JPS58200960A - Refrigeration system utilizing solar energy - Google Patents

Refrigeration system utilizing solar energy

Info

Publication number
JPS58200960A
JPS58200960A JP57084440A JP8444082A JPS58200960A JP S58200960 A JPS58200960 A JP S58200960A JP 57084440 A JP57084440 A JP 57084440A JP 8444082 A JP8444082 A JP 8444082A JP S58200960 A JPS58200960 A JP S58200960A
Authority
JP
Japan
Prior art keywords
compound
solar
generator
energy
sunlight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57084440A
Other languages
Japanese (ja)
Other versions
JPH0132426B2 (en
Inventor
Manabu Ishizuka
学 石塚
Hiroshi Nakano
中野 弘
Noburu Fujisawa
宣 藤沢
Shoichi Suzuki
鈴木 昭一
Kozo Kimura
興造 木村
Yoshito Tanaka
義人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Takenaka Komuten Co Ltd
Original Assignee
Kawamura Institute of Chemical Research
Takenaka Komuten Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Takenaka Komuten Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP57084440A priority Critical patent/JPS58200960A/en
Publication of JPS58200960A publication Critical patent/JPS58200960A/en
Publication of JPH0132426B2 publication Critical patent/JPH0132426B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To utilize even optical energy in a shortwave region of solar rays effectively, and to store energy for a prolonged term by heating a generator for an absorption type refrigerator by an optical-energy storing compound in a solar energy utilizing device. CONSTITUTION:Hot water mainly heated by the irradiation of long-wave rays in solar rays by a solar-ray collector 10 is stored in a hot-water storage tank 99 through a piping 86, and consumed through a hot-water supply piping 90 as required. On the other hand, a compound circulating collector section 16 receives shortwave rays in solar rays, and changes the optical-energy storing compound into a Q body (quadricyclene). The Q body is stored in a Q-body storage tank 38 through a feed pipe 36, but energy can be conserved for a prolonged term because the Q body does not return singly to an N body (norbornadiene). The Q body in the storage tank 38 is forwarded to the generator 44 for the absorption type refrigerator 12 in a feed piping 40 by a pump 42 as necessary, the generator 44 is heated by the heat of reaction through which the Q body returns to the N body by a catalyst device 54 in the generator, and a cooling piping 76 is cooled through a condenser 60 and an evaporator 56.

Description

【発明の詳細な説明】 本発明は太陽光エネルギを集光して冷房に用いる太陽エ
ネルギ利用冷房装置に関するっ従来の一般的な冷房装置
は圧縮冷凍機を用いているため、太14エネルギで冷房
を行なうためには、太陽エネルギで加熱された温水を電
気等の別のエネルギにf換する必要がある。これに対し
て、吸収式冷凍機を用いる場合には、太陽光で加熱され
た温水を発生器へ直接導き、冷媒ガスを高温とすること
により冷房が可イしである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar energy cooling system that condenses solar energy and uses it for cooling. Conventional general cooling systems use compression refrigerators; In order to do this, it is necessary to convert hot water heated by solar energy into another energy such as electricity. On the other hand, when using an absorption refrigerator, hot water heated by sunlight is directly guided to a generator, and cooling is possible by heating the refrigerant gas to a high temperature.

しかし蓄熱材が水であるため、蓄熱材貯湯槽からの放熱
が大きく、長期間の蓄熱は不可能でめる。
However, since the heat storage material is water, a large amount of heat is radiated from the heat storage material hot water storage tank, making it impossible to store heat for a long period of time.

また太陽光コレクタで温水を加熱する場合には、太陽光
のうち長波長域の光エネルギが比較的効率良く渠熱可能
であり、短波長域(0,17〜0.35μm)の光エネ
ルギはあまり効率良く巣熱されて2らず、限りれた効率
の太陽エネルギ利用手段となっているう 不発明は上記事実χ考慮し、太陽光の甲刀1ら広い波長
域に戻って光エネルギを利用町推であり、必要に応じて
長期間のエネルギ保存が可能な太陽エネルギ利用冷房装
置を得ることが目的である。
In addition, when heating hot water with a solar collector, the light energy in the long wavelength range of sunlight can be channeled relatively efficiently, and the light energy in the short wavelength range (0.17 to 0.35 μm) can be heated relatively efficiently. Taking into consideration the above fact, the inventive method of using solar energy with limited efficiency as it is not very efficient in generating heat, is to return light energy to a wide wavelength range from the sunlight. The purpose of this project is to obtain a solar energy cooling system that can store energy for a long period of time if necessary.

本発明に係る太陽エネルギ利用装置は、主として短波長
域の光エネルギにより高歪可能化合物を高歪化合物に変
化させる光エネルギ貯蔵化合物循環太陽光変換手段から
高歪化合物を吸収式冷凍機の発生器へ導き、この供給配
管に設けた触媒装置で高歪化合物に触媒熱反応を生じさ
せて発生器を加熱し、冷媒を気化させることにより短波
長域の光エネルギを利用可能としている。
The solar energy utilization device according to the present invention converts a highly strainable compound into a high strain compound mainly by using light energy in a short wavelength range. A catalyst device installed in this supply pipe causes a catalytic thermal reaction in the highly strained compound, heats the generator, and vaporizes the refrigerant, making it possible to utilize light energy in the short wavelength range.

以下本発明の実施例を図面に従い説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図に示される如く本実施例に係る太陽エネルギ利用
冷房装置では太陽光コレクタ10で集光した太陽エネル
ギを吸収式冷凍機12へ導いて冷房を行なうようになっ
ている。この太陽光コレクタ10は吸放熱材循環太陽光
加熱手段を兼用した水循環太陽光コレクタ部14と光エ
ネルギ貯蔵化合物循環太陽光変換′手段を兼用したコレ
クタ部16とを有している。(以下それぞれ水循環コレ
クタ部、化合物循環コレクタ部と称する) この太陽光コレクタ10は各棟の形状が考えられるが、
この実施例では一例として第2図に示される具体的構造
が用いられている。この太陽光コレクタlOは上端が開
放し九箱体18の開口部へ平凸レンズを構成する筒体2
0が固定されている。
As shown in FIG. 1, in the solar energy cooling system according to this embodiment, solar energy collected by a solar collector 10 is guided to an absorption refrigerator 12 for cooling. This solar light collector 10 has a water circulation solar collector section 14 which also serves as a heat absorbing and dissipating material circulating sunlight heating means, and a collector section 16 which also serves as a light energy storage compound circulating sunlight converting means. (Hereinafter, they will be referred to as a water circulation collector section and a compound circulation collector section, respectively.) This solar collector 10 can have the shape of each building, but
In this embodiment, a specific structure shown in FIG. 2 is used as an example. This sunlight collector lO has a cylindrical body 2 whose upper end is open and which forms a plano-convex lens toward the opening of the nine-box body 18.
0 is fixed.

この筒体20の平凸断面空間22は第1図の化合物循環
コレクタ部16に相当し、その長手方向端部(第2図紙
面直角方向端部)が隣接する平凸断面空間22の長手方
向端部と連通されている。これによって複数個の平凸断
面空間22が4に直列に連通されている。この平凸断面
空間22には尤エネルギ貯蔵化合物が流通されるように
なっており、矢印入方向に照射される太陽光のうち鉦と
して短波艇域の光を吸収して高歪化&樽に変化するよう
になっている。
The plano-convex cross-sectional space 22 of this cylindrical body 20 corresponds to the compound circulation collector section 16 in FIG. communicated with the end. As a result, a plurality of plano-convex cross-sectional spaces 22 are connected to each other in series. An energy storage compound is distributed in this plano-convex cross-sectional space 22, and it absorbs light in the short wave boat range as a gong out of the sunlight irradiated in the direction of the arrow, and becomes highly distorted and becomes a barrel. It's about to change.

箱体18の内部には筒体20を通過する太陽光の集光部
に吸熱管24が配置されて8g1図の水循環コレクタ部
14に相当している。従って吸熱管24は太陽光のうち
平凸断面空間22内の九エネルギ貯蔵化合物で吸収され
ない長波援尤な主として吸光するようになっている。吸
熱管241=は集光部−の経時変化に備えて補助吸光板
26が設けられている。これらの吸熱管24及び補助吸
光板26はその六向が選択吸収面とされていること力五
遣ましい。また箱体18は断熱材等を付設して保温性を
向上するようになっている。
Inside the box body 18, a heat absorption tube 24 is arranged at a condensing part of sunlight passing through the cylinder body 20, and corresponds to the water circulation collector part 14 in Fig. 8g1. Therefore, the heat absorbing tube 24 absorbs mainly the long waves of sunlight that are not absorbed by the nine energy storage compounds in the plano-convex section space 22. The heat absorption tube 241 is provided with an auxiliary light absorption plate 26 in preparation for changes in the light condensing portion over time. It is preferable that these heat absorbing tubes 24 and the auxiliary light absorbing plate 26 have six directions as selective absorption surfaces. Further, the box body 18 is provided with a heat insulating material or the like to improve heat retention.

循環パイプ34内を流れる光エネルギ貯蔵化合物として
本実施例では第3図に示されるノルボルナジェン(以下
N体と称する)が用いられている。
In this embodiment, norbornadiene (hereinafter referred to as N-form) shown in FIG. 3 is used as the optical energy storage compound flowing through the circulation pipe 34.

このN体は常温で流動性を有する高歪可能化合物でおり
、紫外縁領域の短波兼光を照射すると光異性化反応によ
り高歪化合物であるクワドリシクレン(以下9体と杯す
る)に変化する性質を有しており、このQ体は触媒(コ
ノ(ルトテトラフェニルボリフイリン一体やコノくルト
フタロシアニ/錯体)内を通過させると、触媒熱反応を
生じてN体の状態に戻る性質がある。この時;二22 
Kcm4/MoL =240 caL/l 模震の熱発
生を伴う。従って太陽光のうち王として短tIL長光を
蓄積し、必!!(=応じて熱エネルギとして放出可能で
ある。
This N-form is a highly strainable compound that has fluidity at room temperature, and when irradiated with short wave light in the ultraviolet region, it changes into a highly strained compound quadricyclene (hereinafter referred to as 9-forms) through a photoisomerization reaction. When this Q-form is passed through a catalyst (cono(rutotetraphenylborifylline monolithic or cono-rutophthalocyani/complex)), it has the property of causing a catalytic thermal reaction and returning to the N-form state. At this time; 222
Kcm4/MoL = 240 caL/l Accompanied by simulated earthquake heat generation. Therefore, it is necessary to accumulate short tIL and long light as the king of sunlight! ! (= Can be released as thermal energy depending on the situation.

第1図に基づいて太陽光コレクタ10と吸収式冷凍8A
12との間の配管を説明する。化酋吻循鷹コレクタs1
6の一端は供給船″f36に介して9体貯留槽38へ接
続されて化合物循環コレクタ部16で生じた9体を貯留
するようになっている。
Based on Fig. 1, solar collector 10 and absorption refrigeration 8A
The piping between 12 and 12 will be explained. Kashu proboscis collector s1
One end of 6 is connected to a 9-body storage tank 38 via a supply ship "f36" to store 9 bodies produced in the compound circulation collector section 16.

この9体貯留槽38の出口部は供給船″w140、ポン
プ42を介して吸収式冷凍機12の発生器44へ接続さ
れている。
The outlet of this 9-body storage tank 38 is connected to the generator 44 of the absorption refrigerator 12 via the supply vessel "w140" and a pump 42.

この吸収式冷凍機12は第4図に示される如く発生器4
48分で供給配管40がU字状に屈曲されて戻り配管4
6の一端に接続されている。この戻り配f46.の他端
は第1図に示される如くN体貯貿槽4Bへ接続されてお
り、N体貯城槽48の出口部が戻り配管50及びポンプ
52をブ「して化合物循環コレクタ部16の他端へ接続
されている。
This absorption refrigerator 12 has a generator 4 as shown in FIG.
In 48 minutes, the supply pipe 40 is bent into a U-shape and the return pipe 4
6. This return layout f46. The other end is connected to the N-body storage tank 4B as shown in FIG. connected to the other end.

吸収式冷凍機12の発生644で反転される供給船−#
40には内周部に触媒fjtf54が設けられている。
Supply ship reversed at occurrence 644 of absorption chiller 12-#
40 is provided with a catalyst fjtf54 on its inner circumference.

従って供給配置140内を送られるQ体rよこの触媒5
4と反応して8体に復帰すると共に醍媒熱反応を生じて
発生器44を加熱するようになっている。
Therefore, the catalyst 5 across the Q-body r fed in the supply arrangement 140
It reacts with 4 and returns to 8, and at the same time generates a thermothermal reaction and heats the generator 44.

吸収式冷凍機12a発生器44の他に蒸発器56、吸収
器58及び凝縮器60が設けられている。蒸発器56と
吸収器58とは同一室内に配設されており、冷媒(例え
ばアンモニアガス)は吸収器58で希4溶$62(例え
ばアンモニア水)へ溶解するようになっており、冷媒ガ
スを吸収した1lll溶液62はポンプ64、配管66
を介して発生器44へ接続されている。発生器44へ供
給された濃溶液は供給配管40で加熱されること(′−
より冷媒ガスを発生して希薄化されるようになっており
、凝縮器60の凝#液70は配管72で蒸発器56へ接
続されている。また吸収器58及び凝縮器60には冷却
水配管74が、蒸発器56(=は冷却対象でるる冷水配
管76が設けられている。さらに配管66には濃溶液6
8から希薄溶g62へ戻る配管によって熱交換器78が
設けられ、発生器44の希薄溶液68の一部はオーバー
フロー管80によって吸収器58と連通されているう 従ってこの吸収式冷凍機12では、蒸発器56で発生し
た冷媒ガスが冷却水配管74で冷却されながら希4尋液
に吸収され、その結果濃溶液62が形成され、それがポ
ンプ64、配管66で送られ、熱交換器78で加熱され
た後(二発生器44へ至る。この発生器44では供給配
管4Gで更に加熱されて冷媒ガスとなり凝縮器60へ至
る。この凝縮器60では冷却水配管74で冷却されて凝
縮し凝縮液70となる。この凝縮液70は蒸発器56で
蒸発して冷水配管76から蒸発熱を奪いこの冷却された
冷水配管76内の冷水により冷房を行なうことができる
In addition to the generator 44 of the absorption refrigerator 12a, an evaporator 56, an absorber 58, and a condenser 60 are provided. The evaporator 56 and the absorber 58 are arranged in the same room, and the refrigerant (for example, ammonia gas) is dissolved in the dilute solution (for example, aqueous ammonia) in the absorber 58, and the refrigerant gas The 1llll solution 62 that has absorbed the
is connected to the generator 44 via. The concentrated solution supplied to the generator 44 is heated in the supply pipe 40 ('-
The condensed liquid 70 in the condenser 60 is connected to the evaporator 56 through a pipe 72. Further, the absorber 58 and the condenser 60 are provided with a cooling water pipe 74, and the evaporator 56 (= is a cold water pipe 76 that is to be cooled).
A heat exchanger 78 is provided by a pipe returning from the dilute solution 62 from the generator 44 to the dilute solution g62, and a portion of the dilute solution 68 in the generator 44 is communicated with the absorber 58 by an overflow pipe 80. Therefore, in this absorption refrigerator 12, The refrigerant gas generated in the evaporator 56 is absorbed by the dilute liquid while being cooled by the cooling water pipe 74, and as a result, a concentrated solution 62 is formed, which is sent by the pump 64 and the pipe 66, and is then absorbed by the heat exchanger 78. After being heated, it reaches the second generator 44. In this generator 44, it is further heated in the supply pipe 4G and becomes a refrigerant gas, and reaches the condenser 60. In this condenser 60, it is cooled in the cooling water pipe 74 and condensed. The condensed liquid 70 is evaporated in the evaporator 56 to remove heat of evaporation from the cold water pipe 76, and the cooled water in the cold water pipe 76 can perform air conditioning.

この冷房能力は冷水配管76に設けられた温度上/す8
2とこの温度センサ82によって制御される供給配管4
0の制@9f”84によって自動制御される。
This cooling capacity is determined by the temperature
2 and the supply pipe 4 controlled by this temperature sensor 82
Automatically controlled by 0 control@9f"84.

第1図に示されるクロく水循環コレクタ部14からの供
給配管86は貯湯槽88へ妥続き几ている。
A supply pipe 86 from the black water circulation collector section 14 shown in FIG. 1 continues to a hot water storage tank 88.

この貯湯4W88は水循環ゴレクタ部14で加熱された
吸牧熱材である漏水を貯留し、必妥に応じて給湯配管9
0から取り出すようになっている、この貯湯槽88から
給湯配fi9Qで消費される水1にな禰なうために給水
源へ接続される給水配管92及び貯441188と水循
環コレクタ部14の入口とを接続する供給船[94が設
けられており、cの配f中1=ポンプ96が介在されて
いる。
This hot water storage 4W88 stores leakage water, which is a heat-absorbing material heated in the water circulation gorector part 14, and uses the hot water supply pipe 9 as necessary.
A water supply pipe 92 and a storage 441188 connected to a water supply source and an inlet of the water circulation collector section 14 are connected to the water supply source to supply the water 1 consumed in the hot water distribution system 9Q from this hot water storage tank 88. A supply vessel [94 is provided to connect the 1 and 2 pumps 94 and 1=pump 96 is interposed in the distribution of c.

供給配管86には分岐配管98が連通されており、この
分牡配′#98は熱交換′a1001k介して尿り配室
102へ接続されており、この戻り配管102は供給配
管94を介して水循環コレクタ部14へ尿る工うになっ
ている。この熱交換器100は水循環コレクタ部14か
らの温水で配管40内の9体を加熱するようになってs
’ り % これによって発生器44における発熱が東
に高温となるように配慮されている。
A branch pipe 98 is connected to the supply pipe 86, and this branch pipe 98 is connected to the urine distribution chamber 102 via the heat exchanger 1001k, and this return pipe 102 is connected to the urine distribution chamber 102 via the supply pipe 94. Urine is drained into the water circulation collector section 14. This heat exchanger 100 heats nine bodies in the piping 40 with hot water from the water circulation collector section 14.
By this, consideration is given so that the heat generated in the generator 44 becomes high in the east.

前記貯#慴88には9体貯留槽38の供給配管40から
の分岐配f41がポンプ43を介して挿入されて2す、
供給配管40の場合と同様に貯湯槽88内で触媒装置に
より9体を8体へOi帰させるpB媒熟熱反応生じさせ
、貯湯槽8B内の温水を所粛諷度まで加熱できるように
なっている。発生したN体は戻り配常47で8体貯留槽
48へ失される。
A branch pipe 41 from the supply pipe 40 of the 9-body storage tank 38 is inserted into the storage tank 88 via a pump 43.
As in the case of the supply pipe 40, a catalyst device causes a pB medium maturation heat reaction that returns Oi from 9 bodies to 8 bodies in the hot water storage tank 88, making it possible to heat the hot water in the hot water storage tank 8B to the desired temperature. ing. The generated N bodies are returned to the 8 body storage tank 48 in a return process 47.

次に本実施例の作動を説明する。Next, the operation of this embodiment will be explained.

第2図(二示さnる人湯元コレクタ10で太陽光のうち
王として長波長光の照射により加熱された温水は配管8
6乞通って貯湯槽88で蓄積さr1必要に応じて@湯配
管90を通って消費さnる。
Figure 2 (shown in Figure 2) Hot water heated by irradiation with long-wavelength light as the main source of sunlight in the hot water source collector 10 is piped 8
The water is accumulated in the hot water storage tank 88 and consumed as needed through the hot water piping 90.

一方化合物傭壇コレクタ部16は太陽光のうち短波長光
を受けて光エネルギ貯蔵化合物を9体に変化させる。こ
の9体は供給配管36を通って9体貯留槽38へ#遺さ
れるが9体は単独ではN体に復帰しないのでエネルギの
長期保存が可能である。この9体貯留1’l!38内の
9体は必要に応じてポンプ42で供給配管40内を吸収
式冷凍機12の発生器44へと送られる発生器44では
触媒装置54により9体がN体へ復4する触媒反応が生
じるので発生器44が加熱され濃溶液から冷媒が分離し
て気化する。この気化した冷媒は凝縮器60で冷却さn
て礎@液70となり、蒸発器56で薫元して気化熱によ
り冷水配管76を冷却する。この冷水によって冷房が行
なわれる。ここで、発生644へ至る供給配f40内の
9体は熱交換器lOOで、分岐配−#98の温水熱のた
めに加熱されているので、発生器44における発熱効率
が高くなっている。
On the other hand, the compound collector unit 16 receives short wavelength light of sunlight and changes the light energy storage compounds into nine bodies. These 9 bodies pass through the supply pipe 36 and are left in the 9 body storage tank 38, but since the 9 bodies do not return to N bodies by themselves, energy can be stored for a long time. This 9 body storage 1'l! The 9 bodies in 38 are sent to the generator 44 of the absorption refrigerator 12 through the supply pipe 40 by a pump 42 as needed.In the generator 44, a catalytic reaction occurs in which the 9 bodies are converted to N bodies by a catalytic device 54. As a result, the generator 44 is heated and the refrigerant is separated from the concentrated solution and vaporized. This vaporized refrigerant is cooled in a condenser 60.
The liquid becomes a base liquid 70, which is evaporated in the evaporator 56 and cools the cold water pipe 76 by the heat of vaporization. This cold water performs air conditioning. Here, the nine bodies in the supply distribution f40 leading to the generator 644 are heated by the heat exchanger lOO due to the hot water heat of the branch distribution #98, so the heat generation efficiency in the generator 44 is high.

発生器44のF!!I媒装置54で発生したN体は戻り
配管46を通ってN体貯貿槽48内へ蓄償される。この
N体は必要に応じ°Cポンプ52で戻り配電50内を化
&吻循鷹コレクタ部16の入口へと送られる。
F of generator 44! ! The N bodies generated in the I medium device 54 pass through the return pipe 46 and are stored in the N body storage tank 48 . This N body is sent to the inlet of the oxidation & proboscis collector section 16 through the return power distribution 50 by the °C pump 52 as required.

この装#を用いて暖#を行なうには貯湯槽88内の温水
を直接暖房機へ用いることも可能であり、また吸収式冷
凍機12の冷却水配管74内へ温水を通せばこの温水が
吸収器58及び凝縮器60で加熱されるのでこれによっ
ても暖房が可能である。
To perform heating using this system, it is possible to use the hot water in the hot water storage tank 88 directly to the heater, or by passing hot water into the cooling water pipe 74 of the absorption chiller 12, this hot water can be used. Since it is heated by the absorber 58 and the condenser 60, heating is also possible using this.

次に第5図には本発明の第2実施渕が示されている。こ
の実施例では太陽光コレクタと化合物循環変換手段とを
分醸し、太陽光コレクタ110へ光エネルギ貯蔵化合物
を供給しない構造となっている。卯ち太1−光コレクタ
110ではレンズ112で複数体の光ファイバ114の
一端へ太陽光を集光し、これらの光ファイバ114を束
ねたバンドル光フアイバケーブル116を化合物循環変
換手段であるN−Q置換槽118へ導き、この変換槽1
18内のN体ftQ体へ変化させるようになっている。
Next, FIG. 5 shows a second embodiment of the present invention. This embodiment has a structure in which the solar collector 110 and the compound circulation conversion means are separated, and no light energy storage compound is supplied to the solar collector 110. Uchita 1 - In the optical collector 110, sunlight is focused onto one end of a plurality of optical fibers 114 using a lens 112, and a bundle optical fiber cable 116, which is a bundle of these optical fibers 114, is connected to N- which is a compound circulation conversion means. Q conversion tank 1
It is designed to change to N-body ftQ-body within 18.

このN−Q置換槽118は9体貯留槽120と9体配管
122及びN体配管124で連通されており、N体配管
124の中間部にポンプ126が設けられている。これ
によってQ体貯留fi120内のN体はポンプ126で
N−Q変換憎118へ送られ、N−Q変換槽118内で
発生したQ体eよ貯@@120へ戻されるようになって
いる。
This N-Q displacement tank 118 is communicated with a 9-body storage tank 120 through a 9-body pipe 122 and an N-body pipe 124, and a pump 126 is provided in the middle of the N-body pipe 124. As a result, the N body in the Q body storage fi120 is sent to the N-Q conversion tank 118 by the pump 126, and the Q body e generated in the N-Q conversion tank 118 is returned to the storage@@120. .

またこの9体貯留槽120はN、タンク128と連通さ
れて輩素ガスによって9体が3〜44/cjGに加圧さ
れている。このように不活性ガスで加圧され九Q体の触
媒反応発生温度は120〜125℃に同上する。またこ
のQ体貯槽t′i整流板による層流型貯槽として貯留効
率が向上されていboこのQ体貯vI櫂120は中間部
にポンプ130を有した供帖配曾132及び尿り配管1
34で吸収式冷凍機12へと連通されている。
Further, this nine-body storage tank 120 is communicated with a nitrogen tank 128, and the nine bodies are pressurized to 3 to 44/cjG by nitrogen gas. The temperature at which the catalytic reaction occurs in the 9Q body pressurized with an inert gas is 120 to 125°C. In addition, storage efficiency has been improved as a laminar flow type storage tank using the Q body storage tank t'i rectifying plate. This Q body storage vI paddle 120 has a feeding pipe 132 and a urine pipe 1 with a pump 130 in the middle part.
34 to the absorption refrigerator 12.

第6図に示される妬くこの実施例の吸収式冷凍機は#配
実厖例の発生器が第2発生器136とされ、ここに51
11発生6138が設けられた二重効用型となっている
。この第1発生器138は溶液ポンプ64からの濃溶液
が配管139を介して供給されるようになっており、U
字型に折抄返されて戻り配f134と連通される供給配
管132に触媒装置140が設けられて高圧触媒熱交換
器となっている。この第1発生8a13Bで生ずる冷媒
ガスは配管142を介して凝縮器60へ連通されている
。また@1発生器138の半一溶液が配管144によっ
て熱交換器146へ導かれ、配管139内のa溶液を加
熱するようになっている。
In the absorption refrigerator of this embodiment shown in FIG.
It is a dual effect type in which 11 generation 6138 is provided. This first generator 138 is supplied with a concentrated solution from the solution pump 64 via a pipe 139, and
A catalyst device 140 is provided in the supply pipe 132 which is folded back into a letter shape and communicates with the return pipe f134, thereby forming a high-pressure catalytic heat exchanger. The refrigerant gas generated in this first generation 8a13B is communicated to the condenser 60 via a pipe 142. Further, the half solution from the @1 generator 138 is led to the heat exchanger 146 through a pipe 144, and the a solution in the pipe 139 is heated.

従ってこの実施例では圧力上昇され九Q体が触m装置1
40へ至り、偽温度の触媒熱反応を生じるので、゛前記
実施例と比較して更に高効率の冷房な行なうことができ
るようになっている。
Therefore, in this embodiment, the pressure is increased and the nine Q bodies are exposed to the contact device 1.
40, and a pseudo-temperature catalytic thermal reaction occurs, making it possible to achieve even more efficient cooling than in the previous embodiment.

またこの実施例では太陽光コレクタ110がパンドル元
ファイバケーブル116を介してN −Q変換4118
へ接続さ几る構造であるため、太陽光コレクタ110を
産物屋上へ取り付け、光エネルギ貯衰化合勿の循環路/
i謹吻の地下等へ収容することかでさ、光エネルギ貯蔵
化合物が可燃性である場合にも安全な配置とすることが
できる。
Further, in this embodiment, the solar collector 110 performs N-Q conversion 4118 via the bundle source fiber cable 116.
Since it has a structure that connects to
By housing the light energy storage compound underground, for example, it can be a safe arrangement even if the light energy storage compound is flammable.

第7図は$2実施例の装置を用いて暖房を行なう場合の
配管である。この場合には吸収式冷凍機の冷却水配管7
4へ」水を供給し、吸収器58、凝縮器60でさらに加
熱された高温水を暖房に用いるようになっている。
FIG. 7 shows piping when heating is performed using the apparatus of the $2 embodiment. In this case, the cooling water pipe 7 of the absorption chiller
4, and the high-temperature water that is further heated in an absorber 58 and a condenser 60 is used for heating.

なおこの実施例の駆動方式は、9体貯留槽120内のN
体が全てQ体に変換された後にこのQ体を冷凍機12へ
送るバツヂ処理とすることができるが、Q本貯留漕内を
隔壁でQ体貯留部とN体貯留部に分け、Q体貯留部を配
管122,132と、N体貯留部を配管124,134
と連通してもよい。この場合の隔壁は貯留するN体、Q
体の量に応じて移動する構成とすることができる。さら
にこの9央!4例のQ本貯留哨120(グ複数個設けて
それぞれ太陽光コレクタ110と連結可能とすると共に
一個の貯留槽から冷凍機12へQ体を送りN体を他の貯
留槽へ戻すようにしてもよい。
Note that the drive method of this embodiment is based on the N in the nine-body storage tank 120.
Batch processing can be used to send the Q bodies to the refrigerator 12 after all the bodies are converted to Q bodies, but the interior of the Q body is divided into a Q body storage part and an N body storage part by a partition, and the Q bodies are converted into Q bodies. The storage section is connected to piping 122, 132, and the N body storage section is connected to piping 124, 134.
You may communicate with In this case, the partition wall stores N bodies, Q
It can be configured to move according to the amount of the body. Furthermore, this 9 central! A plurality of four Q storage sentries 120 (G) are provided so that each can be connected to the solar collector 110, and the Q bodies are sent from one storage tank to the refrigerator 12 and the N bodies are returned to another storage tank. Good too.

次に第8図には本発明の第3実飛例が示されている。こ
の実施例でri第1実施列の分岐配管98が直接に(吸
収式冷凍d12の発生器44へと導かれて、太陽光で加
熱された温水及び光エネルギ貯蔵化合物の触媒熱反応の
双方で直接に発生器44を加熱するようになっている。
Next, FIG. 8 shows a third practical example of the present invention. In this embodiment, the branch pipe 98 of the first implementation row is led directly (to the generator 44 of absorption refrigeration d12) for both the solar heated hot water and the catalytic thermal reaction of the light energy storage compound. The generator 44 is heated directly.

従って発生器44の発生熱量、発生温度を広範囲に設定
することができる。
Therefore, the amount of heat generated by the generator 44 and the temperature generated can be set over a wide range.

上記実施例では光エネルギ貯蔵化合物としてノルボルナ
ジェンを使用し友が、本発明は可逆的光異性化反応によ
って光エネルギの吸収と熱エネルギの放出を反覆し侍る
流動性の光エネルギ貯蔵化合物でめれば全て適用可能で
あり、アゼピン等の他の化合物も使用できる。このアゼ
ピンは短波長光を受けて高歪化合物であるジクロブテノ
ジヒドロビロールに変化し、触媒の存在下で再び高歪9
馳化合物であるアセビンに復帰すると共に熱発生を伴う
ようになっている。tiその他本@明では元エネルギ貯
蔵化合物をスラリ状としても使用でき、流動性を有する
状態であれば全て適用可能である。
In the above embodiments, norbornadiene was used as the light energy storage compound, but the present invention uses a fluid light energy storage compound that repeatedly absorbs light energy and releases thermal energy through a reversible photoisomerization reaction. All are applicable and other compounds such as azepines can also be used. When this azepine receives short wavelength light, it changes to dichlorobutenodihydrobyrol, a highly strained compound, and in the presence of a catalyst, it is transformed into a highly strained compound, 9
It reverts to acevin, a chemical compound, and is accompanied by thermogenesis. In addition, the original energy storage compound can also be used in the form of a slurry, and any state that has fluidity can be applied.

また上記実施例では吸放熱材として水を用いたが、この
水は純水に限らず、防錆剤、凍結防止剤等の適宜の添加
物が含まれ丸物でも良い。また吸放熱材は水星外にも太
陽エネルギを熱エネルギとして吸収放出するものであれ
ば全て適用0工能であり、グリコール類、炭化水嵩系、
ハロゲン1ヒ炭化水素系等でも良いう 以上説明した如く本発明に係る太陽エネルギ利用冷房装
置は光エネルギ貯蔵化合物で吸収式冷凍機の発生器を加
熱するので、太陽光の短波長域の光エネルギをも有効に
利用することができると共にエネルギの長期間の蓄積が
可能となる優れた効果を有する。
Further, in the above embodiments, water is used as the heat absorbing and dissipating material, but this water is not limited to pure water, and may be round water containing appropriate additives such as a rust preventive agent and an antifreeze agent. In addition, heat absorbing and dissipating materials can be applied to materials other than Mercury, as long as they absorb and release solar energy as heat energy, such as glycols, bulk hydrocarbons,
Halogen, arsenic, etc. may also be used.As explained above, since the solar energy cooling device according to the present invention heats the generator of the absorption refrigerator with a light energy storage compound, light energy in the short wavelength range of sunlight can be used. It has the excellent effect of making it possible to effectively utilize energy and to store energy for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る太陽エネルギ利用冷PM装置の第
1実施例を示す系統図、@2図は@1実施例に用いる太
陽光コレクタな示す一部値断斜視図第3図は本爽厖例に
用いる光エネルギ貯蔵化合物を示す化学反応式、第4図
は吸収式冷凍機を示す系統図、第5図は本発明の第2実
施例を示す系統図、第6図、第7図は第2実施例に用い
る吸収式冷凍機の系統図、第8図は本発明の第3実施例
を不す系統図である。 10・・・太陽光コレクタ、  12・・・吸収式冷凍
機、14・・・水循噴太陽光コレクタ部、 16・・・光エネルギ貯賦化合物循櫃太陽光コレクタ部
、  36.40・・・供給配管、  44・・・発生
器、54・・・触媒装置、  56・・・蒸発器、 5
8・・・吸収器、 60・・・凌縮器、  118・・
・N−Q変換槽、136・・・第2発生器、 138・
・・第1発生器。 代壇人 升埋士  中 島   淳 第  6  1’ス1 7を 第7図 第8図
Fig. 1 is a system diagram showing the first embodiment of the cold PM device using solar energy according to the present invention, and Fig. 2 is a partial cross-sectional perspective view of the solar collector used in the embodiment @1. A chemical reaction formula showing the light energy storage compound used in the example, Fig. 4 is a system diagram showing an absorption refrigerator, Fig. 5 is a system diagram showing the second embodiment of the present invention, Figs. The figure is a system diagram of an absorption refrigerator used in the second embodiment, and FIG. 8 is a system diagram excluding the third embodiment of the present invention. DESCRIPTION OF SYMBOLS 10...Solar light collector, 12...Absorption refrigerator, 14...Water circulation injection solar light collector part, 16...Light energy storage compound circulation tank solar light collector part, 36.40... - Supply piping, 44... Generator, 54... Catalyst device, 56... Evaporator, 5
8...Absorber, 60...Compressor, 118...
・N-Q conversion tank, 136...second generator, 138・
...First generator. Figure 7, Figure 8

Claims (3)

【特許請求の範囲】[Claims] (1)  高歪可能化合物を太陽光で高歪化合物に変化
させる光エネルギ貯蔵化合物循環太陽光変換手段と、@
射光エネルギ貯蔵化合物循環太陽光変換手段と供給配管
を介して連通される発生器を備え発生器で気化した冷媒
を凝縮器を介して蒸発器へ送る吸収式冷凍機と、前記供
給配管へ設けらち高歪化合物が高歪可能化合物へ変化す
る触媒熱反応女生じさせる触媒裂8直と、を有する太陽
エネルギ利用冷房装置。
(1) A light energy storage compound circulation sunlight conversion means for converting a highly strainable compound into a highly strained compound by sunlight, and @
an absorption chiller equipped with a generator communicating with an irradiated light energy storage compound circulation solar conversion means via a supply pipe, and sending a refrigerant vaporized by the generator to an evaporator via a condenser; A solar energy cooling device having a catalytic thermal reaction that causes a high strain compound to change into a high strain capable compound.
(2)高歪可能化合物を太陽光で高歪化合物に変化させ
ろ丸エネルギ貯斌化合物傭項太陽光変換手段と、熱エネ
ルギの吸収と放出を反復し得る流動性の吸放熱材を匁:
易尤で9日熱する吸放熱材循項太陽丸加熱手没と、前記
光エネルギ貯蔵化合物遁1太陽光変換+段と供給配管を
介して4通さ几る発生講ヤ備え全主惜で気化した冷媒を
礎縮器をパ「シてA@器へ送る吸収式冷凍機と、前記供
給配管へ設けられ高歪化合切が高歪可能化合物へ変化す
る触媒熱反応を生じさせる触ts装置と、前記供給配管
へ設けられ吸放熱材循積太陽光加熱手段からの吸放熱材
で簡歪化合物を加熱する熱交換器と、を噌えたことを待
機とする太陽エネルギ利則冷房装置。
(2) Convert a highly strainable compound into a highly strained compound using sunlight. Use a round energy storage compound, solar light conversion means, and a fluid heat absorbing and releasing material that can repeatedly absorb and release thermal energy:
The heat absorbing and dissipating material circulates for 9 days and is heated by hand, and the light energy storage compound is passed through the solar conversion + stage and the supply piping for 4 times. an absorption refrigerating machine that passes the refrigerant through the base condenser to the A@ reactor; and a catalytic converter that is installed in the supply pipe and causes a catalytic thermal reaction in which a high strain cutoff changes into a high strain capable compound. and a heat exchanger that heats the simple strain compound with the heat absorbing and dissipating material from the heat absorbing and dissipating material circulating solar heating means that is installed in the supply pipe.
(3)  鳩歪oT能化合物を太陽光で高金化合物に変
化させる光エネルギ貯蔵化合物循環太陽光変換手段と、
熱エネルギの吸収と放出を反復し得る流動性の吸放熱材
を太陽光で加熱する吸放熱材循墳太陽光加熱手段と、前
記光エネルギ貯絨化合物循積太陽を変換平波及び吸放熱
材循壇太陽光加熱手段とそれぞ斗供給配管を介して連通
される発生器を備え発生器で蒸発した冷媒な凝liI器
を介して蒸発器へ送る吸収式冷凍機と、前記元エネルギ
貯蔵化合物儂虐太陽光′&換手段からの供給配管へ設け
られ尚歪化合物が高歪可能化合物へ変化する触媒熱反応
を生じさせる触媒装置と、な有することを特徴とした太
陽エネルギ利用冷房装(K。
(3) a light energy storage compound circulation sunlight conversion means for converting a pigeon-distorted OT-functional compound into a high-gold compound with sunlight;
A heat absorbing/radiating material circulating solar heating means for heating a fluid heat absorbing/radiating material capable of repeatedly absorbing and releasing heat energy with sunlight; an absorption chiller comprising a generator connected to a circulating solar heating means through a dowel supply pipe, and sending the refrigerant evaporated in the generator to the evaporator via a condenser; and the source energy storage compound. A cooling system using solar energy (K .
JP57084440A 1982-05-19 1982-05-19 Refrigeration system utilizing solar energy Granted JPS58200960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57084440A JPS58200960A (en) 1982-05-19 1982-05-19 Refrigeration system utilizing solar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57084440A JPS58200960A (en) 1982-05-19 1982-05-19 Refrigeration system utilizing solar energy

Publications (2)

Publication Number Publication Date
JPS58200960A true JPS58200960A (en) 1983-11-22
JPH0132426B2 JPH0132426B2 (en) 1989-06-30

Family

ID=13830646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57084440A Granted JPS58200960A (en) 1982-05-19 1982-05-19 Refrigeration system utilizing solar energy

Country Status (1)

Country Link
JP (1) JPS58200960A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018216A1 (en) * 2004-08-12 2006-02-23 Phönix Sonnenwärme AG Absorption-type refrigerating machine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280278A (en) * 1975-12-23 1977-07-05 Battelle Development Corp Catch* collection and utilization of solar energy and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280278A (en) * 1975-12-23 1977-07-05 Battelle Development Corp Catch* collection and utilization of solar energy and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006018216A1 (en) * 2004-08-12 2006-02-23 Phönix Sonnenwärme AG Absorption-type refrigerating machine

Also Published As

Publication number Publication date
JPH0132426B2 (en) 1989-06-30

Similar Documents

Publication Publication Date Title
JP3159448B2 (en) Dual temperature heat pump device and system
AU2008228211B2 (en) Method and device for intermediate superheating in solar direct evaporation in a solar-thermal power plant
JPH0228232B2 (en)
US5584193A (en) Absorption-type refrigeration systems and methods
JPH0145548B2 (en)
US4307577A (en) Air conditioning system making use of waste heat
JPS59107160A (en) Method of operating two mode type heat pump and two mode type heat pump for operating said method
US4458500A (en) Absorption heat pump system
JPS58200960A (en) Refrigeration system utilizing solar energy
JPS58200961A (en) Refrigeration system utilizing solar energy
KR20090117796A (en) Ammonia absorption type refrigerating apparatus utilizing waste heat of exhaust
RU2806949C1 (en) Absorption refrigeration unit and method for cooling objects in autonomous mode in regions with hot climate
JPH0454206A (en) Power plant
JPH05264187A (en) Heat accumulating device
JPS6036774Y2 (en) Power generation device using engine waste heat
JPH05263610A (en) Power generating facility
JPH0353546B2 (en)
JPS60175969A (en) Heat pump type solar heat water heater
SU953383A2 (en) Combination solar plant
JPS6124621B2 (en)
KR100396296B1 (en) Power generating device employing hydrogen absorbing alloy and low heat
JPS58142150A (en) Solar energy utilizing device
CN114719319A (en) Lithium bromide-carbon dioxide combined heat supply unit
CN116817482A (en) Absorption refrigerating device
SU851025A1 (en) Helio refrigeration absorption unit