JPS59195057A - Optical energy conversion system - Google Patents

Optical energy conversion system

Info

Publication number
JPS59195057A
JPS59195057A JP58068977A JP6897783A JPS59195057A JP S59195057 A JPS59195057 A JP S59195057A JP 58068977 A JP58068977 A JP 58068977A JP 6897783 A JP6897783 A JP 6897783A JP S59195057 A JPS59195057 A JP S59195057A
Authority
JP
Japan
Prior art keywords
solution
energy conversion
azobenzene
column
photochemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58068977A
Other languages
Japanese (ja)
Other versions
JPH0221490B2 (en
Inventor
Kiyoshi Hayakawa
浄 早川
Hiroshi Taoda
博史 垰田
Kaoru Kawase
川瀬 薫
Hiromi Yamakita
山北 尋巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP58068977A priority Critical patent/JPS59195057A/en
Publication of JPS59195057A publication Critical patent/JPS59195057A/en
Publication of JPH0221490B2 publication Critical patent/JPH0221490B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To increase the solar energy conversion efficiency of the titled system by a method wherein in the case of the optical energy conversion system using a photochemical heat storage material adopted to convert solar energy into thermal energy for the collection and storage of heat, the photochemical heat storage material is temporarily isolated from a reaction system during or after the application of the solar rays upon the material. CONSTITUTION:A cyclohexane solution of trans-azobenzene refined by recrystallization is received within a qualtz cell 4 and the solar rays are applied on the solution at normal temperature. Then, after the application of the solar rays, the solution is circulated and cis-azobenzene generated from the solution is absorbed completely by an absorbing column 6 through a liquid inlet port. After that, the circulation of the solution is stopped and then the application of the sunlight on the solution is performed and so on in a repetitive fashion during which only non-reacted trans-azobenzene is repeatedly applied with the sunlight. Consequently, the solar energy conversion efficiency of the system increases remarkably as compared to a case where the absorbing column 6 is not used. The generated substance absorbed by the column 6 is used after it is transferred into a storage tank by heating the column or by adding a solution of a separating agent to the column.

Description

【発明の詳細な説明】 この発明は、太陽光エネルギーを化学的に変換して集熱
と同時に蓄熱を行う光化学蓄熱材において変換効率を向
上させるための光エネルギー変換システムに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a light energy conversion system for improving the conversion efficiency in a photochemical heat storage material that collects and stores heat at the same time by chemically converting sunlight energy.

一般に太陽エネルギーは太陽からの照射光そのままでは
広く薄く分散している上に変動が激しいため、利用に際
しては濃縮及び貯蔵による平滑化を行う必要がある。こ
の方法のひとつに光化学蓄熱法がある。
In general, solar energy is widely and thinly dispersed as it is as it is irradiated by the sun, and also fluctuates drastically, so it is necessary to smooth it by concentrating and storing it before use. One of these methods is the photochemical heat storage method.

これは主として光活性有機化合物に代表される光化学蓄
熱材の光化学反応、例えば異性化、三量化等を利用して
太陽光エネルギーを化学エネルギーに変換し生成物質の
エンタルピー増として長期間の貯蔵を可能とするととも
に、需要時には逆反応を起こして蓄積されたエネルギー
を放出させ、熱として利用するものである。
This mainly utilizes photochemical reactions of photochemical heat storage materials represented by photoactive organic compounds, such as isomerization and trimerization, to convert sunlight energy into chemical energy, which increases the enthalpy of the generated substances and enables long-term storage. At the same time, when there is demand, a reverse reaction occurs to release the stored energy and use it as heat.

第1図は、以上の光化学蓄熱材を用いた太陽光エネルギ
ー変換貯蔵系の概略を示すもので、貯蔵槽/内に坐る光
化学蓄熱材はそのま\、或いは溶液状にして循環ボンプ
コにより循環系3内を連続的または間欠的に循環させら
れる。そして、集光セルグ内では大陽光照射を受け、異
性化や二景化を起こし、集熱と蓄熱を行った後、変換検
出器りを通過して貯蔵槽/内に蓄えられる。
Figure 1 shows an outline of the solar energy conversion and storage system using the photochemical heat storage material described above. It can be circulated continuously or intermittently within the system 3. Then, in the condensing cell, it is irradiated with sunlight, causing isomerization and dioxidization, and after collecting and storing heat, it passes through a conversion detector and is stored in a storage tank.

この太陽光エネルギー変換針XaMに使用される光化学
蓄熱材はそれ自身の持つ、または添加された光増感剤の
吸収帯に相当する波長光を吸収して高エネルギー異性体
に変化する。
The photochemical heat storage material used in this solar energy conversion needle XaM absorbs light of a wavelength corresponding to the absorption band of the photosensitizer itself or added, and changes into a high-energy isomer.

しかし、100%完全に変換されるわけではなく、一般
に生成した高エネルギー生成物質は同時に光照射を受け
て原物質に戻るため、初期には生成物質量は直線的に増
加するが、その増加速度は次第に減少し、長時間の照射
では照射時間に無関係な光化学平衡状態に到るのが常で
ある。
However, the conversion is not 100% complete, and generally the generated high-energy generated substances are simultaneously irradiated with light and return to the original substance, so initially the amount of generated substances increases linearly, but the rate of increase is gradually decreases, and with long irradiation, a photochemical equilibrium state is usually reached, which is independent of the irradiation time.

第1表は、トランス−アゾベンゼンのシス型への光異性
化について、光波長と光化学平衡におけるシスーアゾベ
〜ゼンの含有率を示した゛もので、低い変換率で平衡に
達することがわかる。
Table 1 shows the light wavelength and the content of cis-azobenzene at photochemical equilibrium with respect to the photoisomerization of trans-azobenzene into the cis form, and it can be seen that equilibrium is reached at a low conversion rate.

第  1  表 したがって第1図に示したシステムのままででは長時間
の照射と循環を行なっても光化学平衡に達したのちは、
それ以上生成物質量が増加せず、変化率は低く止まるば
かりが、徒に副反応により活性物質を消耗するだけで、
このままでは効率の良い蓄エネルギーを実現することが
できない。また光化学平衡とは別に、生成物質の溶液内
での蓄積による変換効率の低下も起る。
Table 1 Therefore, even if the system shown in Figure 1 is used for long periods of irradiation and circulation, after reaching photochemical equilibrium,
The amount of produced substances does not increase any further and the rate of change remains low, but the active substances are wasted due to side reactions.
If this continues, efficient energy storage cannot be achieved. In addition to photochemical equilibrium, conversion efficiency also decreases due to accumulation of produced substances in the solution.

以上のように、第1図に示したシステムでは光化学蓄熱
材の変換効率は向上しないが、従来まで工業的に実現可
能な方法で以上の光化学蓄熱材の変換効率を向上させる
試みは行われていない。
As described above, the system shown in Figure 1 does not improve the conversion efficiency of photochemical heat storage materials, but no attempt has been made to improve the conversion efficiency of photochemical heat storage materials using an industrially feasible method. do not have.

本発明者等は、上記実情に鑑み光化学蓄熱材の変換効率
を向上させるための太陽光エネルギー変換システムにつ
いて鋭意研究の結果、光化学蓄熱材に光エネルギーをe
 Il’lさせて光化学反応を行わせ、吸収した光エネ
ルギーを上記反応生成物質のエンタルピー増として貯蔵
する光エネルギー変換システムにおいて、上記生成物質
を光照射中に、または光照射後一時的に反1ノシ:系よ
り隔離することにより生成物質への変換率を格段に向上
させることができることを見出したものである。
In view of the above-mentioned circumstances, the present inventors conducted intensive research on a solar energy conversion system to improve the conversion efficiency of photochemical heat storage materials, and as a result, the present inventors converted light energy into photochemical heat storage materials by e.g.
In a light energy conversion system that causes a photochemical reaction to occur and stores the absorbed light energy as an enthalpy increase in the reaction product, the product is temporarily converted to an anti-1 during or after light irradiation. Noshi: It was discovered that by isolating it from the system, the conversion rate to the product substance can be significantly improved.

を何等かの方法で反応系外に連続的に除去する持する必
要がある。
must be continuously removed from the reaction system by some method.

この発明においては生成物質を光照射中に、または光照
射後一時的に反応系より隔離することにより光エネルギ
ー変換システムの機能を損うことなく生成物質への変換
効率を格段に向上ミΣせることができるのである。
In this invention, by temporarily isolating the produced substance from the reaction system during or after light irradiation, the conversion efficiency to the produced substance can be significantly improved without impairing the function of the light energy conversion system. It is possible.

生成物質を一時的に反応系より隔離する第1の方法とし
ては、光化学蓄熱材と反応生成物質が共存状態でυ:q
環する経路中に吸着剤を充填したカラムを設け、反応生
成物質を吸着剤中に選択的に吸着させるものである。
The first method of temporarily isolating the produced substance from the reaction system is to create an environment where the photochemical heat storage material and the reaction produced substance coexist in a state of υ:q.
A column filled with an adsorbent is provided in the circular path, and the reaction product is selectively adsorbed into the adsorbent.

なお吸着された生成物質はカラムを加熱したり、或いは
脱離溶媒をカラムに加えることにより、貯蔵槽に移して
使用することができる。
Note that the adsorbed product substance can be transferred to a storage tank and used by heating the column or adding a desorption solvent to the column.

以上の方法は、アゾベンゼンのトランス型がらシス型へ
の異性化反応による光エネルギー変換システムにおいて
は循環システム中に、例えば活性アルミナの吸着カラム
を挿入し、且つアゾベンゼンをシクロヘキサン溶媒に溶
解させて以上の吸着カラム中を通過させることにより実
現することができる。
The above method is performed by inserting, for example, an activated alumina adsorption column into the circulation system in a light energy conversion system using the isomerization reaction from the trans form of azobenzene to the cis form, and dissolving azobenzene in a cyclohexane solvent. This can be achieved by passing it through an adsorption column.

即ち、シス−アゾベンゼンはトランス−アゾベンゼンよ
りも強くアルミナに吸着されるため、シクロヘキサン溶
媒においてシス型の流出速度はトランス型の約4分の1
となる。従って光照射により生成したシス−アゾベンゼ
ンは反応液の循環によりアルミナに吸着されて濃縮され
るのと同時に反応液から除去されるため、未反応−のト
ランス−アゾベンゼンだけがシステム内を循環し光照射
を受ける。その結果変換率は吸着カラムを経由しない場
合に比べて着るしく上昇する。
That is, since cis-azobenzene is more strongly adsorbed on alumina than trans-azobenzene, the outflow rate of the cis-form in cyclohexane solvent is about one-fourth that of the trans-form.
becomes. Therefore, the cis-azobenzene produced by light irradiation is adsorbed by alumina and concentrated during the circulation of the reaction solution, and simultaneously removed from the reaction solution, so only unreacted trans-azobenzene circulates within the system and is irradiated with light. receive. As a result, the conversion rate increases significantly compared to when the adsorption column is not used.

なおこの実施例にあたっては、光照射中絶えず循環を行
う必要はなく、生成物質が時間に対して直線的に増加す
る間は循環を停止して、その後必要時間循環吸着を行な
う操作を繰り返す方法を採用すれば、効率が良い。また
吸着カラムは冷所に保持すれば、一段と効率が上昇する
In this example, it is not necessary to constantly circulate during the light irradiation, but the circulation is stopped while the produced substance increases linearly with time, and then the operation of circulating adsorption is repeated for the necessary time. If adopted, it will be efficient. Furthermore, if the adsorption column is kept in a cool place, its efficiency will further increase.

以上はアゾベンゼンについて説明したが、アゾベンゼン
の誘導体についてもこの方法を適用することができ、ま
たノルボルナジュンークオドリシクレンの付加環化反応
系においても吸着カラムからの流出速度はクオドリシク
レンがフルボルナジエンより著しく遅いので、ノルボル
ナジェン及びその誘導体にも、この方法を適用できる。
The above explanation was for azobenzene, but this method can also be applied to azobenzene derivatives. Also, in the norbornajun-quadoricyclene cycloaddition reaction system, the outflow rate from the adsorption column is significantly higher for quadricyclene than for flubornadiene. Since it is slow, this method can also be applied to norbornadiene and its derivatives.

なお、以上の方法においてカラム中に充填する吸着剤は
活性アルミナに限らず、適用する蓄熱材の種類に応じて
各種の吸着剤を選択することができる。
In addition, the adsorbent packed into the column in the above method is not limited to activated alumina, and various adsorbents can be selected depending on the type of heat storage material to be applied.

更に、カラム中を通過させる溶媒としては、上記シクロ
ヘキサンの他に、ヘキサン、メチルアルコールベンゼン
、石油ベンジン及びその混合溶媒を使用することができ
る。
Furthermore, as a solvent to be passed through the column, in addition to the above-mentioned cyclohexane, hexane, methyl alcohol benzene, petroleum benzine, and a mixed solvent thereof can be used.

また以上のようにして吸着されたシス−アゾベンゼンは
カラムを少し、加熱しながら反応液を循環するか、場合
によってはエーテル等の異種溶媒によって脱着され、容
易に貯蔵槽に移すことができる。
In addition, the cis-azobenzene adsorbed as described above can be easily transferred to a storage tank by circulating the reaction solution while heating the column a little or, depending on the case, by desorbing it with a different solvent such as ether.

生成物質を一時的に反応系より@離する第2の方法とし
ては、光化学蓄熱材と反応生成物の溶媒に対する溶解度
差を利用して生成物質を反応系外に一時的に隔離するこ
とが可能である。
As a second method to temporarily separate the produced substance from the reaction system, it is possible to temporarily isolate the produced substance outside the reaction system by utilizing the difference in solubility in the solvent between the photochemical heat storage material and the reaction product. It is.

これをアゾ、ベンゼンについて見れば、トランス型とシ
ス型のアゾベンゼンは、原物質と生成物質問には分子の
形状から極性に大きな差があるので、原物質の溶解度が
大きく、且つ生成物質に対する溶解度が小さい溶媒また
は混合溶媒を選:択し得る。例えばトランス−アゾベン
ゼンの石油エーテルへの溶解度はOCで351−/43
テアルのにシス−アゾベンゼンのそれは90グ/!に過
ぎず、トランス−Tゾベンゼン共存下ではさらにその溶
解度は低下する。従ってこのような性質を持つ溶媒に原
物質を高濃度に溶解し光照射すれば・、照射中は多くの
場合温度上昇を伴うのが常であるから生成物を溶液状態
を保つが、循環後冷所または貯蔵(や内では生成物質が
析出し、反応液は再び原物質に富むこととなり、第1の
方法と同様な変換率の向上を実現できる。
If we look at this with azo and benzene, trans-type and cis-type azobenzene have a large difference in polarity between the source substance and the product due to the shape of the molecule, so the solubility of the source substance is large, and the solubility of the product substance is large. A solvent or a mixed solvent with a small amount can be selected. For example, the solubility of trans-azobenzene in petroleum ether is 351-/43 in OC.
That of cis-azobenzene is 90 g/! However, its solubility further decreases in the coexistence of trans-Tzobenzene. Therefore, if the raw material is dissolved in a solvent with such properties at a high concentration and irradiated with light, the product will remain in a solution state as the temperature is usually increased during the irradiation, but after circulation. In a cold place or storage, the product material precipitates and the reaction solution becomes enriched in the raw material again, making it possible to achieve the same improvement in conversion rate as in the first method.

なお以上の溶媒として石油エーテルを例示したが、この
他に石油ベンジン、或いは石油エーテルと石油ベンジン
との混合溶媒を使用することもできる。
Although petroleum ether is exemplified as the above solvent, petroleum benzene or a mixed solvent of petroleum ether and petroleum benzine may also be used.

以上要するに、この発明によれば第1図に示すような光
エネルギー変換システムにおいて光化学蓄熱材の高エネ
ルギー物質への変換率を飛躍的に高めることが可能とな
り、経済的に太陽エネルギーの化学的変換貯蔵を実現す
ることができる。
In summary, according to the present invention, it is possible to dramatically increase the conversion rate of a photochemical heat storage material into a high-energy substance in a light energy conversion system as shown in FIG. Storage can be realized.

以下、この発明の実施例を示す。Examples of this invention will be shown below.

実施例1 第2図は、この実施例に用いた太陽光エネルギー変換貯
蔵システムを示すもので、第1図のシステムと比較して
循環系3内に段着力ンムを及びガス抜き装置7を介在さ
せ、また変換検出器Sには記録計gを接続する点で異な
る以外、第1図のシステムと同様な構成となつ”ており
、同様な構成部分については同−付号を使用し、説明を
省略する。
Example 1 FIG. 2 shows a solar energy conversion and storage system used in this example. Compared to the system shown in FIG. The system has the same configuration as the system shown in Figure 1, except that a recorder g is connected to the conversion detector S, and similar components will be described using the same numbers. omitted.

また集光セルグは、厚さ5鴎、幅1 otb 、高さ1
lJ4 oyibの石英セルで構成し、吸着カラムtは
径1rytrb、長さ約10 orbの筒内に活性アル
ミナを充填して構成した。
Also, the condensing cell has a thickness of 5 mm, a width of 1 otb, and a height of 1
The adsorption column t was composed of a cylinder having a diameter of 1 rytrb and a length of about 10 orb and filled with activated alumina.

一方以上のシステムにおいて石英セルフ内には再結晶に
より精製したトランス−アゾベンゼンのシクロヘキサン
溶液約10m1(濃度10Li/−/、8)を収容して
波長340 nm (7,2X104erg/d・se
c )の光を常温において35時間照射した。
In one or more of the systems, the quartz cell contains about 10 ml of a cyclohexane solution of trans-azobenzene purified by recrystallization (concentration 10 Li/-/, 8), and the wavelength is 340 nm (7,2×104 erg/d・se
The light of c) was irradiated for 35 hours at room temperature.

照射後0.4 mlj/mjnの流速で10分間循環を
行なったところ、生成物質であるシス−アゾベンゼンは
第2図中の吸着カラム(径1濡、長さ約100nb)に
液流入口から約5711411の幅に完全に吸着された
。循環を止め再び照射な行ない以下同様に操作したとこ
ろ、吸届されたシス−アゾベンゼン約1.2偏の幅とな
ったか、やはり完全に吸着され、未反兄(トランス−ア
ゾベンゼンだけを繰り返し照射することが可能であった
。吸着カラムを温風機で加温しながら溶液を循環させる
ことにより、シス−アゾベンゼンは容易に溶液中へ脱離
された。
After irradiation, circulation was performed for 10 minutes at a flow rate of 0.4 mlj/mjn, and the product cis-azobenzene was transferred from the liquid inlet to the adsorption column (diameter 1, length approximately 100 nm) shown in Figure 2. It was completely absorbed into the width of 5711411. When the circulation was stopped and irradiation was performed again, the same operation was performed, and the width of the adsorbed cis-azobenzene was approximately 1.2%, or it was completely adsorbed, and the unabsorbed cis-azobenzene (only the trans-azobenzene was irradiated repeatedly) By circulating the solution while heating the adsorption column with a hot air blower, cis-azobenzene was easily desorbed into the solution.

実施例2 減圧蒸溜して精製したノルボルナジェンに光増感剤とし
てアセトフェノンを添加したシクロヘキサン溶液約10
m1C士ノルボルナジェン、92P#、アセ) 7 工
/ ンty77−e )ヲv<t=eJ’r’37と全
く同様にして640ルm 光により照射し、ノリ ホ/I/ −3” シxンヲ効率よくクオド¥シクレン
に変換できた。
Example 2 A cyclohexane solution containing acetophenone as a photosensitizer to norbornadiene purified by distillation under reduced pressure
Irradiated with 640 lm light in exactly the same manner as in 37, and exposed Noriho/I/-3". I was able to efficiently convert it to Quad\Cyclen.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の光化学蓄熱材を用いた元1■−ネルギ
ー変換システムの概略図、■2図はこの発明の一実施例
を示す光エネルギー変換システムの概略図である。 トコ中、3は循環系、グは集光セル、乙はIN着カラム
FIG. 1 is a schematic diagram of a light energy conversion system using a conventional photochemical heat storage material, and FIG. 2 is a schematic diagram of a light energy conversion system showing an embodiment of the present invention. Among them, 3 is the circulatory system, G is the condensing cell, and O is the IN column.

Claims (4)

【特許請求の範囲】[Claims] (1)光化学蓄熱材に光エネルギーを吸収させ、光化学
反応を行い、吸収した光エネルギーを上記反応生成物質
のエンタルピー増として貯蔵する光エネルギー変換シス
テムにおいて、上記生成物質を光照射中に、または光照
射後一時的に反応系より@離することを特徴とする光エ
ネルギー変換システム。
(1) In a light energy conversion system in which a photochemical heat storage material absorbs light energy, performs a photochemical reaction, and stores the absorbed light energy as an enthalpy increase of the reaction product, the product is A light energy conversion system characterized by being temporarily separated from the reaction system after irradiation.
(2)生成物質を一時的に反応系より隔離する手段とし
て光化学蓄熱材と反応生成物質が共存状態で循卵する経
路中に1吸着剤を充填したカラムを設けた特許請求の範
囲第1項記載の光エネルギー変換システム。
(2) As a means for temporarily isolating the product from the reaction system, a column filled with an adsorbent is provided in the path where the photochemical heat storage material and the reaction product circulate in a coexisting state. A light energy conversion system as described.
(3)生成物質を一時的に反応系より隔離する手段とし
て生成物質の溶解度の低い溶媒を光化学蓄熱材の溶媒と
して使用する特許請求の範囲第1項記載の光エネルギー
変換システム。
(3) The light energy conversion system according to claim 1, wherein a solvent in which the produced substance has a low solubility is used as a solvent for the photochemical heat storage material as a means for temporarily isolating the produced substance from the reaction system.
(4)  光化学蓄熱材を、アゾベンゼン、ノルボルナ
ジェン及びこれ等の誘導体から選択する特許請求の範囲
第1項又は第2項又は第6項記載の光エネルギー変換シ
ステム。
(4) The optical energy conversion system according to claim 1, 2, or 6, wherein the photochemical heat storage material is selected from azobenzene, norbornadiene, and derivatives thereof.
JP58068977A 1983-04-19 1983-04-19 Optical energy conversion system Granted JPS59195057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58068977A JPS59195057A (en) 1983-04-19 1983-04-19 Optical energy conversion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58068977A JPS59195057A (en) 1983-04-19 1983-04-19 Optical energy conversion system

Publications (2)

Publication Number Publication Date
JPS59195057A true JPS59195057A (en) 1984-11-06
JPH0221490B2 JPH0221490B2 (en) 1990-05-15

Family

ID=13389234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58068977A Granted JPS59195057A (en) 1983-04-19 1983-04-19 Optical energy conversion system

Country Status (1)

Country Link
JP (1) JPS59195057A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110098U (en) * 1984-12-22 1986-07-12

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142150A (en) * 1982-02-17 1983-08-23 Kawamura Inst Of Chem Res Solar energy utilizing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142150A (en) * 1982-02-17 1983-08-23 Kawamura Inst Of Chem Res Solar energy utilizing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110098U (en) * 1984-12-22 1986-07-12
JPH0129517Y2 (en) * 1984-12-22 1989-09-07

Also Published As

Publication number Publication date
JPH0221490B2 (en) 1990-05-15

Similar Documents

Publication Publication Date Title
US5492683A (en) Regenerable supported amine-polyol sorbent
Sagan et al. Long-wavelength ultraviolet photoproduction of amino acids on the primitive Earth
US4754805A (en) Method for transforming the temperature of heat and heat transformer
JP2002512358A (en) Method and apparatus for production and extraction of molybdenum-99
JPS60501024A (en) Chemical adsorption air conditioner
JPS60194399A (en) Method of treating initial pertechnetium acid salt aqueous solution
KR20030067476A (en) Inorganic sorbent for molybdenum-99 extraction from irradiated uranium solutions and its method of use
JPS59195057A (en) Optical energy conversion system
US3074776A (en) Gaseous disposal process
JP3839050B2 (en) ▲ Top 11 ▼ Production of C-methyl iodide
JPS5335681A (en) Continuous adsorber using activated carbon
Fischer et al. X‐and γ‐Ray‐Induced Radiolytic Isomerization of Solutions of Stilbene
Hentz et al. Concentration and temperature dependence of the quantum yield and lifetime of the lowest triplet state of benzene in the liquid phase
AU675662B2 (en) Latent store
CN107936260A (en) Modification and unmodified mesoporous metal organic framework compounds and its preparation method and application
CN104447588A (en) Ni (II)-based metal-organic framework and synthesis method and application thereof
RU2103756C1 (en) Process of isolation of isotopes from fission products produced in nuclear reactor ( versions )
US20220176337A1 (en) System and method using photochemical oxygen storage and release
CN116262627B (en) Separating from waste liquid90Sr is obtained90Y method and system
Wong et al. On the preparation of 80Br-biomolecules II: 80Br for I exchange in Iodo-Biomolecules
DeLap et al. Photolysis of 4-Amino-4'-nitroazobenzene in Dimethylformamide
Wilzbach The gas exposure technique for tritium labeling
JPS60255A (en) Collection and reservation of solar heat energy
US3158560A (en) Process for isomerization of olefinic hydrocarbons
Blyholder et al. Hydrocarbon surface species of cobalt