JPS58142150A - Solar energy utilizing device - Google Patents

Solar energy utilizing device

Info

Publication number
JPS58142150A
JPS58142150A JP57023971A JP2397182A JPS58142150A JP S58142150 A JPS58142150 A JP S58142150A JP 57023971 A JP57023971 A JP 57023971A JP 2397182 A JP2397182 A JP 2397182A JP S58142150 A JPS58142150 A JP S58142150A
Authority
JP
Japan
Prior art keywords
compound
heat
coil
sunlight
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57023971A
Other languages
Japanese (ja)
Inventor
Manabu Ishizuka
学 石塚
Noburu Fujisawa
宣 藤沢
Akira Ito
皓 伊藤
Kiyoshi Shinpo
新保 喜代嗣
Tadao Mikami
三上 忠雄
Shoichi Suzuki
鈴木 昭一
Kozo Kimura
興造 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Takenaka Komuten Co Ltd
Original Assignee
Kawamura Institute of Chemical Research
Takenaka Komuten Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Takenaka Komuten Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP57023971A priority Critical patent/JPS58142150A/en
Publication of JPS58142150A publication Critical patent/JPS58142150A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/0015Domestic hot-water supply systems using solar energy
    • F24D17/0021Domestic hot-water supply systems using solar energy with accumulation of the heated water

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve the efficiency of utilization of optical energy by a method wherein a sunlight collector through which a heat adsorbing and heat radiating material such as water circulates and a sunlight collector through which an optical energy storing chemical compound circulates are made to communicate with a heat radiating coil and a heat generating coil in a hot water storage tank and the heat adsorbing and heat radiating material is heated due to the thermal reactions of the optical energy storing chemical compound against a catalyst. CONSTITUTION:Hot water heated in a water circulating collector section 24 of the sunlight collecor 20 by the radiation of the long-wave length rays of sunlight flows to the heat radiating coil 48 in the hot water storage tank 22 and is heated by the coil 48 to become hot. At the same time, the chemical compound circulating collector section 26 receives the short-wave length rays of sunlight so that the chemical compound storing optical energy is converted into a Q-substance (a highly distortional chemical compound). The Q-substance is then stored in a Q-substance storage tank 64 by the switching operation of a three-way valve 58 and after that, it is supplied to the heat generating coil 68 within the hot water storage tank 22 by means of a pump 66 so that it comes into contact with the catalyst 76 and reacts thermally against the latter. As a result, the Q-substance is converted into an N-substance (a chemical compound capable of being highly distorted) and at the same time, heats additionally the hot water in the hot water storage tank 22.

Description

【発明の詳細な説明】 本発明は太陽光エネルギを集光し7て貯蔵する太陽エネ
ルギ利用装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar energy utilization device that collects and stores solar energy.

従来の一般的な太陽エネルギ利用装置は、第1図に示さ
れる如く水循環パイプ】0が流通ずるコレクタ12で得
られる渇水を貯湯槽14へ導いて蓄熱するようになって
いる。この貯湯槽141cけヒータ16が設けられてお
り、必vIK応じて温水を加熱した後に給湯部18へ送
り出17ている。
As shown in FIG. 1, in a conventional general solar energy utilization device, the dry water obtained in a collector 12 through which a water circulation pipe flows is guided to a hot water storage tank 14 for heat storage. A heater 16 is provided for this hot water storage tank 141c, and after heating the hot water according to IK, it is sent out 17 to the hot water supply section 18.

ところがこのような太陽エネルギ利用装置では蓄熱材が
水である友め貯#槽14からの放熱が太きく、長時間の
蓄熱は不可能である。′またこの太陽エネルギ利用装置
アは太陽光のうち長波長域の光エネルギが比較的効率工
〈集熱可能であり、短波長域(0,17〜0.35μm
)の光エネルギはあまり効率工〈集熱されておらず集熱
部においても限られた効率となっている。
However, in such a solar energy utilization device, the heat radiation from the friend storage tank 14 whose heat storage material is water is large, making it impossible to store heat for a long time. 'In addition, this solar energy utilization device is capable of collecting light energy in the long wavelength range of sunlight relatively efficiently.
) The light energy is not very efficiently collected (heat is not collected and the efficiency of the heat collection part is limited).

本発明は上記事実を考慮し、太陽光のうちより広い波長
域に亘って光エネル賃ヲ利用iJ能である太1@エネル
ギ利用装wtを得ることが目的である。
In consideration of the above-mentioned facts, the present invention aims to obtain an energy utilization device capable of utilizing optical energy over a wider wavelength range of sunlight.

本発明に係る太陽エネルギ利用装*、Vi主と12て長
波長域の光ユネルギを集熱する水等の吸放熱付循環太陽
光コレクタと、短波長光の光エネルギにより高歪可能化
合物を高歪化合物に変化させる光エネルギ貯蔵化合物循
環太陽光コレクタとを設けて、太陽光のより広い波長域
に亘って光エネルギを収集し、これらのコレクタからの
吸放熱材及び高歪化合物は共に貯湯槽等の熱媒貯留容器
に導くと共にこの貯留容器内には高歪化合物を高歪可能
化合物へ変化させて熱反応を生じさせる触媒を備えるこ
とにより吸放熱材及び元エネルギ貯蔵化合物の双方で貯
留容器内の温水等の熱媒を加熱するようになっている。
The solar energy utilization device* according to the present invention includes a circulating solar collector with heat absorption and radiation such as water that collects optical energy in the long wavelength range using Vi main and 12, and a highly strainable compound that is A circulating solar collector is provided to collect light energy over a wider wavelength range of sunlight, and both the heat absorbing material and the highly strained compound from these collectors are stored in a hot water storage tank. By introducing a heat medium into a storage container such as a heat exchanger, etc., and equipping this storage container with a catalyst that causes a thermal reaction by changing a high strain compound into a highly strainable compound, the storage container can be used to store both the heat absorbing and dissipating material and the original energy storage compound. It is designed to heat a heat medium such as hot water inside.

以下本発明の実施例を図面に従い説明する。Embodiments of the present invention will be described below with reference to the drawings.

第2図に示される如く本実施例に係る太陽エネルギ利用
装置では太陽光コトクタ20が複数の配管に工す熱媒貯
留容器である貯湯槽22と連通されている。この太陽光
コレクタ2oは吸放熱材循環太陽光コ1〜クタとしての
水循環太陽光コレクタ部24と光エネルギ貯蔵化合物循
環太陽光コレクタ部26とを有してい為。c以下それぞ
れ水循環コレクタ部、化合物循環コレクタ部と称する。
As shown in FIG. 2, in the solar energy utilization device according to this embodiment, a solar collector 20 is communicated with a hot water storage tank 22, which is a heat medium storage container installed in a plurality of pipes. This solar light collector 2o has a water circulation solar collector section 24 and a light energy storage compound circulation solar collector section 26 as heat absorbing and dissipating material circulating solar collectors 1 to 1. Hereinafter, they will be referred to as a water circulation collector section and a compound circulation collector section, respectively.

)この太陽光コレクタ20は各棟の形状が考えられるが
、この実施例では一例として第3図に示される具体的構
造が用いられている。この構造を詳しく説明すると、図
示しない構築物の屋上等へ設置される固定ペース28へ
軸支される画直軸30には水平旋回71/−ム32が固
着されて垂山軸と共に旋回可能となっている。この水平
旋回フト−ム32から立設された一対のブラケット34
には水平軸36が軸支されており、この水平軸36へ垂
直旋回フレーム38が固着されて水平軸と共に旋回可能
となっている。
) This solar collector 20 may have the shape of each building, but in this embodiment, the specific structure shown in FIG. 3 is used as an example. To explain this structure in detail, a horizontal rotation shaft 71/-m 32 is fixed to an image vertical axis 30 which is pivoted to a fixed pace 28 installed on the roof of a structure (not shown), so that it can rotate together with the Taruyama axis. ing. A pair of brackets 34 are erected from this horizontally rotating foot 32.
A horizontal shaft 36 is pivotally supported on the horizontal shaft 36, and a vertical rotation frame 38 is fixed to this horizontal shaft 36 so that it can rotate together with the horizontal shaft.

垂直旋回フlノーム38は天井部が透明な7レネルプリ
ズム40とされた箱型であり、フt・ネルプリズム40
の集光部に循環パイプ42.44’が複数本設けられて
いる。ここに循環パイプ42は第2図の水循環コ1ノク
タ部24に、循環パイプ44は第2図の化合物循環コレ
クタ部26にそれぞれ相当する。この循環パイプ44は
集光部のほぼ中央部に設けられ、この循環ノ々イブ44
0両側sVc循環・臂イブ42が配置されており、循環
パイプ42には水が、循環Aイブ44には光エネルギ貯
蔵化合物が循環される工すになっている。循環ノぞイブ
42は必要に応じて2重管とし、内管内に水を循環させ
内外管間は真空状態とすることができる。
The vertically rotating flunome 38 has a box shape with a transparent 7-lens prism 40 on the ceiling,
A plurality of circulation pipes 42, 44' are provided in the light collecting section. Here, the circulation pipe 42 corresponds to the water circulation collector section 24 in FIG. 2, and the circulation pipe 44 corresponds to the compound circulation collector section 26 in FIG. 2. This circulation pipe 44 is provided almost at the center of the light collecting section, and this circulation pipe 44
0-side sVc circulation/arm pipes 42 are arranged, water is circulated through the circulation pipe 42, and light energy storage compound is circulated through the circulation A pipe 44. The circulation nozzle 42 can be made into a double pipe if necessary, so that water can be circulated in the inner pipe and a vacuum can be created between the inner and outer pipes.

この2種類の循環Aイブ42.44にはフレネルプリズ
ム40を通過した太陽光が照射されるが、太陽光は光の
成分の波長により屈折率が異るので異る波長の光が循環
ノRイブ42.44へ照射されるようになっている。す
なわち太陽光はフレネルプリズム40t−透過して屈折
した後スペクトルに分れるのでこの分散スペクトルの帯
状部分の上に波長域に合致し皮受光体である循環ノNイ
ブ42゜44が配置されており、循環パイプ44は7レ
ネルプリズム40で比較的大きな屈折をする短波長光を
受光し、水循環パイプ42は比較的大きな屈折をしない
長波長光を受光するようになっている。
These two types of circulation A beams 42 and 44 are irradiated with sunlight that has passed through the Fresnel prism 40, but since sunlight has a different refractive index depending on the wavelength of the light component, light of different wavelengths is reflected in the circulation A beams 42 and 44. It is designed to irradiate Eve 42 and 44. In other words, sunlight passes through the Fresnel prism 40t and is refracted before being split into a spectrum, so a circulating nozzle 42° 44, which is a skin photoreceptor, is placed above the band-shaped portion of this dispersion spectrum that matches the wavelength range. The circulation pipe 44 receives short-wavelength light that is relatively largely refracted by the 7-Renel prism 40, and the water circulation pipe 42 receives long-wavelength light that is not relatively significantly refracted.

この結果この太陽光コレクタ20はフレネルプリズム4
0で太陽−i′f、効率よく集光分光し全波長域の光エ
ネルギを収集できる工うになっている。
As a result, this sunlight collector 20 has a Fresnel prism 4
When the sun is -i'f at 0, it is possible to efficiently condense and separate light to collect light energy in the entire wavelength range.

なお第3図に示されるm直軸30及び水平軸36は図示
しない駆動装置で回転して太陽光コl/クタ20を常に
太陽光に追尾させることができ、この追尾制御手段とし
ては太陽光位置センサー1反陽光位置記憶装置等を用い
ることができる。
Note that the vertical axis 30 and the horizontal axis 36 shown in FIG. A position sensor 1 anti-sunlight position storage device or the like can be used.

循環ノにイブ44内を流れる光エネルギ貯蔵化合物とし
て本実施例では第4図に示されるノルボルナジェンC以
下N体と称する)が用いられている。
In this embodiment, norbornagene C (hereinafter referred to as N-form) shown in FIG. 4 is used as a light energy storage compound that circulates within the eve 44.

このN体は常温で流動性を有する高歪可能化什物であり
、紫外線領域の短波長光を照射すると光異性化反応によ
り高歪化合物であるクワドリシクレン(以下9体と称す
る)に変化する性質1r肩し−Cおり、この9体は触媒
(コノ々ルトデトラフェニルボリフイリン錯体やコバル
トフタロシアニン錯体)内を通過させると、触媒熱反応
を生じてN体の状態に戻る性質がある。この時に22”
 at/’MI、11.−240 Ca’/’を程度の
熱発生を伴う。従って太陽光のうち主として短波長光を
蓄積)シ、必要に応じて熱エネルギとして放出可能であ
る。
This N-form is a highly strainable substance that has fluidity at room temperature, and when irradiated with short wavelength light in the ultraviolet region, it changes into a highly strained compound quadricyclene (hereinafter referred to as 9-form) through a photoisomerization reaction. The properties are 1r and -C, and when these nine bodies are passed through a catalyst (conoltodetraphenylborifylline complex or cobalt phthalocyanine complex), a catalytic thermal reaction occurs and the nine bodies return to the N-form state. At this time 22”
at/'MI, 11. Accompanied by heat generation of -240 Ca'/'. Therefore, it is possible to store mainly short-wavelength light from the sunlight and release it as thermal energy if necessary.

第2図に基いて太陽光コレクタ20と貯湯槽22との間
の配管を贋、明する。水循環コレクタ部24は配管46
を介して放熱コイル48へ連通されており、この放熱コ
イル48は貯湯槽22内へ配置されると共に他端力1己
管50を介して水循環コレクタ部42の他端へ連通され
ている。この配管50の中間部にはポンプ52が設けら
れており、水循環コレクタ部24で加熱さ五た温水を貯
湯槽22へ導いて放熱コイル48に工り貯湯槽22内の
温水54を加熱するようになっている。
Based on FIG. 2, the piping between the solar collector 20 and the hot water storage tank 22 will be explained. The water circulation collector section 24 is connected to the piping 46
The heat radiation coil 48 is arranged in the hot water storage tank 22 and is connected to the other end of the water circulation collector section 42 through a tube 50 at the other end. A pump 52 is provided in the middle of this piping 50, which guides the hot water heated by the water circulation collector part 24 to the hot water tank 22, and heats the hot water 54 in the hot water tank 22 through a heat dissipation coil 48. It has become.

−力比合物循環コレクタ部26の一端は配管56を介し
て三方弁58により配管60.62へ連通されている。
- One end of the force ratio compound circulation collector section 26 is communicated via a pipe 56 with a three-way valve 58 to a pipe 60.62.

配管62はQ体貯貿槽64.ポンプ66を介して貯湯槽
22内の発熱コイル68の1流端へ連通されている。こ
の発熱コイル68の下流端は配管69.N体貯留槽70
及び三方弁72を介して配管60及び74と連通されて
いる。貯湯槽22内の発熱コイル68にはその上流側趨
部に触媒76(この実施例ではコノマルトフタロシアニ
ン錯体が用いられる)が設けられて配管62からの9体
に光異性化反応を生じさせるLうVCなっている。この
発熱コイル68は放熱コイル48よりも上方へ設けられ
ている。
The piping 62 is connected to the Q-body storage tank 64. It is communicated via a pump 66 to one end of a heating coil 68 in the hot water storage tank 22 . The downstream end of this heating coil 68 is a pipe 69. N body storage tank 70
and communicates with the pipes 60 and 74 via a three-way valve 72. The heating coil 68 in the hot water storage tank 22 is provided with a catalyst 76 (a conomaltophthalocyanine complex is used in this embodiment) at its upstream end to cause a photoisomerization reaction in the nine bodies from the pipe 62. It's becoming a VC. This heat generating coil 68 is provided above the heat radiating coil 48.

また三方弁72へ接続され友配管74はポンプ78を介
して化合物循環コレクタ部26の他端へ連通されており
、配管56.60と共に循環パイプ44への循環路全構
成している。なお第2図において太陽光コレクタ20と
貯湯槽22との間の配管で破線は温水、実線はN体、一
点鎖線は9体の流路を示している。
Further, a companion pipe 74 connected to the three-way valve 72 is communicated with the other end of the compound circulation collector section 26 via a pump 78, and together with the pipes 56 and 60, constitutes the entire circulation path to the circulation pipe 44. In FIG. 2, in the piping between the solar collector 20 and the hot water storage tank 22, the broken line indicates the flow path for hot water, the solid line indicates the flow path for N bodies, and the dashed line indicates the flow path for nine bodies.

また貯湯槽22の下部には給水配電80が連通されて図
示しない給水源からの水を貯湯槽下部へ送り込み、上部
には給湯配管82が連通されて加熱後の温水を給湯部8
4及び図示しない暖房装置、冷房装置等へ送り出すよう
になっている。貯湯槽22には必要に応じてヒータを設
けることができる。
Further, a water supply power distribution 80 is connected to the lower part of the hot water storage tank 22 to send water from a water supply source (not shown) to the lower part of the hot water storage tank, and a hot water supply pipe 82 is connected to the upper part of the hot water storage tank 22 to supply heated hot water to the hot water supply section 8.
4 and to a heating device, a cooling device, etc. (not shown). A heater can be provided in the hot water tank 22 if necessary.

次に本実凡例の作動を説明する。Next, the operation of this legend will be explained.

第3図に示される太陽光コレクタ2()で太陽光のうち
主として艮波長光の照射により加熱された温水は配管4
6を通って貯湯槽22内の放熱コイル48へと至り、こ
の放熱コイル48の外側を流れる水と熱交換して貯湯槽
内に温水54を作り出した後に配管50を通って水循環
ノソイプ42へと戻る。
The hot water heated by the solar radiation collector 2 ( ) shown in FIG.
6 to the heat dissipation coil 48 in the hot water storage tank 22, and exchanges heat with the water flowing outside the heat dissipation coil 48 to create hot water 54 in the hot water tank, and then passes through the piping 50 to the water circulation pipe 42. return.

一方化合物循環コレクタ部26は太陽光のうち短波長光
を受けて光エネルギ貯蔵化合物を9体に変化させるが、
充分に光エネルギを蓄積させるためにN体を循環輸送す
る。すなわち三方弁58.72の切換えにより配管56
,60.74を連通状態として循環路を形成しポンプ7
8の駆動−で循環7eイブ44内へN体を複数回流通さ
せ充分に光異性化反応をさせる。
On the other hand, the compound circulation collector section 26 receives short wavelength light from sunlight and changes the light energy storage compounds into nine bodies.
In order to accumulate enough light energy, N-bodies are transported cyclically. That is, by switching the three-way valve 58.72, the piping 56
, 60, 74 are in communication to form a circulation path, and the pump 7
8, the N-isomer is passed into the circulation 7e tube 44 several times to cause a sufficient photoisomerization reaction.

その後三方弁58を切換えて配管56と62とを連通ず
れば高歪化合物となった9体は9体貯留槽64内へ貯留
される。この9体貯留槽64内の9体は単独ではN体に
復帰することはないので熱損失がなく、断熱材等も不要
で長期間のエネルギ貯蔵が可能である。
Thereafter, by switching the three-way valve 58 to connect the pipes 56 and 62, the nine highly strained compounds are stored in the nine-body storage tank 64. Since the nine bodies in the nine body storage tank 64 do not return to N bodies by themselves, there is no heat loss, and no heat insulating material is required, making it possible to store energy for a long period of time.

必要時に9体貯留槽64内の9体はポンプ66の駆動に
より貯湯槽22内の発熱コイル68へと送られる。この
発熱コイル680入口で触媒76と接触して触媒熱反応
を生じ元の8体に復帰すると共に熱発生して発熱コイル
68を流れる間に貯湯槽22内の温水と熱交換するので
貯湯槽22内の温水はさらに加熱される。従って貯湯槽
22の給湯部84は放熱コイル48で加熱された温水の
みならず必要に応じて放熱コイル48、発熱コイル68
の双方で高温に加熱された温水をも堆り出すことができ
、広い範囲の給湯、冷暖房に使用可能である。
When necessary, the nine bodies in the nine body storage tank 64 are sent to the heating coil 68 in the hot water storage tank 22 by driving the pump 66. At the inlet of this heating coil 680, it contacts the catalyst 76 to cause a catalytic thermal reaction and return to the original 8 bodies, while also generating heat and exchanging heat with the hot water in the hot water tank 22 while flowing through the heating coil 68. The hot water inside is further heated. Therefore, the hot water supply section 84 of the hot water storage tank 22 not only uses the hot water heated by the heat radiation coil 48, but also uses the heat radiation coil 48 and the heat generating coil 68 as needed.
It is also possible to pump out hot water heated to high temperatures at both ends, making it usable for a wide range of hot water supply, air conditioning, and heating applications.

発熱コイル68で8体に復帰した光エネルギ貯蔵化合物
は配管69を通ってN体計留槽70へ蓄積され、必要に
応じて三方弁72の切換えで配管74を通って循環/ゼ
イプ44へと戻される。
The light energy storage compound restored to 8 bodies by the heating coil 68 passes through the pipe 69 and is accumulated in the N-body storage tank 70, and if necessary, is circulated through the pipe 74 by switching the three-way valve 72 to the circulation/zeip 44. be returned.

上記実施例では光エネルギ貯蔵化合物としてノルボルナ
ジェンを使用したが本発明は可逆的光異性化反応によっ
て光エネルギの吸収と熱エネルギの放出を反復し得る流
動性の”’bエネルギ貯蔵化合物であれば全て適用可能
であり、アゼピン等の他の化合物も使用可能である。こ
のアゼピンは短波長光を受けて高煩化合物であるジクロ
ブテノジヒドロビロールに変化し、触媒の存在下で再び
高歪iiJ能化金化合物るアゼピンに復帰すると共に熱
発生を伴うようになっている。ま几その池水発明では光
エネルギ貯蔵化合物ケスラリ−状としても使用でき、流
動性を有する状態であれば全て適用可能である。
Although norbornadiene was used as the light energy storage compound in the above embodiment, the present invention can be applied to any fluid energy storage compound that can repeatedly absorb light energy and release thermal energy through a reversible photoisomerization reaction. Other compounds such as azepine can also be used.This azepine converts into dichlorobutenodihydrobyrol, a highly strained compound, when exposed to short wavelength light, and in the presence of a catalyst, it becomes highly strained iiJ again. As the gold compound reverts to azepine, it also generates heat.In the invention, it can also be used as a light energy storage compound in the form of kerosene, and can be applied to any liquid state as long as it has fluidity. be.

上記実施例で吸放熱材として水管用いたが、これは純水
に限らず、防錆剤、凍結防止剤等の適宜の添加剤が含ま
れたものでもよい。また吸放熱材は水以外にも太陽光エ
ネルギを熱エネルギとして吸収放出するものであれば全
て適用可能で、グリコール類、炭化水素系、ハロゲン化
炭化水素等でもよい。上記実施例中の貯@822は熱媒
容器としての一例であり、熱媒を飲料用等として直接消
費せず冷暖房用等の熱源として用いる場合には太陽光コ
レクタ24内を流れる吸放熱材の場合と同様に水以外の
流動、、物でもよい。
Although water pipes were used as the heat absorbing and dissipating material in the above embodiments, this is not limited to pure water, and may contain appropriate additives such as rust preventives and antifreeze agents. In addition to water, the heat absorbing and dissipating material may be any material that absorbs and releases sunlight energy as heat energy, and may be glycols, hydrocarbons, halogenated hydrocarbons, or the like. The storage@822 in the above embodiment is an example of a heat medium container, and when the heat medium is not directly consumed for drinking purposes but is used as a heat source for heating and cooling, etc., the heat absorbing and dissipating material flowing inside the solar collector 24 is As in the case above, fluids other than water may also be used.

上記実施例中、Q体計M槽64.N体計留槽7゜を用い
ることによりエネルギの長期貯蔵が可能となるが、本発
明は貯留槽に限らず実質的に光エネルギ化合物を貯留で
きる貯留手段であればよい。
In the above embodiment, Q body meter M tank 64. Although long-term storage of energy is possible by using a 7° N-body storage tank, the present invention is not limited to a storage tank, and any storage means that can substantially store the light energy compound may be used.

以上説明した如く本発明に係る太陽エネルギ利用装置は
光エネルギ貯蔵化合物循環太陽光コレクタと吸放熱材循
環太陽光コレクタ七を貯湯槽内の発熱コイル及び放熱コ
イルへ連通し1発熱コイルには触媒を設けて光エネルギ
貯蔵化合物と触媒熱反応を生じさせるので、太陽光の全
波成域の光エネルギを有効に利用することができる優れ
た効果を有する。
As explained above, in the solar energy utilization device according to the present invention, the light energy storage compound circulating solar collector and the heat absorbing/radiating material circulating solar collector 7 are connected to the heating coil and the heat radiation coil in the hot water storage tank, and the heating coil 1 is provided with a catalyst. Since it is provided to cause a catalytic thermal reaction with the light energy storage compound, it has an excellent effect of effectively utilizing the light energy of the full range of sunlight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽エネルギ利用装置を示す系統図、@
2図は本発明の太陽エネルギ利用装置の実施例を示す系
統図、第3図は太陽光コl/クタを示す一部破断斜視図
、第4図は本実施例に用いる光エネルギ貯蔵化合物を示
す化学反応式である。 20・・・太陽光コレクタ、22・・・貯湯槽、24・
・・水循環太陽光コレクタ部、26・・・光エネルギ化
合物循環太陽光コレクタ部、42.44・・・循環ノ臂
イブ、48・・・放熱コイル、ら4・・・9体貯留槽、
68・・・発熱コイル、70・・・N体計留槽、76・
・・触媒。 代理人 弁理士 中 島  淳
Figure 1 is a system diagram showing a conventional solar energy utilization device.
Fig. 2 is a system diagram showing an embodiment of the solar energy utilization device of the present invention, Fig. 3 is a partially cutaway perspective view showing a solar collector/ctor, and Fig. 4 is a diagram showing a solar energy storage compound used in this embodiment. This is the chemical reaction formula shown. 20... Solar collector, 22... Hot water tank, 24...
...Water circulation solar collector section, 26...Light energy compound circulation solar collector section, 42.44...Circulation armpit, 48...Radiation coil, etc.4...9 body storage tank,
68...Heating coil, 70...N body metering tank, 76...
··catalyst. Agent Patent Attorney Atsushi Nakajima

Claims (5)

【特許請求の範囲】[Claims] (1)  高歪可能化合物を太陽光で高歪化合物に変化
させる光エネルギ貯蔵化合物循環太陽光コレクタと、熱
エネルギの吸収と放出を反復し得る流動性の吸放熱材を
太陽光で加熱する吸放熱付循環太陽光コレクタと、前記
エネルギ貯蔵化合物OII環太陽光コレクタへ連通され
る発熱コイル及び前記吸放熱付循環太陽光コレクタへ連
通される放熱コイルが内蔵されこの発熱コイルには高歪
化合物と接触して高歪可能化合物へ変化させる熱反応を
生じさせる触媒が設けられる熱媒貯留容器と、を有する
太陽エネルギ利用装置。
(1) A solar energy storage compound circulating solar collector that converts a highly strainable compound into a highly strained compound using sunlight, and a fluid heat absorbing/radiating material that can repeatedly absorb and release thermal energy that is heated by sunlight. A circulating solar collector with heat dissipation, a heat generating coil connected to the energy storage compound OII ring solar collector, and a heat dissipation coil communicated with the circulating solar collector with heat absorption and dissipation are built in. a heating medium storage vessel provided with a catalyst that causes a thermal reaction upon contact to produce a highly strainable compound.
(2)  前記発熱コイルは放熱コイルよりも上方へ配
置されることを特徴とした前記特許請求の範囲第1項に
記載の太陽エネルギ利用装置。
(2) The solar energy utilization device according to claim 1, wherein the heating coil is arranged above the heat radiation coil.
(3)I%歪0T能化合物を太陽光で高歪化合物に変化
させる光エネルギ貯蔵化合物循環太陽光コ1/クタと、
熱エネルギの吸収と放出を反復し得る流動性の吸放熱材
を太陽光で加熱する吸放熱付循環太陽光コレクタと、前
記高歪化合物と接触して高歪可能化合物へ変化させる熱
反応を生じさせる触媒が設けられた発熱コイル及び前記
吸放熱付循環太陽光コレクタへ連通される放熱コイルが
内蔵された熱媒貯留容器と、前記発熱コイルの上流側と
前記光エネルギ貯蔵化合物循環コlノクタとの間へ介在
される高歪化合物貯留手段と、前記発熱コイルの下流側
と前菫己元エネルギ貯蔵化合物循環コレクタとの間へ介
在され石高歪可能化合物貯留手段と。 を有する太陽エネルギ利用装置4
(3) a light energy storage compound circulating sunlight co1/cuto that changes an I% strain 0T functional compound into a high strain compound with sunlight;
A circulating solar collector with heat absorption and radiation that uses sunlight to heat a fluid heat absorption and radiation material that can repeatedly absorb and release thermal energy, and a heat absorption and radiation collector that generates a thermal reaction that changes into a highly strainable compound when it comes into contact with the high strain compound. a heating medium storage container having a built-in heating coil provided with a catalyst, and a heat dissipating coil connected to the circulating solar collector with heat absorption and dissipation; an upstream side of the heating coil and the light energy storage compound circulation collector; and highly strainable compound storage means interposed between the downstream side of the heating coil and the front energy storage compound circulation collector. Solar energy utilization device 4 having
(4)  前記発熱コイルは放熱コイルよりも上方へ配
置されることを特徴とした前記特許請求の範囲第3項に
記載の太陽エネルギ利用装置。
(4) The solar energy utilization device according to claim 3, wherein the heat generating coil is arranged above the heat dissipating coil.
(5)  前記高歪化合物貯留手段及び高歪可能化合物
貯留手段はそれぞれ高歪化合物貯留槽及び高歪可能化合
物貯留槽であることt−%徴とした前記特許請求の範囲
第4項に記載の太陽エネルギ利用装置。
(5) The high strain compound storage means and the high strain capable compound storage means are a high strain compound storage tank and a high strain capable compound storage tank, respectively. Solar energy utilization equipment.
JP57023971A 1982-02-17 1982-02-17 Solar energy utilizing device Pending JPS58142150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57023971A JPS58142150A (en) 1982-02-17 1982-02-17 Solar energy utilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023971A JPS58142150A (en) 1982-02-17 1982-02-17 Solar energy utilizing device

Publications (1)

Publication Number Publication Date
JPS58142150A true JPS58142150A (en) 1983-08-23

Family

ID=12125433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023971A Pending JPS58142150A (en) 1982-02-17 1982-02-17 Solar energy utilizing device

Country Status (1)

Country Link
JP (1) JPS58142150A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195057A (en) * 1983-04-19 1984-11-06 Agency Of Ind Science & Technol Optical energy conversion system
JPS6294762A (en) * 1985-10-18 1987-05-01 Agency Of Ind Science & Technol Solar ray heat collecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59195057A (en) * 1983-04-19 1984-11-06 Agency Of Ind Science & Technol Optical energy conversion system
JPH0221490B2 (en) * 1983-04-19 1990-05-15 Kogyo Gijutsuin
JPS6294762A (en) * 1985-10-18 1987-05-01 Agency Of Ind Science & Technol Solar ray heat collecting device
JPH0454150B2 (en) * 1985-10-18 1992-08-28 Kogyo Gijutsuin

Similar Documents

Publication Publication Date Title
George et al. Concentrated photovoltaic thermal systems: A component-by-component view on the developments in the design, heat transfer medium and applications
CN104884874A (en) Coupled chemical-thermal solar power system and method
Diver Receiver/reactor concepts for thermochemical transport of solar energy
JPS58193090A (en) Storage system of thermal energy
Kargarsharifabad et al. Exergy analysis of a flat plate solar collector in combination with heat pipe
Fu et al. Optical nanofluids for direct absorption-based solar-thermal energy harvesting at medium-to-high temperatures
US4335706A (en) Energy collector and transfer apparatus
Al-Mamun et al. State-of-the-art in solar water heating (SWH) systems for sustainable solar energy utilization: A comprehensive review
Levy et al. Chemical reactions in a solar furnace 2: Direct heating of a vertical reactor in an insulated receiver. Experiments and computer simulations
Sui et al. Experimental investigation of methanol decomposition with mid‐and low‐temperature solar thermal energy
JPS58142150A (en) Solar energy utilizing device
Vishnu et al. Experimental study of the thermal performance of heat storage–integrated solar receiver for parabolic dish collectors
AU2010244392B2 (en) Getter support structure for a solar thermal power plant
JPS6124621B2 (en)
Mousa et al. Experimental Investigation on the Effect of Inclination Angle of Flat Plate Solar Collector Using Gravity Assisted Heat Pipes.
CN207366079U (en) A kind of light spot energy enclosed device of working medium measuring system
JPH033872B2 (en)
US6550248B1 (en) Electrical generating system using solar energy
CN110030618A (en) One kind being based on transpiration-cooled heating solar heat absorber
CN108800629A (en) A kind of exposed heat dump suitable for tower type solar thermo-power station
JPS58123057A (en) Solar energy collector
CN107449511A (en) A kind of light spot energy enclosed device of working medium measuring system and method
Khudor et al. Experimental Study of Concentrated Solar Power on Heat Feed Water Heaters in Steam Power Plants in Iraq
JPS63243463A (en) Electric power generator
Bibin et al. Progress and advancements in solar collectors for water heating purpose: A comprehensive review