。 (従来の技術及び問題点) 超塑性とは、微細結晶粒を有する金属又は合金′!′″
0・4T″(T““1点はJ″oa;m”c”・低背1
iri      。 常に大きな伸びを示す微細結晶粒超塑性現象であ   
  kす、このような特性を示す材料条件としては、単
に結晶粒が微細であるのみではなく、そのような微細結
晶粒組織が高温での変形中で安定であり粗     膳
大化しにくいことが重要な条件の1つと云われてI。 いる、                      
    ・1そのためには、微細2相組織とすることが
好都     “Zn−AQ合金をはじめとする種々の
共晶型或い     ;1合であり、このような組織を
示すものとして、は共析型の非鉄合金が微細結晶粒超塑
性の典型的な合金として早くから取り上げられてきた。 一方、このような微細結晶粒超塑性現象を積極的に塑性
加工に利用した、所謂超塑性加工法が近年注目されるよ
うになり、それに伴って、超塑性     ン、1を示
す安価で、かつ室温で強靭な構造用材料の開     
。 1′ 発が要望されはじめ、これに応えるために最近種   
  ・々の鉄系合金についても微細結晶粒超塑性に関す
る研究が行われてきている。しかし乍ら、かぎる研究も
緒についたばかりであり、実用化の域に達した研究開発
成果をみるには至っていないのが現状である。 特に軸受鋼等の過共析鋼についても以下の如く僅かに実
用化の可能性が報告されているにすぎない。 すなわち、炭素1〜2.1%を含む超高炭素鋼(UHC
−鋼)を極めて微細なフェライト結晶粒と球状セメンタ
イトからなる組織にする一連の加工熱処理法が5IIE
RBYとその共同研究者等によって開発された。これら
の方法によって処理された材料は、温間で超塑性を示す
とともに室温で強度と靭性が優れているので、新しい構
造用材料として注目されている。更にこの加工熱処理法
を。 例えば52100軸受鋼(1%C−1,5%Cr鋼)の
ような幾つかの実用高炭素鋼に適用して超塑性を与え得
ることが既に示されている。 しかし乍ら、上記の従来の加工熱処理法は、第2図に示
す如く、まず、被処理ブロックを1150℃に1時間加
熱後650℃まで空冷し、この温度で等温的に圧延を施
す必要がある。すなわち、lパス当たりの圧下率15%
前後で、各パス間で炉中加熱を行いながら一定温度(6
50℃)での繰り返し圧延(16パス、真否ε=−2,
62)によって行う必要がある。次いで、圧延した板材
には更に同図に示すような熱処理サイクルを加えなげれ
ば、十分な超塑性が得られない。 このように従来の加工熱処理法は厳しい温度管理の下で
の多数回の圧延パス並びに複雑な熱処理サイクルを必須
とするので、コスト高になり、実用化する上で問題があ
った。 (発明の目的) 本発明は、このような状況に鑑み、鉄系合金、    
   )就中、軸受鋼などの実用鋼につき、簡単な工程
で       1微細結晶粒超塑性を発現でき、超塑
性加工法に−IM−“°°15”6〜”@kart:b
=“′)。 目的とするものである。 (発明の構成)                  
     i上記目的を達成するため、本発明者等は、
前記従来の加工熱処理法における温間加工の利用態様及
びその効果に関して再検討を試み、そのために種々の基
礎実験を行った結果、前記従来技術の如く等温的な高い
加工率を要する圧延はせず、比較的簡単な温間加工乃至
は冷間加工を施すことによって容易に微細結晶粒を得る
ことが可能であるとの知見を得た。 すなわち、基礎実験には、本発明の目的に鑑み。 現在状が国で最も広範囲に使用されている実用軸受鋼5
UJ−2(高炭素クロム軸受#I)を供試材に用いた。 その化学成分を第1表に示す。 この供試材の組織は、第3図の顕微鏡写真(5%ナイタ
ル腐蝕)に見られる如く、粒径10〜20μmのフェラ
イト地と0.5〜2.0μmの球状セメンタイト粒から
なっている。 このような球状化焼鈍状態の80m・φの丸棒を   
    [1100℃前後の温度で55X50X100
0mmのビレットに鍛造し、これより約50mm長さの
ブ       10ツクを切り出した。そして、これ
らのブロック       :1o□1@I(a)XL
t(b)4.−オオよ、48□、□□    1施5f
−・                     1す
なわち、まず、ブロックを1150’Cに1時間加熱後
、急冷して炭化物を完全にマトリックスに固溶させた0
次に、これを650℃で温間加工(圧延)を施した。こ
の650℃における温間加工中にマルテンサイト組織は
フェライト+微細セメイタイト組織に変わるが、温間加
工によって析出したセメイタイトはより球状化される。 温間加工後は、2通りの別の処理を施した。第1図(a
)の処理は、温間加工後直接A1点(735℃)直下の
650〜730℃の温度域に加熱して超塑性を行う場合
であり、一方、第1図(b)の処理は、温間加工後、一
旦、セメンタイト+オーステナイト2相域に加熱して油
焼入れした後、A□点直下の650〜730℃の温度域
に加熱して超塑性加工を行う場合である。これらの両者
の処理による違いは次の如くである。 上記650℃での温間加工により、第4図(a)に示す
ように、微細に分布した球状セメンタイト(粒径約0.
2μm程度)と微細結晶粒フェライト(粒径約1μm程
度)からなる組織となっている。 したがって、そのま\第1図(a)の処理の如く超塑性
温度域に加熱して加工してもも、十分な超塑性が得られ
る。 しかし、圧延(温間加工)のま−の状態では、析出して
きたセメイタイトの分布はやへ不均一であるので、これ
を、第1図(b)の如く、オーステナイトとセメンタイ
トの共存する温度域に加熱後油焼入れしたところ、第4
図(b)に示すようにセメイタイト粒はやN成長するも
のの、不均一な分布を示していたセメイタイトは均一な
分布を呈するようになった。すなわち、平均社径0.8
μm程度の微細なフェライト結晶粒と平均粒径0.3μ
I程度の球状セメンタイトからなる均一な組織が得られ
た。 第1図(b)の熱処理サイクルは、このように組織を均
一化するものであるが、更には温間圧延状態で含まれて
いる小傾角粒界を大傾角粒界に転化させ、それによって
超塑性をより向上させることができるものと考えられる
。 事実、以下の引張破断試験及び歪み速度変換試験によっ
ても、超塑性が確認された。 なお、引張試験は、第1図(a)又は(b)に示した前
述の加工熱処理後に第5図の形状・寸法に加工した試験
片を用い、赤外線輻射型イメージ炉を取り付けたインス
トロン型万能試験機により、試験中における試験片の酸
化を避けるために(90:%N、+10%H2)混合ガ
スを流しながら行った。     :■ 引張破断試験 引張延性を測るために、650℃から730℃の間の数
種の温度で、 I X 10−’S−’から8×10−
’S”−’の範囲の初期歪み速度にわたり、一定クロス
ヘッド移動速度で引張破断試験を行った。 破断まで引張変形した試験片のうち、第1図(b)の加
工熱処理法の場合の試験片を第6図に示す。また、これ
らの結果から得た破断伸びを歪み速度の関数として第7
図に示す。なお、第7図の丸印は第1図(a)の加工熱
処理法の場合、第7図の三角印は第1図(b)の加工熱
処理法の場合である。 第7図より、全体の傾向として、歪み速度が小さくなる
程、また変形温度が高くなる程、破断伸びは増加してい
るが、変形温度730℃、歪み速度1.4 x 10−
’ S−’の場合では破断伸びが低下している。このこ
とは、このような高温での長時間にわたる試験中に結晶
粒の成長が進行したことに起因するものと考えられる。 ■ 歪み速度変換試験 試験片を低クロスヘッド移動速度ではゾ定常変形応力に
達するまで引張った後、クロスヘッド移動速度を次々に
変換し、各クロスヘッド移動速度で少量ずつの歪みを加
えていった。このような方法で各変形温度(650,6
65,680,695,710及び730℃)における
歪み速度と流動応力の関係を求めた。なお、歪み速度変
換試験はすべで伸びが30%以下の範囲で行っており・
この範囲では、試験片の局部的なネッキングは起らす、
均−伸びが得られた。 歪み速度変換試験の結果から得た種々の変形温度におけ
る流動応カー歪み速度曲線を第8図に示す。これらの結
果から、歪み速度感受性指数m値は、本実験の範囲の殆
どの領域で0.33(n23、但し、nは応力指数)に
近い値を示している。こ(7)mHo、33.Thいう
値4,6述0UHCII(7)      ’□M□。 ゆイアゎ、わぉ。=o、5工、□、   i□I 比較的低い値である。しかしながら、上記加工熱   
  (グ 処理法1得″。た大5″″破断伸直約400〜8   
   g40%)から、この領域(m二0.33)では
、超塑性流動が本供試材の変形過程で重要な役割を果し
     ;ているものと考えられる。 低温−高歪み速度域にわたる一部の領域では、[□第7
図にみられる如< m = 0 、2 (n = 5 
)を示している。このような高歪み速度域にm値の小さ
な     □)領域が存在することは、従来の超塑性
合金におい     ]□。 でも、またUHC−fiにおいても共通して認めら  
   :1れでおり、このような領域では、塑性流動が
転位クリープによって進行するものと云える。 第1図(a)、(b)に示す溶体化処理の代りに焼鈍処
理を施してパーライト組織とし、これに温間加工を施す
ことも可能である。 この場合には、650℃における温間加工はパーライト
中のセメンタイトを細かく砕いて球状化すると同時にフ
ェライト粒を微細化する過程であり、この間に加工と回
復或いは再結晶が交互に進行すると考えられる。 温間加工後は処理が2通りに分かれる。 第1図(C)は温間加工後直接A□点(735℃)直下
の650〜730℃の温度域に加熱して超塑性加工を行
う場合であり、第1図(d)は温間加工後一旦セメンタ
イト+オーステナイト2相域に加熱して油焼入れした後
、A1点直下の650〜730℃の温度域に加熱して超
塑性加工を行う場合である。 第1図(c)、(d)の差は次の如くである。 650℃での温間加工により、パーライト組織はその殆
どが砕かれ微細に分布した球状セメンタイト(粒径的0
.2μ−程度)と微細結晶粒フェライト(粒径約1μ諺
程度)からなる組織となっている。 したがって、そのまN第1図(c)のように超塑性温度
域に加熱して加工しても十分な超塑性が得られると期待
できる。しかし、圧延のままの状態では、ところどころ
にパーライトを含んだ小域が残存し1組織はや5不均一
であるので、これを第1図(d)の如くオーステナイト
とセメンタイトの共存する温度域に加熱後油焼入れした
方が良い、この処理により、残存するパーライトは消失
し球状セメンタイトも均一に分布する。なお、セメンタ
イトはやへ成長し平均粒径0.3μ−程度になるが  
     )十分微細なまへである。 云うまでもなく、第1図(d)の熱処理サイクルはこの
ようにセメンタイト組織を均一化するだけ ・    
 □ではなく、ii間間圧状状態含まれているフェライ
トの小傾角粒界を大傾角粒界に転化させ、それによって
超塑性をより向上させる。 第1図(0)又は(d)に示した加工熱処理材について
引張試験を行った結果を第9図に示す。第1図(a)、
(b)の加工熱処理材に比べΣとやN伸びの値は低くな
っているが、実験範囲内では超塑性加工に必要な十分な
延性を示している。 全体の傾向としては、歪み速度が小さくなる程。 また変形温度が高くなる程、破断伸びは増加しているが
、変形温度730℃、歪み速度1.4×10−’S″″
iの場合では破断伸びが低下している。 このことは、このような高温での長時間にわたる試験中
に結晶粒の成長が進行した□ことに起因するものと考え
られる。 第1図(a)、(b)に示す温間加工の代りに第1図(
e)、(f)に示すように650℃近傍での焼戻し処理
を施してから冷間加工をする加工熱処理プロセスも可能
である。 更には、第1図(g)、(h)に示す如く溶体化処理の
代りに焼鈍し処理を施し、直接冷間加工を施すことも可
能である。 冷間加工は温間加工に比べ、加工中に蓄積されるエネル
ギーが大きいことにより、冷間加工後直接超塑性温度域
にもっていった時に温間加工の場合よりも、より多くの
場所でフェライトの再結晶及びセメンタイトの析出が生
ずる。したがって、得られる結晶粒の微細化はより進む
と考えられ、より大きな超塑性を期待できる。 更に冷間加工後、γ+Fe5Cの2相域に加熱した場合
にもオーステナイトの析出は温間加工の場合よりも多く
の場所で起るため、より微細なγ+Fe5Gの組織が得
られる。したがって、これを焼入れして超塑性温度域で
加工した場合には、より大きな超塑性が得られると推定
される。 また第1図(g)、(h)の焼鈍し処理は、第1図(e
)、(f)の溶体化+焼戻しを焼鈍しで置き代えたもの
であり、冷間加工の基本的な効果は第1図(e)、(f
)と何ら変わるものではない。 第10図に第1図(e)、(f)の加工熱処理材の引張
試験結果を、第11図に第1図(g)、(h)の加工熱
処理材の引張試験結果を示す6冷間加工を施した場合に
は、冷間加工後一旦2相域へ加熱する場合(三角印)と
直接超塑性加工する場合(丸印)で破断延性に差が認め
られる。また第11図の焼鈍材の方が破断延性は小さめ
となっている。しかし、実験範囲内では超塑性加工に必
要な十分な延性を示している。 全体の傾向としては、歪み速度が小さくなる程また変形
温度が高くなる程、破断伸びは増加しているが、変形温
度730℃、歪み速度1.4X10−’S−1の場合で
は破断伸びが低下している。 このことは、このような高温で長時間にわたる試験中に
結晶粒の成長が進行したことに起因するものと考えられ
る。 以上の基礎実験で得た知見に基づき、更に種々の実用過
共析鋼についても同様の実験を重ねた結果、二Nに本発
明をなしたものである。 すなわち、本発明に係る加工熱処理法は、過共析鋼につ
き、A7点以上の温度に加熱後、急冷乃至徐冷したもの
に温間或いは冷間加工を施し、温間或いは冷間加工後直
接A1点直下の温度に加熱するか、或いは温間或いは冷
間加工後直接セメンタイトとオーステナイトの2相域に
加熱保持後焼入れし、次いでこれをA4点直下の温度に
加熱することにより、微細なフェライト結晶粒と球状セ
メンタイトからなる組織とし、超塑性を発現させ−るこ
とを骨子とするものである。 以下に本発明の詳細な説明する。 本発明では、加工熱処理を施すに当たってまずA、点以
上の温度に加熱する。その後冷却により変態をさせるが
、この冷却方法は、急冷により。 マルテンサイト組織、ベーナイト組織等、炭化物をマト
リックスに多く固溶させた組織にしてもよいし、徐冷(
F、C,等による)することによってパーライト組織と
してもよい、いずれにしても冷却により変態を行わせる
。 次いで温間加工或いは冷間加工を施す。温間加工の場合
には100℃〜A□点の温度で行うのが好ましい。この
温間加工の加工態様は特に制限されず、圧延などで行う
とよい。しかし、従来のように一定温度(650℃)の
下での16パス圧延の如く厳しい条件は必要としない。 また冷間加工の場合には焼戻し処理材或いは焼鈍し処理
材を使用するとよい。 温間或いは冷間加工後の処理としては2つの態様が可能
であり、直接へ〇点直下の温度に加熱する第1方式と、
温間加工後セメンタイトとオーステナイトの2相域に加
熱保持した後焼入れし、これをA0点直下の温度に加熱
する第2方式がある。 いずれの方式においても、A1点直下の温度に加熱して
超塑性加工を行うことが重要であり、これにより超塑性
を発現させることができる。 なお、A□点直下とは、適用鋼種により若干異なるが、
概ねA工点〜A工点−100℃が好ましい。 本発明の加工熱処理法は、既述の軸受鋼は勿論のこと、
工具鋼等々の各種過共析鋼に対して適用できることは云
うまでもない。 (実施例) 以下に本発明の実施例を示す、なお、前述の基礎実験に
係る試験例も本発明の実施例に含まれるものである。 第2表〜第5表に示す化学成分を有する供試材について
、同表に示す加工熱処理方式の条件(但し、各方式の信
号は第1図の各信号の方式に対応する)で処理し、超塑
性加工を実施した。その結果を同表に併記する。 同表かられかるように、第1図(a)、(b)、(c)
、(d)、(e)、(f)、(g)、(h)のいずれの
加工熱処理を採用しても超塑性加工が可能な延性を示し
ている。
(Industrial Application Field) The present invention relates to a method for processing and heat treating steel, and more particularly, by subjecting practical steel such as bearing steel to a specific heat treatment, so-called superplasticity is developed. This paper relates to a steel processing heat treatment method that enables its practical application. (Prior art and problems) Superplasticity refers to metals or alloys with fine crystal grains! ′″
0.4T"(T""1 point is J"oa;m"c"・Low height 1
iri. It is a fine grain superplastic phenomenon that always shows large elongation.
The material conditions for exhibiting such characteristics are not only that the crystal grains are fine, but also that such a fine grain structure is stable during deformation at high temperatures and does not become coarse. It is said to be one of the conditions. There is,
・1 For this purpose, it is advantageous to have a fine two-phase structure. type non-ferrous alloys have long been considered as typical alloys exhibiting fine-grained superplasticity.On the other hand, in recent years, so-called superplastic working methods that actively utilize such fine-grained superplastic phenomena for plastic working have been developed. This has led to the development of inexpensive structural materials that exhibit superplasticity and are strong at room temperature.
. 1' has begun to be requested, and in order to meet this demand, a variety of
・Research on fine grain superplasticity has also been conducted for various iron-based alloys. However, this research has only just begun, and we have yet to see any research and development results that have reached the level of practical application. In particular, there have been only a few reports on the possibility of practical application of hypereutectoid steels such as bearing steels, as described below. That is, ultra-high carbon steel (UHC) containing 1 to 2.1% carbon
5IIE is a series of processing heat treatment methods that transform steel (steel) into a structure consisting of extremely fine ferrite grains and spheroidal cementite.
Developed by RBY and his collaborators. Materials processed by these methods exhibit superplasticity at warm temperatures and have excellent strength and toughness at room temperature, so they are attracting attention as new structural materials. Furthermore, this processing heat treatment method. It has already been shown that it can be applied to some practical high carbon steels such as 52100 bearing steel (1% C-1,5% Cr steel) to impart superplasticity. However, as shown in Figure 2, in the conventional processing heat treatment method described above, it is necessary to first heat the block to be treated at 1150°C for 1 hour, then air-cool it to 650°C, and then roll it isothermally at this temperature. be. In other words, the rolling reduction rate per 1 pass is 15%.
Before and after, heating is performed in the furnace between each pass at a constant temperature (6
Repeated rolling (16 passes, true/false ε=-2,
62). Next, sufficient superplasticity cannot be obtained unless the rolled plate material is further subjected to a heat treatment cycle as shown in the figure. As described above, the conventional processing heat treatment method requires many rolling passes under strict temperature control and a complicated heat treatment cycle, resulting in high costs and problems in practical application. (Object of the invention) In view of the above situation, the present invention has been made to provide iron-based alloys,
) Among practical steels such as bearing steel, 1-fine grain superplasticity can be expressed in a simple process, and it is useful for superplastic processing -IM-"°°15"6~"@kart:b
= “′). It is the object. (Structure of the invention)
i In order to achieve the above object, the inventors:
As a result of reexamining the usage of warm working and its effects in the conventional process heat treatment method, and conducting various basic experiments for this purpose, it was found that rolling, which requires a high isothermal working rate as in the conventional technique, was not used. It has been found that fine crystal grains can be easily obtained by relatively simple warm working or cold working. That is, in view of the purpose of the present invention, basic experiments were conducted. Currently, the practical bearing steel 5 is most widely used in Japan.
UJ-2 (high carbon chromium bearing #I) was used as a test material. Its chemical composition is shown in Table 1. As seen in the micrograph of FIG. 3 (5% nital corrosion), the structure of this sample material consists of a ferrite base with a grain size of 10 to 20 μm and spherical cementite grains of 0.5 to 2.0 μm. A round bar of 80 m φ in the spheroidized annealed state is
[55X50X100 at a temperature around 1100℃
It was forged into a 0 mm billet, and 10 blocks approximately 50 mm in length were cut from it. And these blocks: 1o□1@I(a)XL
t(b)4. -Oh, 48□, □□ 1 serving 5f
-.1 That is, first, the block was heated to 1150'C for 1 hour and then rapidly cooled to completely dissolve the carbide in the matrix.
Next, this was subjected to warm working (rolling) at 650°C. During this warm working at 650°C, the martensitic structure changes to a ferrite + fine semeitite structure, but the semeitite precipitated by the warm working becomes more spheroidal. After warm processing, two different treatments were performed. Figure 1 (a
) is a case in which superplasticity is achieved by heating directly to a temperature range of 650 to 730°C just below the A1 point (735°C) after warm working, while the process in Fig. 1(b) After temporary working, the material is heated once to a cementite+austenite two-phase region and quenched in oil, and then heated to a temperature region of 650 to 730° C. just below the A□ point to perform superplastic working. The differences between these two processes are as follows. As a result of the warm working at 650°C, finely distributed spherical cementite (particle size of approximately 0.05 mm) is produced, as shown in Figure 4(a).
It has a structure consisting of microcrystalline ferrite (grain size of about 1 μm) and fine crystal grain ferrite (grain size of about 1 μm). Therefore, even if the material is heated to a superplastic temperature range and processed as shown in FIG. 1(a), sufficient superplasticity can be obtained. However, in the rolling (warm working) state, the distribution of precipitated semeitite is quite uneven, so it is difficult to control the temperature range where austenite and cementite coexist, as shown in Figure 1 (b). After heating and oil quenching, the fourth
As shown in Figure (b), although the semeitite grains have grown into N, the non-uniform distribution of the semeitite has now become uniform. In other words, the average diameter is 0.8
Fine ferrite crystal grains on the order of μm and average grain size of 0.3μ
A uniform structure consisting of spherical cementite of about I was obtained. The heat treatment cycle shown in Figure 1(b) homogenizes the structure in this way, but it also converts the low-angle grain boundaries included in the warm rolling state into high-angle grain boundaries, thereby It is considered that superplasticity can be further improved. In fact, superplasticity was also confirmed by the following tensile rupture test and strain rate conversion test. The tensile test was conducted using the test piece that had been processed into the shape and dimensions shown in Figure 5 after the above-mentioned processing heat treatment shown in Figure 1 (a) or (b), using an Instron model equipped with an infrared radiation image furnace. The test was carried out using a universal testing machine while flowing a mixed gas (90:% N, +10% H2) to avoid oxidation of the test piece during the test. :■ Tensile rupture test To measure tensile ductility, IX10-'S-' to 8x10-
A tensile rupture test was conducted at a constant crosshead movement speed over an initial strain rate in the range of 'S''-'. Among the specimens that were tensilely deformed to failure, the test in the case of the processing heat treatment method shown in Figure 1(b) The specimen is shown in Figure 6. We also plot the elongation at break obtained from these results as a function of strain rate.
As shown in the figure. Note that the circles in FIG. 7 are for the heat treatment method shown in FIG. 1(a), and the triangle marks in FIG. 7 are for the heat treatment method shown in FIG. 1(b). From Figure 7, the overall trend is that the smaller the strain rate and the higher the deformation temperature, the higher the elongation at break, but at a deformation temperature of 730°C and a strain rate of 1.4 x 10-
In the case of 'S-', the elongation at break is decreased. This is considered to be due to the progress of crystal grain growth during the long-term test at such high temperatures. ■ Strain rate conversion test After the specimen was pulled at a low crosshead movement speed until it reached a steady deformation stress, the crosshead movement speed was changed one after another, and a small amount of strain was added at each crosshead movement speed. . In this way, each deformation temperature (650, 6
The relationship between strain rate and flow stress at temperatures (65, 680, 695, 710 and 730°C) was determined. All strain rate conversion tests were conducted within the range of elongation of 30% or less.
In this range, local necking of the specimen occurs;
Uniform elongation was obtained. FIG. 8 shows flow stress strain rate curves at various deformation temperatures obtained from the results of the strain rate conversion test. From these results, the strain rate sensitivity index m value shows a value close to 0.33 (n23, where n is the stress index) in most of the range of this experiment. This (7) mHo, 33. Th value 4,6 0UHCII (7) '□M□. Yuiaaaa, wow. = o, 5 engineering, □, i□I This is a relatively low value. However, the above processing heat
(Processing method 1 obtained. The diameter was 5".)
g40%), it is considered that superplastic flow plays an important role in the deformation process of this sample material in this region (m2 0.33). In some regions spanning the low temperature-high strain rate region, [□7th
As seen in the figure < m = 0, 2 (n = 5
) is shown. The existence of a region with a small m value □) in such a high strain rate region is the reason for the existence of a region with a small m value in conventional superplastic alloys. However, it is also commonly recognized in UHC-fi.
:1, and it can be said that in such a region, plastic flow progresses due to dislocation creep. Instead of the solution treatment shown in FIGS. 1(a) and 1(b), it is also possible to perform an annealing treatment to obtain a pearlite structure, and then perform warm working on this. In this case, the warm working at 650°C is a process of finely crushing the cementite in the pearlite to make it spheroidal and at the same time refining the ferrite grains, and it is thought that working and recovery or recrystallization proceed alternately during this process. After warm processing, the process is divided into two parts. Figure 1 (C) shows the case where superplastic working is performed by heating directly to a temperature range of 650 to 730 °C just below point A (735 °C) after warm working, and Figure 1 (d) shows the case where superplastic working is performed directly after warm working. After processing, the material is once heated to a cementite + austenite two-phase region and quenched in oil, and then heated to a temperature region of 650 to 730° C. directly below the A1 point to perform superplastic working. The difference between FIGS. 1(c) and 1(d) is as follows. By warm working at 650℃, most of the pearlite structure is crushed and finely distributed spherical cementite (grain size 0
.. It has a structure consisting of microcrystalline ferrite (grain size of about 1μ) and fine crystal grain ferrite (grain size of about 1μ). Therefore, it can be expected that sufficient superplasticity will be obtained even if the material is heated to a superplastic temperature range and processed as shown in FIG. 1(c). However, in the as-rolled state, small areas containing pearlite remain here and there and the microstructure is somewhat non-uniform, so this is changed to a temperature range where austenite and cementite coexist as shown in Figure 1(d). It is better to perform oil quenching after heating. Through this treatment, remaining pearlite disappears and spherical cementite is evenly distributed. Note that cementite grows rapidly and has an average particle size of about 0.3μ.
) remains sufficiently fine. Needless to say, the heat treatment cycle shown in Figure 1(d) only homogenizes the cementite structure in this way.
Instead of □, the low-angle grain boundaries of ferrite contained in the interpressure state are converted into high-angle grain boundaries, thereby further improving superplasticity. FIG. 9 shows the results of a tensile test performed on the processed and heat-treated materials shown in FIG. 1 (0) or (d). Figure 1(a),
Although the values of Σ and N elongation are lower than the heat-treated material in (b), it shows sufficient ductility necessary for superplastic working within the experimental range. The overall trend is that the strain rate decreases. Furthermore, the higher the deformation temperature, the more the elongation at break increases.
In case i, the elongation at break has decreased. This is considered to be due to the fact that the growth of crystal grains progressed during the long test at such high temperatures. Instead of the warm working shown in Figures 1(a) and (b),
As shown in e) and (f), a mechanical heat treatment process in which cold working is performed after tempering at around 650° C. is also possible. Furthermore, as shown in FIGS. 1(g) and 1(h), it is also possible to perform annealing treatment instead of solution treatment and directly perform cold working. Because the energy stored during cold working is larger than that of warm working, ferrite forms in more places when directly brought to the superplastic temperature range after cold working than during warm working. recrystallization and precipitation of cementite occur. Therefore, it is thought that the resulting crystal grains will become more refined, and greater superplasticity can be expected. Furthermore, even when heated to the γ+Fe5C two-phase region after cold working, austenite precipitation occurs in more locations than in warm working, resulting in a finer γ+Fe5G structure. Therefore, it is estimated that greater superplasticity can be obtained if this is quenched and processed in the superplastic temperature range. In addition, the annealing treatments shown in FIGS. 1(g) and (h) are shown in FIG. 1(e).
), (f), solution treatment + tempering is replaced with annealing, and the basic effects of cold working are as shown in Figure 1 (e), (f).
) is no different from that. Figure 10 shows the tensile test results for the processed and heat-treated materials shown in Figures 1 (e) and (f), and Figure 11 shows the tensile test results for the processed and heat-treated materials shown in Figures 1 (g) and (h). When cold working is performed, there is a difference in fracture ductility between when the material is heated to a two-phase region after cold working (triangle mark) and when it is directly subjected to superplastic working (circle mark). Furthermore, the annealed material shown in FIG. 11 has a smaller fracture ductility. However, within the experimental range, it shows sufficient ductility necessary for superplastic processing. The overall trend is that the smaller the strain rate and the higher the deformation temperature, the higher the elongation at break, but when the deformation temperature is 730°C and the strain rate is 1.4X10-'S-1, the elongation at break increases. It is declining. This is considered to be due to the progress of crystal grain growth during the test at such high temperatures and over a long period of time. Based on the knowledge obtained from the above basic experiments, and as a result of repeated similar experiments on various practical hypereutectoid steels, the present invention was developed in 2N. That is, the processing heat treatment method according to the present invention involves heating hypereutectoid steel to a temperature of A7 point or higher, then rapidly cooling or slowly cooling the steel, subjecting it to warm or cold working, and then directly treating the steel after warm or cold working. Fine ferrite can be produced by heating to a temperature just below the A1 point, or directly after warm or cold working, heating and holding in the two-phase region of cementite and austenite, then quenching, and then heating this to a temperature just below the A4 point. The main idea is to create a structure consisting of crystal grains and spherical cementite, and to develop superplasticity. The present invention will be explained in detail below. In the present invention, when carrying out processing heat treatment, the material is first heated to a temperature above point A. After that, the material is transformed by cooling, but this cooling method is by rapid cooling. It is also possible to create a structure in which many carbides are dissolved in the matrix, such as martensitic structure or bainite structure, or by slow cooling (
(F, C, etc.) may be used to form a pearlite structure. In either case, the transformation is caused by cooling. Next, warm working or cold working is performed. In the case of warm working, it is preferable to carry out at a temperature of 100° C. to point A□. The processing mode of this warm working is not particularly limited, and may be performed by rolling or the like. However, strict conditions such as conventional 16-pass rolling at a constant temperature (650° C.) are not required. Further, in the case of cold working, it is preferable to use a tempered material or an annealed material. Two methods are possible for treatment after warm or cold working: the first method is to directly heat the material to a temperature just below the 〇 point;
There is a second method in which after warm working, the material is heated and held in a two-phase region of cementite and austenite, then quenched, and then heated to a temperature just below the A0 point. In either method, it is important to perform superplastic working by heating to a temperature just below the A1 point, and thereby superplasticity can be developed. Note that directly below point A□ differs slightly depending on the applied steel type, but
Generally, it is preferable that the temperature is from the work point A to the work point A -100°C. The processing heat treatment method of the present invention can be applied not only to the bearing steel mentioned above, but also to
Needless to say, it can be applied to various hypereutectoid steels such as tool steel. (Example) Examples of the present invention are shown below, and test examples related to the aforementioned basic experiments are also included in the Examples of the present invention. The test materials having the chemical components shown in Tables 2 to 5 were processed under the conditions of the processing and heat treatment methods shown in the same table (however, the signals of each method correspond to the methods of each signal in Figure 1). , superplastic processing was carried out. The results are also listed in the same table. As can be seen from the same table, Figure 1 (a), (b), (c)
, (d), (e), (f), (g), and (h) show ductility that allows superplastic working.

【以下余白】[Left below]

:。 1)゛ [、、′ □ −ぐ (発明の効果) 以上詳述したように1本発明によれば、過共析鋼につい
ての加工熱処理に特に温間加工を導入するので、加工熱
処理プロセスが簡単になり、実用上有利か条件で軸受鋼
などの各種鋼種の実用過共析鋼に超塑性を発現させるこ
とができるので、その効果は極めて大きい。
:. 1) ゛[,,' □ -g (Effects of the Invention) As detailed above, according to the present invention, warm working is particularly introduced into the working heat treatment of hypereutectoid steel, so that the working heat treatment process is improved. The effect is extremely large because it is simple and allows practical hypereutectoid steel of various types such as bearing steel to exhibit superplasticity under practically advantageous conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(h)は各々本発明に係る加工熱処理の
模式図、 第2図は従来の加工熱処理の模式図。 第3図は本発明の一実施例で用いた供試材の加工熱処理
前のミクロ組織を示す顕微鏡写真、第4図(a)、(b
)は第3図の供試材に本発明の加工熱処理を施したとき
のミクロ組織を示す顕微鏡写真、 第5図は引張試験片の形状と寸法(++uw)を示す平
面図で、(a)はm値測定用試験片、(b)は伸び測定
用試験片を示し、 第6図は破断試験後の試験片の形状を示す°図、第7図
、第9図、第10図及び第11図は各々クロスヘッド速
度と伸びの関係を示す図、第8図は流動路カー歪み速度
曲線を示す図である。
FIGS. 1(a) to (h) are schematic diagrams of processing heat treatment according to the present invention, and FIG. 2 is a schematic diagram of conventional processing heat treatment. FIG. 3 is a micrograph showing the microstructure of the sample material used in an example of the present invention before processing heat treatment, and FIGS. 4(a) and (b)
) is a micrograph showing the microstructure of the sample material in Fig. 3 subjected to the processing heat treatment of the present invention, Fig. 5 is a plan view showing the shape and dimensions (++uw) of the tensile test piece; (a) (b) shows the test piece for elongation measurement; Figure 6 shows the shape of the test piece after the breaking test; Figures 7, 9, 10, and FIG. 11 is a diagram showing the relationship between crosshead speed and elongation, and FIG. 8 is a diagram showing a flow path Kerr strain rate curve.

Claims (1)

【特許請求の範囲】 1 過共析鋼につき、A_3点以上の温度に加熱後、急
冷乃至徐冷したものに冷間又は温間加工を施し、次いで
A_1点直下の温度に加熱して微細なフェライト結晶粒
と球状セメンタイトからなる組織とし、超塑性を発現さ
せることを特徴とする鋼の加工熱処理法。 2 冷間又は温間加工を施した後、セメンタイトとオー
ステナイトの2相域に加熱保持後焼入れする特許請求の
範囲第1項記載の鋼の加工熱処理法。
[Claims] 1. Hypereutectoid steel is heated to a temperature of A_3 point or higher, then rapidly cooled or slowly cooled, subjected to cold or warm working, and then heated to a temperature just below A_1 point to form fine particles. A process heat treatment method for steel, characterized by creating a structure consisting of ferrite crystal grains and spheroidal cementite, and developing superplasticity. 2. The method for processing and heat treating steel according to claim 1, which comprises performing cold or warm working, then heating and holding to a two-phase region of cementite and austenite, and then quenching.
JP12032985A 1985-06-03 1985-06-03 Working heat treating method for steel Pending JPS61279620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12032985A JPS61279620A (en) 1985-06-03 1985-06-03 Working heat treating method for steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12032985A JPS61279620A (en) 1985-06-03 1985-06-03 Working heat treating method for steel

Publications (1)

Publication Number Publication Date
JPS61279620A true JPS61279620A (en) 1986-12-10

Family

ID=14783561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12032985A Pending JPS61279620A (en) 1985-06-03 1985-06-03 Working heat treating method for steel

Country Status (1)

Country Link
JP (1) JPS61279620A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648223A (en) * 1987-07-01 1989-01-12 Kawasaki Steel Co Production of superplastic hypereutectic steel products
GB2315525A (en) * 1996-07-19 1998-02-04 Ntn Toyo Bearing Co Ltd Rolling bearing
JP2006225735A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Non-heat treated steel material and producing method therefor
JP2006250294A (en) * 2005-03-11 2006-09-21 Ntn Corp Rolling bearing

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS648223A (en) * 1987-07-01 1989-01-12 Kawasaki Steel Co Production of superplastic hypereutectic steel products
GB2315525A (en) * 1996-07-19 1998-02-04 Ntn Toyo Bearing Co Ltd Rolling bearing
US6048414A (en) * 1996-07-19 2000-04-11 Ntn Corporation Rolling bearings and methods of producing the same
GB2315525B (en) * 1996-07-19 2000-08-23 Ntn Toyo Bearing Co Ltd Rolling type bearings and methods of producing the same
JP2006225735A (en) * 2005-02-18 2006-08-31 Toyota Motor Corp Non-heat treated steel material and producing method therefor
JP4543955B2 (en) * 2005-02-18 2010-09-15 トヨタ自動車株式会社 Non-tempered steel and manufacturing method thereof
JP2006250294A (en) * 2005-03-11 2006-09-21 Ntn Corp Rolling bearing
JP4566036B2 (en) * 2005-03-11 2010-10-20 Ntn株式会社 Rolling bearing

Similar Documents

Publication Publication Date Title
Saha et al. Effect of cyclic heat treatment on microstructure and mechanical properties of 0.6 wt% carbon steel
Ahmad et al. Effect of microvoid formation on the tensile properties of dual-phase steel
Rasouli et al. Effect of cooling rate on the microstructure and mechanical properties of microalloyed forging steel
Cardoso et al. Effects of deep cryogenic treatment on microstructure, impact toughness and wear resistance of an AISI D6 tool steel
CN109609848A (en) High tough antifatigue nano-scaled precipitate enhancing Ma-Austria&#39;s Multiphase Steel and preparation method thereof
JP2002285278A (en) High strength and high ductility steel sheet with hyperfine crystal grain structure obtainable by subjecting plain low carbon steel to low strain working and annealing and production method therefor
US4457789A (en) Process for annealing steels
Wu et al. Effect of initial spheroidizing microstructure after quenching and tempering on wear and contact fatigue properties of GCr15 bearing steel
Kayali et al. The development of fine structure superplasticity in cast ultrahigh carbon steels through thermal cycling
Wang et al. Simultaneous increase of ultimate tensile strength and uniform elongation of 30Si2MnCrMoVE ultra-high strength steel by hot deformation direct quenching and partitioning
JPS61279620A (en) Working heat treating method for steel
Wadsworth et al. The development of ultrafine, superplastic structures in white cast irons
Woźniak et al. Studies on the Mechanical Properties of C45 Steel with Martensitic Structure after a High Tempering Process
Yu et al. Effect of deep tempering on microstructure and mechanical properties of G13Cr4Mo4Ni4V steel
Kaspa et al. Austenite grain growth during hot forging of medium carbon engineering steels with or without V–Ti microalloying
Radnia et al. Intercritical and subcritical spheroidization of 10B38 cold heading steel
Offor et al. Effects of Various Quenching Media on the Mechanical Properties of Intercritically Annealed 0.15 wt% C–0.43 wt% Mn Steel
US3615925A (en) Heat-treatment of steels
Eghbali et al. Effect of hot torsion parameters on development of ultrafine ferrite grains in microalloyed steel
JP2707096B2 (en) Direct softening heat treatment of high carbon steel
Xu et al. Effect of quenching temperature on the austenite stability and mechanical properties of high-strength air-cooled TRIP steel prepared with hot-rolled C-Si-Mn sheets
Νάνας Study of intercritical annealing of DP1000 steel
Schlegel Heat Treatment of Steel
Zhang et al. Effect of ausforming on the martensite microstructure of 20CrMnTiH steel
Singh et al. Enhancing Steel Properties through Microstructure Design Using Cyclic Heat Treatment: A Comprehensive Review