JPS6124621B2 - - Google Patents

Info

Publication number
JPS6124621B2
JPS6124621B2 JP57023973A JP2397382A JPS6124621B2 JP S6124621 B2 JPS6124621 B2 JP S6124621B2 JP 57023973 A JP57023973 A JP 57023973A JP 2397382 A JP2397382 A JP 2397382A JP S6124621 B2 JPS6124621 B2 JP S6124621B2
Authority
JP
Japan
Prior art keywords
compound
heat absorbing
solar collector
sunlight
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57023973A
Other languages
Japanese (ja)
Other versions
JPS58142152A (en
Inventor
Manabu Ishizuka
Hiroshi Nakano
Hiroshi Ogawa
Yasuro Shigemitsu
Tadao Mikami
Kozo Kimura
Shoichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP57023973A priority Critical patent/JPS58142152A/en
Publication of JPS58142152A publication Critical patent/JPS58142152A/en
Publication of JPS6124621B2 publication Critical patent/JPS6124621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は太陽光エネルギを集光して貯蔵する太
陽エネルギ利用装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar energy utilization device that collects and stores solar energy.

従来の一般的な太陽エネルギ利用装置は、第1
図に示される如く水循環パイプ10が流過するコ
レクタ12で得られる温水を貯湯槽14へ導いて
蓄熱するようになつている。この貯湯槽14には
ヒータ16が設けられており、必要に応じて温水
を加熱した後に給湯部18へ送り出している。
Conventional general solar energy utilization devices are
As shown in the figure, hot water obtained from a collector 12 flowing through a water circulation pipe 10 is guided to a hot water storage tank 14 for heat storage. This hot water storage tank 14 is provided with a heater 16, which heats the hot water as required and then sends it to the hot water supply section 18.

ところがこのような太陽エネルギ利用装置では
蓄熱材が水であるため貯湯槽14からの放熱が大
きく、長時間の蓄熱は不可能である。またこの太
陽エネルギ利用装置では太陽光のうち長波長域の
光エネルギが比較的効率よく集熱可能であり、短
波長域(0.17〜0.35μm)の光エネルギはあまり
効率よく集熱されておらず集熱部においても限ら
れた効率となつている。
However, in such a solar energy utilization device, since the heat storage material is water, a large amount of heat is radiated from the hot water storage tank 14, making it impossible to store heat for a long time. In addition, this solar energy utilization device can collect light energy in the long wavelength range of sunlight relatively efficiently, but light energy in the short wavelength range (0.17 to 0.35 μm) is not collected very efficiently. There is also limited efficiency in the heat collecting section.

本発明は上記事実を考慮し、太陽光のうちより
広い波長域に亘つて光エネルギを利用可能である
太陽エネルギ利用装置を得ることを目的である。
The present invention has been made in consideration of the above facts, and an object of the present invention is to obtain a solar energy utilization device that can utilize light energy over a wider wavelength range of sunlight.

本発明に係る太陽エネルギ利用装置は主として
長波長域の光エネルギを集熱する水等の吸放熱材
循環太陽光コレクタと、短波長光の光エネルギに
より高歪可能化合物を高歪化合物に変化させる光
エネルギ貯蔵化合物循環太陽光コレクタと太陽光
のうち短波長光を主として前記光エネルギ貯蔵化
合物循環太陽光コレクタへ、長波長光を主として
吸放熱材循環太陽光コレクタへ照射させる分波手
段とを設けて太陽光を波長によつて分光すること
によりより広い波長域に亘つて光エネルギを収集
し、これらのコレクタからの吸放熱材及び高歪化
合物は共に貯湯槽等の吸放熱材貯留容器に導くと
共にこの貯留容器内には高歪化合物を高歪可能化
合物へ変化させて熱反応を生じさせる触媒を備え
ることにより光エネルギ貯蔵化合物で貯留容器内
の吸放熱材を加熱できるようになつている。
The solar energy utilization device according to the present invention mainly includes a solar collector that circulates a heat absorbing and dissipating material such as water that collects light energy in a long wavelength region, and a highly strainable compound that changes into a highly strained compound by the light energy of short wavelength light. A light energy storage compound circulating solar collector and a splitting means for irradiating short wavelength light of the sunlight mainly to the light energy storage compound circulating solar collector and long wavelength light mainly to the heat absorbing and dissipating material circulating solar collector. By separating sunlight into wavelengths, light energy is collected over a wider wavelength range, and both the heat absorbing and dissipating material and the high distortion compound from these collectors are guided to a heat absorbing and dissipating material storage container such as a hot water tank. At the same time, the storage container is equipped with a catalyst that causes a thermal reaction by converting a high strain compound into a highly strainable compound, so that the heat absorption and radiation material in the storage container can be heated with the light energy storage compound.

なおコレクタからの吸放熱材は吸放熱材貯留容
器へ直接供給されてもよく、また吸放熱材貯留容
器内の放熱コイルへ供給し、この放熱コイルを介
して水等と熱交換さててもよい。
Note that the heat absorbing/radiating material from the collector may be directly supplied to the heat absorbing/radiating material storage container, or may be supplied to a heat radiating coil in the heat absorbing/radiating material storage container, and heat exchanged with water etc. via this heat radiating coil. .

以下本発明の実施例を図面に従い説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第2図に示される如く本実施例に係る太陽エネ
ルギ利用装置では太陽光コレクタ20が複数の配
管により吸放熱材貯留容器である貯湯槽22と連
通されている。この太陽光コレクタ20は吸放熱
材循環太陽光コレクタとしての水循環太陽光コレ
クタ部24と光エネルギ貯蔵化合物循環太陽光コ
レクタ部26とを有している。(以下それぞれ水
循環コレクタ部、化合物循環コレクタ部と称す
る。) この太陽光コレクタ20は各種の形状が考えら
れるが、この実施例では一例として第3図に示さ
れる具体的構造が用いられている。この構造を詳
しく説明すると、図示しない構築物の屋上等へ設
置される固定ベース28へ軸支される垂直軸30
には水平旋回フレーム32が固着されて垂直軸と
共に旋回可能となつている。この水平旋回フレー
ム32から立設された一対のブラケツト34には
水平軸36が軸支されており、この水平軸36へ
垂直旋回フレーム38が固着されて水平軸と共に
旋回可能となつている。
As shown in FIG. 2, in the solar energy utilization device according to this embodiment, a solar collector 20 is communicated with a hot water storage tank 22, which is a heat absorbing and dissipating material storage container, through a plurality of pipes. This solar light collector 20 has a water circulation solar collector section 24 as a heat absorption/dissipation material circulation solar collector section and a light energy storage compound circulation solar collector section 26. (Hereinafter, they will be referred to as a water circulation collector section and a compound circulation collector section, respectively.) Although various shapes can be considered for the solar light collector 20, a specific structure shown in FIG. 3 is used as an example in this embodiment. To explain this structure in detail, a vertical shaft 30 is supported by a fixed base 28 installed on the roof of a structure (not shown).
A horizontal rotation frame 32 is fixedly attached to the frame 32 so that it can rotate together with a vertical axis. A horizontal shaft 36 is pivotally supported by a pair of brackets 34 erected from the horizontal swing frame 32, and a vertical swing frame 38 is fixed to the horizontal shaft 36 so as to be able to swing together with the horizontal shaft.

垂直旋回フレーム38は天井部が透明な分波手
段であるフレネルプリズム40とされた箱型であ
り、フレネルプリズム40の集光部に循環パイプ
42,44が複数本設けられている。ここに循環
パイプ42は第2図の水循環コレクタ部24に、
循環パイプ44は第2図の化合物循環コレクタ部
26にそれぞれ相当する。この循環パイプ44は
集光部のほぼ中央部に設けられ、この循環パイプ
44の両側部に循環パイ42が配置されており、
循環パイプ42には水が、循環パイプ44には光
エネルギ貯蔵化合物が循環されるようになつてい
る。循環パイプ42は必要に応じて2重管とし、
内管内に水を循環させ内外管間は真空状態とする
ことができる。
The vertically rotating frame 38 is box-shaped and has a transparent Fresnel prism 40 as a beam splitting means on the ceiling, and a plurality of circulation pipes 42 and 44 are provided in the condensing part of the Fresnel prism 40. Here, the circulation pipe 42 is connected to the water circulation collector section 24 in FIG.
The circulation pipes 44 each correspond to the compound circulation collector section 26 in FIG. This circulation pipe 44 is provided approximately at the center of the light collecting section, and circulation pipes 42 are arranged on both sides of this circulation pipe 44.
Water is circulated through the circulation pipe 42 and light energy storage compound is circulated through the circulation pipe 44. The circulation pipe 42 may be a double pipe if necessary,
Water can be circulated within the inner tube to create a vacuum between the inner and outer tubes.

この2種類の循環パイプ42,44にはフレネ
ルプリズム40を通過した太陽光が照射される
が、太陽光は光の成分の波長により屈折率が異る
ので異る波長の光が循環パイプ42,44へ照射
されるようになつている。すなわち太陽光はフレ
ネルプリスム40を透過して屈折した後スペクト
ルに分れるのでこの分散スペクトルの帯状部分の
上に波長域に合致した受光体である循環パイプ4
2,44が配置されており、循環パイプ44はフ
レネルプリズム40で比較的大きな屈折をする短
波長光を受光し、水循環パイプ42は比較的大き
な屈折をしない長波長光を受光するようになつて
いる。この結果この太陽光コレクタ20はフレネ
ルプリズム40で太陽光を効率よく集光分光し全
波長域の光エネルギを収集できるようになつてい
る。
These two types of circulation pipes 42 and 44 are irradiated with sunlight that has passed through the Fresnel prism 40, but since sunlight has a different refractive index depending on the wavelength of the light component, light of different wavelengths is transmitted to the circulation pipes 42 and 44. 44. In other words, sunlight passes through the Fresnel prism 40, is refracted, and then splits into a spectrum, so the circulation pipe 4, which is a photoreceptor that matches the wavelength range, is placed above the band-shaped portion of this dispersion spectrum.
2, 44 are arranged, the circulation pipe 44 receives short wavelength light that is relatively largely refracted by the Fresnel prism 40, and the water circulation pipe 42 receives long wavelength light that is not relatively significantly refracted. There is. As a result, the sunlight collector 20 is able to efficiently collect sunlight into spectra using the Fresnel prism 40 and collect light energy in the entire wavelength range.

なお第3図に示される垂直軸30及び水平軸3
6は図示しない駆動装置で回転して太陽光コレク
タ20を常に太陽光に追尾させることができ、こ
の追尾制御手段としては太陽光位置センサー、太
陽光位置記憶装置等を用いることができる。
Note that the vertical axis 30 and horizontal axis 3 shown in FIG.
Reference numeral 6 is rotated by a drive device (not shown) so that the sunlight collector 20 can always track sunlight, and a sunlight position sensor, a sunlight position storage device, etc. can be used as this tracking control means.

循環パイプ44内を流れる光エネルギ貯蔵化合
物として本実施例では第4図に示されるノルボル
ナジエン(以下N体と称する)が用いられてい
る。このN体は常温で流動性を有する高歪可能化
合物であり、紫外線領域の短波長光を照射すると
光異性化反応により高歪化合物であるクワドリシ
クレン(以下Q体と称する)に変化する性質を有
しており、このQ体は触媒(コバルトテトラフエ
ニルポリフイリン錯体やコバルトフタロシアニン
錯体)内を通過させると、触媒熱反応を生じてN
体の状態に戻る性質がある。この時に22KCal/
Mol=240Cal/g程度の熱発生を伴う。従つて太
陽光のうち主として短波長光を蓄積し、必要に応
じて熱エネルギとして放出可能である。
In this embodiment, norbornadiene (hereinafter referred to as N-form) shown in FIG. 4 is used as the optical energy storage compound flowing through the circulation pipe 44. This N-form is a highly strainable compound that has fluidity at room temperature, and when irradiated with short wavelength light in the ultraviolet region, it changes into a highly strained compound quadricyclene (hereinafter referred to as Q-form) through a photoisomerization reaction. When this Q form is passed through a catalyst (cobalt tetraphenyl polyphylline complex or cobalt phthalocyanine complex), a catalytic thermal reaction occurs and N
It has the property of returning to its physical state. At this time 22KCal/
It is accompanied by heat generation of about Mol=240Cal/g. Therefore, it is possible to mainly accumulate short wavelength light of sunlight and release it as thermal energy as necessary.

第2図に基いて太陽光コレクタ20と貯湯槽2
2との間の配管を説明する。水循環コレクタ部2
4は下流側が配管46を介して、上流側が配管5
0を介して貯湯槽22の下端部付近へと連通され
ている。この配管50の中間部にはポンプ52が
設けられて水循環コレクタ部24で加熱された温
水を貯湯槽22へ送り込むようになつている。
Based on Figure 2, the solar collector 20 and the hot water storage tank 2
The piping between 2 and 2 will be explained. Water circulation collector part 2
4 is connected via piping 46 on the downstream side and through piping 5 on the upstream side.
0 to the vicinity of the lower end of the hot water tank 22. A pump 52 is provided in the middle of the pipe 50 to send hot water heated by the water circulation collector section 24 to the hot water tank 22.

一方化合物循環コレクタ部26の一端は配管5
6を介して三方弁58により配管60,62へ連
通されている。配管62はQ体貯留槽64、ポン
プ66を介して貯湯槽22内の発熱コイル68の
上流端へ連通されている。この発熱コイル68の
下流端は配管69、N体貯留槽70及び三方弁7
2を介して配管60及び74と連通されている。
貯湯槽22内の発熱コイル68にはその上流側端
部に触媒76(この実施例ではコバルトフタロシ
アニン錯体が用いられる)が設けられて配管62
からのQ体に光異性化反応を生じさせるようにな
つている。この発熱コイル68は配管46,50
の貯湯槽22へ連通部よりも上方へ配置されてい
る。
On the other hand, one end of the compound circulation collector section 26 is connected to the pipe 5
6 and communicates with pipes 60 and 62 by a three-way valve 58. The piping 62 is connected to the upstream end of a heating coil 68 in the hot water tank 22 via a Q body storage tank 64 and a pump 66. The downstream end of this heating coil 68 is connected to a pipe 69, an N body storage tank 70 and a three-way valve 7.
It communicates with piping 60 and 74 via 2.
A catalyst 76 (a cobalt phthalocyanine complex is used in this embodiment) is provided at the upstream end of the heating coil 68 in the hot water storage tank 22, and the piping 62
It is designed to cause a photoisomerization reaction to the Q form from. This heating coil 68 is connected to the piping 46, 50
The hot water storage tank 22 is disposed above the communication portion.

また三方弁72へ接続された配管74はポンプ
78を介して化合物循環コレクタ部26の他端へ
連通されており、配管56,60と共に循環パイ
プ44への循環路を構成している。なお第2図に
おいて太陽光コレクタ20と貯湯槽22との間の
配管で破線はQ体、実線はN体、一点鎖線は温水
の流路を示している。
Further, a pipe 74 connected to the three-way valve 72 is communicated with the other end of the compound circulation collector section 26 via a pump 78, and forms a circulation path to the circulation pipe 44 together with the pipes 56 and 60. In FIG. 2, in the piping between the solar collector 20 and the hot water storage tank 22, the broken line shows the Q body, the solid line shows the N body, and the dashed line shows the hot water flow path.

また貯湯槽22の下部には給水配管80が連通
されて図示しない給水源からの水を貯湯槽下部を
介して配管50へ送り込むようになつており、上
部には給湯配管82が連通されて加熱後の温水を
給湯部84及び図示しない暖房装置、冷房装置等
へ送り出すようになつている。給水配管80は貯
湯槽22を介すことなく、直接配管50と連通す
ることもできる。また貯湯槽22には必要に応じ
てヒータを設けることができる。
Further, a water supply pipe 80 is connected to the lower part of the hot water storage tank 22 to send water from a water supply source (not shown) to the pipe 50 through the lower part of the hot water tank 22, and a hot water supply pipe 82 is connected to the upper part to heat the water. The subsequent hot water is sent to a hot water supply section 84 and a heating device, a cooling device, etc. (not shown). The water supply pipe 80 can also communicate directly with the pipe 50 without going through the hot water tank 22. Further, a heater can be provided in the hot water tank 22 as necessary.

次に本実施例の作動を説明する。 Next, the operation of this embodiment will be explained.

給水配管80からの水は配管50を通つて太陽
光コレクタ20へ送られ、太陽光のうち主として
長波長光の照射により加熱され、配管46を通つ
て貯湯槽22内へ注入される。この温水は必要に
応じて配管50、太陽光コルクタ20へと再循環
させて高温水を得ることができる。
Water from the water supply pipe 80 is sent to the solar collector 20 through the pipe 50, heated by irradiation with mainly long-wavelength sunlight, and then injected into the hot water storage tank 22 through the pipe 46. This hot water can be recirculated to the piping 50 and the solar corctor 20 as needed to obtain high-temperature water.

一方化合物循環コレクタ部26は太陽光のうち
短波長光を受けて光エネルギ貯蔵化合物をQ体に
変化させるが、充分に光エネルギを蓄積させるた
めにN体を循環輸送する。すなわち三方弁58,
72の切換えにより配管56,60,74を連通
状態として循環路を形成しポンプ78の駆動で循
環パイプ44内へN体を複数回流通させ充分に光
異性化反応をさせる。
On the other hand, the compound circulation collector section 26 receives short wavelength light of sunlight and converts the light energy storage compound into the Q form, but circulates and transports the N form in order to store sufficient light energy. That is, the three-way valve 58,
By switching 72, the pipes 56, 60, and 74 are connected to form a circulation path, and the pump 78 is driven to flow the N-isomer into the circulation pipe 44 multiple times to cause a sufficient photoisomerization reaction.

その後三方弁58を切換えて配管56と62と
を連通すれば高歪化合物となつたQ体はQ体貯留
槽64内へ貯留される。このQ体貯留槽64内の
Q体は単独ではN体に復帰することはないので熱
損失がなく、断熱材等も不要で長期間のエネルギ
貯蔵が可能である。
Thereafter, when the three-way valve 58 is switched to connect the pipes 56 and 62, the Q body, which has become a highly strained compound, is stored in the Q body storage tank 64. Since the Q body in the Q body storage tank 64 does not return to the N body by itself, there is no heat loss, and no heat insulating material is required, making it possible to store energy for a long period of time.

必要時にQ体貯留槽64内のQ体はポンプ66
の駆動により貯湯槽22内の発熱コイル68へと
送られる。この発熱コイル68の入口で触媒76
と接触して触媒熱反応を生じ元のN体に復帰する
と共に熱発生して発熱コイル68を流れる間に貯
湯槽22内の温水と熱交換するので貯湯槽22内
の温水はさらに加熱される。従つて貯湯槽22か
らの給湯部84は水循環太陽光コレクタ24で加
熱された温水のみならず必要に応じてさらに発熱
コイル68でも加熱されて高温となつた温水も取
り出すことができ、広い範囲の給湯、冷暖房に使
用可能である。
When necessary, the Q body in the Q body storage tank 64 is pumped to the pump 66.
is sent to the heating coil 68 in the hot water storage tank 22. At the inlet of this heating coil 68, a catalyst 76
When it comes into contact with the water, a catalytic thermal reaction occurs and the water returns to its original N form, generates heat, and exchanges heat with the hot water in the hot water storage tank 22 while flowing through the heating coil 68, so that the hot water in the hot water storage tank 22 is further heated. . Therefore, the hot water supply unit 84 from the hot water storage tank 22 can take out not only hot water heated by the water circulation solar collector 24 but also hot water heated by the heating coil 68 and heated to a high temperature if necessary, and can be used in a wide range of areas. It can be used for hot water supply, air conditioning and heating.

発熱コイル68でN体に復帰した光エネルギ貯
蔵化合物は配管69を通つてN体貯留槽70へ蓄
積され、必要に応じて三方弁72の切換えで配管
74を通つて循環パイプ44へと戻される。
The light energy storage compound that has been restored to N-body in the heating coil 68 is accumulated in the N-body storage tank 70 through piping 69, and is returned to circulation pipe 44 through piping 74 by switching the three-way valve 72 as necessary. .

上記実施例では光エネルギ貯蔵化合物としてノ
ルボルナジエンを使用したが本発明は可逆的光異
性仮反応によつて光エネルギの吸収と熱エネルギ
の放出を反復し得る流動性の光エネルギ貯蔵化合
物であれば全て適用可能であり、アゼピン等の他
の化合物も使用可能である。このアゼピンは短波
長光を受けて歪化合物であるジクロブテノジヒド
ロビロールに変化し、触媒の存在下で再び高歪可
能化合物であるアゼピンに復帰すると共に熱発生
を伴うようになつている。またその他本発明では
光エネルギ貯蔵化合物をスラリー状としても使用
でき、流動性を有する状態であれば全て適用可能
である。
Although norbornadiene was used as the light energy storage compound in the above embodiment, the present invention can be applied to any fluid light energy storage compound that can repeatedly absorb light energy and release thermal energy through a reversible photoisomeric pseudoreaction. As applicable, other compounds such as azepines can also be used. When this azepine receives short wavelength light, it changes into a strained compound, dichlorobutenodihydrovyrol, and in the presence of a catalyst, it reverts back to azepine, a highly strainable compound, and is accompanied by heat generation. Additionally, in the present invention, the light energy storage compound can be used in the form of a slurry, and any form of fluidity can be applied.

上記実施例で吸放熱材として水を用いたが、こ
れは純水に限らず、防錆剤、凍結防止剤等の適宜
の添加剤が含まれたものでもよい。また吸放熱材
は水以外にも太陽光エネルギを熱エネルギとして
吸収放出するものであれば全て適用可能で、グリ
コール類、炭化水素系、ハロゲン化炭化水素等で
もよい。
Although water was used as the heat absorbing and dissipating material in the above embodiments, it is not limited to pure water, and may contain appropriate additives such as rust preventives and antifreeze agents. In addition to water, the heat absorbing and dissipating material may be any material that absorbs and releases sunlight energy as heat energy, and may be glycols, hydrocarbons, halogenated hydrocarbons, or the like.

上記実施例中、Q体貯留槽64、N体貯留槽7
0を用いることによりエネルギの長期貯蔵が可能
となるが、本発明は貯留槽に限らず実質的に光エ
ネルギ化合物を貯留できる貯留手段であればよ
い。
In the above embodiment, Q body storage tank 64, N body storage tank 7
Although long-term storage of energy is possible by using 0, the present invention is not limited to a storage tank, and any storage means that can substantially store the light energy compound may be used.

なお上記綬施例では水循環太陽光コレクタから
の温水を直接貯湯槽22内へ供給したが、貯湯槽
22内へ放出コイルを設け、この放出コイル内へ
温水を導き、配管50内の水と、配管80内の水
とを間接的に熱交換してもよいのは当然である。
Note that in the above-mentioned ribbon embodiment, hot water from the water circulation solar collector was directly supplied into the hot water storage tank 22, but a discharge coil is provided in the hot water storage tank 22, hot water is guided into this discharge coil, and the water in the piping 50 and Naturally, heat may be exchanged indirectly with the water in the pipe 80.

以上説明した如く本発明に係るエネルギ利用装
置は分波手段を介して太陽光を光エネルギ貯蔵化
合物循環太陽光コレクタと吸放熱材循環太陽光コ
レクタとへ照射して広い波長域に亘つて太陽光を
利用し、吸放熱材循環太陽光コレクタからの吸放
熱材を吸放熱材貯留容器へ供給すると共に、光エ
ネルギ貯蔵化合物循環太陽光コレクタからの高歪
化合物を吸放熱材貯留容器内の発熱コイルへ導き
この発熱コイルに設けた触媒と触媒熱反応を生じ
させるので、太陽光の全波長域の光エネルギを有
効に利用することができる優れた効果を有する。
As explained above, the energy utilization device according to the present invention irradiates sunlight to the light energy storage compound circulating solar collector and the heat absorbing/radiating material circulating solar collector through the splitting means, thereby transmitting sunlight over a wide wavelength range. , the heat absorbing and dissipating material from the solar collector is supplied to the heat absorbing and dissipating material storage container, and the highly strained compound from the photovoltaic energy storage compound circulating solar collector is supplied to the heat generating coil in the heat absorbing and discharging material storage container. Since it causes a catalytic thermal reaction with the catalyst provided in the heating coil, it has the excellent effect of effectively utilizing the light energy in the entire wavelength range of sunlight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の太陽エネルギ利用装置を示す系
統図、第2図は本発明の太陽エネルギ利用装置の
実施例を示す系統図、第3図は太陽光コレクタを
示す一部破断斜視図、第4図は本実施例に用いる
光エネルギ貯蔵化合物を示す化学反応式である。 20……太陽光コレクタ、22……貯湯槽、2
4……水循環太陽光コレクタ部、26……光エネ
ルギ化合物循環太陽光コレクタ部、42,44…
…循環パイプ、64……Q体貯留槽、68……発
熱コイル、70……N体貯留槽、76……触媒。
FIG. 1 is a system diagram showing a conventional solar energy utilization device, FIG. 2 is a system diagram showing an embodiment of the solar energy utilization device of the present invention, FIG. 3 is a partially cutaway perspective view showing a solar collector, and FIG. FIG. 4 is a chemical reaction formula showing the optical energy storage compound used in this example. 20... Solar collector, 22... Hot water storage tank, 2
4... Water circulation solar collector section, 26... Light energy compound circulation solar collector section, 42, 44...
...Circulation pipe, 64...Q body storage tank, 68...Heating coil, 70...N body storage tank, 76...Catalyst.

Claims (1)

【特許請求の範囲】 1 熱エネルギの吸収と放出を反復し得る流動性
の吸放熱材を太陽光で加熱する吸放熱材循環太陽
光コレクタと、高歪可能化合物を太陽光で高歪化
合物に変化させる光エネルギ貯蔵化合物循環太陽
光コレクタと、太陽光のうち短波長光を主として
前記光エネルギ貯蔵化合物循環太陽光コレクタへ
照射し長波長光を主として吸放熱材循環太陽光コ
レクタへ照射させる分波手段と、前記吸放熱材循
環太陽光コレクタと連通されて加熱後の吸放熱材
が供給されこの吸放熱材が内部に直接供給貯留さ
れるか又は内蔵された放熱コイルに供給される吸
放熱材貯留容器と、この吸放熱材貯留容器へ内蔵
され前記光エネルギ貯蔵化合物循環太陽光コレク
タへ連通させると共に高歪化合物と接触して高歪
可能化合物へ変化させる熱反応を生じさせる触媒
が設けられる発熱コイルと、を有する太陽エネル
ギ利用装置。 2 前記分波手段はフレネルプリズムであること
を特徴とした前記特許請求の範囲第1項に記載の
太陽エネルギ利用装置。 3 熱エネルギの吸収と放出を反復し得る流動性
の吸放熱材を太陽光で加熱する吸放熱材循環太陽
光コレクタと、高歪可能化合物を太陽光で高歪化
合物に変化させる光エネルギ貯蔵化合物循環太陽
光コレクタと、太陽光のうち短波長光を主として
前記光エネルギ貯蔵化合物循環太陽光コレクタへ
照射し長波長光を主として吸放熱材循環太陽光コ
レクタへ照射させる分波手段と、前記吸放熱材循
環太陽光コレクタと連通されて加熱後の吸放熱材
が供給されこの吸放熱材が内部に直接供給貯留さ
れるか又は内蔵された放熱コイルに供給される吸
放熱材貯留器と、この吸放熱材貯留容器へ内蔵さ
れ高歪化合物と接触して高歪可能化合物へ変化さ
せる熱反応を生じさせる触媒が設けられる発熱コ
イルと、この発熱コイルの上流側と前記光エネル
ギ貯蔵化合物循環太陽光コレクタとの間へ介在さ
れる高歪化合物貯留手段と、前記発熱コイルの下
流側と前記光エネルギ貯蔵化合物循環太陽光コレ
クタとの間へ介在される高歪可能化合物貯留手段
と、を有する太陽エネルギ利用装置。 4 前記高歪化合物貯留手段及び高歪可能化合物
貯留手段はそれぞれ高歪化合物貯留槽及び高歪可
能化合物貯留槽であることを特徴とした前記特許
請求の範囲第3項に記載の太陽エネルギ利用装
置。 5 前記分波手段はフレネルプリズムであること
を特徴とした前記特許請求の範囲第3項に記載の
太陽エネルギ利用装置。
[Scope of Claims] 1. A heat absorbing/radiating material circulation solar collector that heats a fluid heat absorbing/radiating material that can repeatedly absorb and release thermal energy with sunlight, and converting a highly strainable compound into a highly strained compound with sunlight. a light energy storage compound circulating solar collector that changes the light energy storage compound; and a splitter that mainly irradiates the short wavelength light of the sunlight to the light energy storage compound circulating solar collector and irradiates the long wavelength light mainly to the heat absorbing material circulating solar collector. and a heat absorbing/radiating material that is communicated with the heat absorbing/radiating material circulation solar collector to supply the heated heat absorbing/radiating material, and the heat absorbing/radiating material is directly supplied and stored inside the heat absorbing/radiating material or is supplied to a built-in heat radiating coil. a storage container, and a catalyst that is built into the heat absorbing and dissipating material storage container and communicates with the light energy storage compound circulation solar collector, and that contacts the high strain compound to cause a thermal reaction that converts it into a high strain capable compound. A solar energy utilization device having a coil. 2. The solar energy utilization device according to claim 1, wherein the demultiplexing means is a Fresnel prism. 3. A heat absorbing/radiating material circulation solar collector that uses sunlight to heat a fluid heat absorbing/radiating material that can repeatedly absorb and release thermal energy, and a light energy storage compound that changes a highly strainable compound into a highly strained compound using sunlight. a circulating solar collector; a splitting means for mainly irradiating short-wavelength light of sunlight to the light energy storage compound circulating solar collector and irradiating long-wavelength light mainly to the heat absorbing and dissipating material circulating solar collector; A heat absorbing and dissipating material storage device that is connected to the material circulation solar collector and is supplied with the heat absorbing and dissipating material after heating, and this heat absorbing and dissipating material is directly supplied and stored therein or is supplied to a built-in heat dissipating coil; A heating coil that is built into the heat dissipation material storage container and is provided with a catalyst that causes a thermal reaction that contacts the highly strained compound to convert it into a highly strainable compound, and an upstream side of the heating coil and the light energy storage compound circulation solar collector. and a highly strainable compound storage means interposed between the downstream side of the heating coil and the light energy storage compound circulation solar collector. Device. 4. The solar energy utilization device according to claim 3, wherein the high strain compound storage means and the high strain capable compound storage means are a high strain compound storage tank and a high strain capable compound storage tank, respectively. . 5. The solar energy utilization device according to claim 3, wherein the demultiplexing means is a Fresnel prism.
JP57023973A 1982-02-17 1982-02-17 Solar energy utilizing device Granted JPS58142152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57023973A JPS58142152A (en) 1982-02-17 1982-02-17 Solar energy utilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57023973A JPS58142152A (en) 1982-02-17 1982-02-17 Solar energy utilizing device

Publications (2)

Publication Number Publication Date
JPS58142152A JPS58142152A (en) 1983-08-23
JPS6124621B2 true JPS6124621B2 (en) 1986-06-11

Family

ID=12125487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57023973A Granted JPS58142152A (en) 1982-02-17 1982-02-17 Solar energy utilizing device

Country Status (1)

Country Link
JP (1) JPS58142152A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108151359B (en) * 2018-01-02 2020-06-02 重庆大学 Domestic solar energy utilization system of second grade heat accumulation formula

Also Published As

Publication number Publication date
JPS58142152A (en) 1983-08-23

Similar Documents

Publication Publication Date Title
US6057504A (en) Hybrid solar collector for generating electricity and heat by separating solar rays into long wavelength and short wavelength
US20130008430A1 (en) Solar collection apparatus and steam generator using the same
US4176655A (en) Solar energy collection system and apparatus for same utilizing latent energy storage fluid
US4335706A (en) Energy collector and transfer apparatus
JPS6124621B2 (en)
JP6905060B2 (en) Solar power station
JPS58142150A (en) Solar energy utilizing device
JPS648257B2 (en)
TWI834069B (en) Solar energy storage system
TWI831716B (en) Solar energy storage system
CN212227420U (en) Power generation device with follow light structure
JP2006329491A (en) Solar heat collecting system
CN107345713A (en) Two-stage is totally reflected evolvent type solar thermal collector
JPS6019416B2 (en) solar energy absorption device
JPS6051019B2 (en) Cooling device using solar energy
JPH0132426B2 (en)
JPS58123056A (en) Energy accumulator
JPS637305B2 (en)
JPS5915764A (en) Light energy collecting apparatus having film structure
JPS58142151A (en) Energy accumulating device
WO2012061943A1 (en) Solar power-generation system
JPS59195056A (en) Solar energy utilizing device
JPS637304B2 (en)
JPS6026244A (en) Focusing type solar heat collector
JPS58156152A (en) Apparatus utilizing solar energy