JPH05264187A - Heat accumulating device - Google Patents

Heat accumulating device

Info

Publication number
JPH05264187A
JPH05264187A JP4091609A JP9160992A JPH05264187A JP H05264187 A JPH05264187 A JP H05264187A JP 4091609 A JP4091609 A JP 4091609A JP 9160992 A JP9160992 A JP 9160992A JP H05264187 A JPH05264187 A JP H05264187A
Authority
JP
Japan
Prior art keywords
temperature reactor
heat
gas
ammonia
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4091609A
Other languages
Japanese (ja)
Inventor
Osamu Saida
治 斉田
Junichi Ochiai
淳一 落合
Yasunori Yamamoto
靖徳 山本
Masamichi Toyoyama
正道 豊山
Shigeharu Akashi
重治 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP4091609A priority Critical patent/JPH05264187A/en
Publication of JPH05264187A publication Critical patent/JPH05264187A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To effectively utilize excessive heat by a method wherein the title device is provided with a high-temperature reactor and a low-temperature reactor, which are filled with the ammonia complex of ferrous chloride and the ammonia complex of calcium chloride, each of which discharges ammonia gas by heating and absorbs ammonia gas by cooling. CONSTITUTION:When high-temperature vapor is supplied to a high-temperature reactor 7 through a vapor flow passage 21, the ammonia complex of ferrous chloride in the reactor absorbs heat and discharges ammonia gas. When cooling water is supplied to a low-temperature reactor 8 through a water supplying passage 19, the ammonia complex of calcium chloride in the reactor absorbs ammonia gas introduced through a gas flow passage 18. According to this method, heat is accumulated in the ammonia complex of ferrous chloride in the high-temperature reactor 7. On the contrary, when hot-water is supplied from a hot-water supplying passage 5 into the low-temperature reactor 8 to heat the ammonia complex of calcium chloride, ammonia gas is discharged. When hot-water is supplied to the reactor 7 through a hot-water flow passage 22, the ammonia complex of ferrous chloride in the high-temperature reactor 7 absorbs ammonia gas from a gas flow passage 18 whereby heat is discharged while the hot-water is heated and vapor is generated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、蓄熱装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage device.

【0002】[0002]

【従来の技術】近年、従来の発電装置に比べてエネルギ
ー効率の高いコージェネレーションなる発電装置が開発
されている。
2. Description of the Related Art In recent years, a cogeneration power generation device having higher energy efficiency than conventional power generation devices has been developed.

【0003】該コージェネレーションは、エンジンやガ
スタービン等を用いて発電機を駆動することにより発電
を行い、同時に、エンジンやガスタービン等で発生した
排ガスやケーシング等の持つ熱を熱交換により回収して
温水や蒸気等の熱を得るようにしたものであり、このよ
うなコージェネレーションは、一般に小型であるため自
家発電設備等の用途に適している。
The cogeneration system generates electric power by driving a generator using an engine, a gas turbine or the like, and at the same time, recovers the heat of exhaust gas generated by the engine, the gas turbine or the like and the heat of the casing by heat exchange. The cogeneration system is suitable for applications such as private power generation equipment because it is generally small in size.

【0004】しかしながら、上記コージェネレーション
では、発電を主としているため、発電量に応じた熱しか
得ることができず、即ち、需要に応じた熱を得ることが
できないため、発電量が多くて熱需要が少い時には熱が
余り、発電量が少くて熱需要が多い時には熱が不足する
という事態を招いていた。
However, since the above-mentioned cogeneration mainly produces electric power, only heat corresponding to the amount of electric power generation can be obtained, that is, heat corresponding to demand cannot be obtained. When the amount is small, there is excess heat, and when the amount of power generation is small and the heat demand is high, there is a shortage of heat.

【0005】そこで、従来は、コージェネレーションに
補助ボイラを付設して、発電量に対して熱需要が多くな
った場合に、補助ボイラを運転して不足分の熱を補わせ
るようにしていた。
Therefore, conventionally, an auxiliary boiler is attached to the cogeneration so as to operate the auxiliary boiler to supplement the shortage of heat when the heat demand for the power generation increases.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来したようにコージェネレーションに補助ボイラを付設
した場合には、以下のような問題があった。
However, when the auxiliary boiler is attached to the cogeneration as described above, the following problems occur.

【0007】即ち、発電量に対して熱需要が少い場合に
は、余剰の熱を捨ててしまうことになり、又、発電量に
対して熱需要が多くなった場合、不足分の熱を補わせる
ために補助ボイラを運転すると、余分な燃料が必要とな
ることになる。
That is, when the heat demand is small with respect to the power generation amount, the surplus heat is discarded, and when the heat demand is large with respect to the power generation amount, the insufficient heat is supplied. Operating the auxiliary boiler to make up for it will require extra fuel.

【0008】本発明は、上述の実情に鑑み、コージェネ
レーションに限らず、余剰の熱が発生される発熱施設に
対して設けることにより、余剰の熱を有効利用できるよ
うにした蓄熱装置を提供することを目的とするものであ
る。
In view of the above-mentioned circumstances, the present invention provides a heat storage device capable of effectively utilizing surplus heat by being provided not only in cogeneration but also in a heat generating facility where surplus heat is generated. The purpose is that.

【0009】[0009]

【課題を解決するための手段】請求項1の発明は、加熱
によりアンモニアガスを放出すると共に冷却によりアン
モニアガスを吸収する塩化第一鉄のアンモニア錯体を内
部に充填された高温反応器7と、冷却によりアンモニア
ガスを吸収すると共に加熱によりアンモニアガスを放出
する塩化カルシウムのアンモニア錯体を内部に充填され
た低温反応器8と、高温反応器7と低温反応器8との間
にアンモニアガスが自在に移動し得るように接続された
ガス流路18と、高温反応器7へ高温の蒸気又は熱水を
切換えて供給可能な蒸気流路21及び熱水流路22と、
低温反応器8へ冷却水又は熱水を切換えて供給可能な水
供給路19及び熱水供給路5を備えたことを特徴とする
蓄熱装置にかかるものである。
According to a first aspect of the present invention, there is provided a high temperature reactor 7 which is internally filled with an ammonia complex of ferrous chloride which releases ammonia gas by heating and absorbs ammonia gas by cooling. Ammonia gas is freely provided between the high temperature reactor 7 and the low temperature reactor 8 which is filled with an ammonia complex of calcium chloride which absorbs the ammonia gas by cooling and releases the ammonia gas by heating. A gas flow path 18 movably connected to each other, a steam flow path 21 and a hot water flow path 22 capable of switching and supplying high temperature steam or hot water to the high temperature reactor 7.
The present invention relates to a heat storage device including a water supply path 19 and a hot water supply path 5 which can supply cooling water or hot water by switching to the low-temperature reactor 8.

【0010】請求項2の発明は、加熱によりメタノール
ガスを放出すると共に冷却によりメタノールガスを吸収
する塩化カルシウムのメタノール化物を内部に充填され
た高温反応器7と、冷却によりメタノールガスを凝縮す
ると共に加熱によりメタノールガスを蒸発させる低温反
応器29と、高温反応器7と低温反応器29との間にメ
タノールガスが自在に移動し得るように接続されたガス
流路18と、高温反応器7へ高温の蒸気又は熱水を切換
えて供給可能な蒸気流路21及び熱水流路22と、低温
反応器29へ冷却水又は熱水を切換えて供給可能な水供
給路19及び熱水供給路5を備えたことを特徴とする蓄
熱装置にかかるものである。
According to a second aspect of the present invention, the high temperature reactor 7 is filled with a methanolized product of calcium chloride which releases methanol gas by heating and absorbs methanol gas by cooling, and condenses the methanol gas by cooling. To the high temperature reactor 7, a low temperature reactor 29 that evaporates methanol gas by heating, a gas flow path 18 connected between the high temperature reactor 7 and the low temperature reactor 29 so that the methanol gas can freely move. A steam flow path 21 and a hot water flow path 22 that can switch and supply high temperature steam or hot water, and a water supply path 19 and a hot water supply path 5 that can switch and supply cooling water or hot water to the low temperature reactor 29. The present invention relates to a heat storage device characterized by being provided.

【0011】[0011]

【作用】請求項1の発明の作動は以下の通りである。The operation of the invention of claim 1 is as follows.

【0012】高温反応器7に蒸気流路21を介して高温
の蒸気を供給すると、高温反応器7内部の塩化第一鉄の
アンモニア錯体が吸熱してアンモニアガスを放出し、こ
の状態で、水供給路19を介して低温反応器8に冷却水
を供給すると、低温反応器8内部の塩化カルシウムのア
ンモニア錯体が、ガス流路18を介して低温反応器8へ
移動してきたアンモニアガスを吸収する。
When high-temperature steam is supplied to the high-temperature reactor 7 through the steam passage 21, the ammonia complex of ferrous chloride inside the high-temperature reactor 7 absorbs heat and releases ammonia gas. When cooling water is supplied to the low temperature reactor 8 via the supply passage 19, the ammonia complex of calcium chloride inside the low temperature reactor 8 absorbs the ammonia gas that has moved to the low temperature reactor 8 via the gas flow path 18. ..

【0013】これにより、高温反応器7内の塩化第一鉄
のアンモニア錯体に熱が蓄えられる。
As a result, heat is stored in the ammonia complex of ferrous chloride in the high temperature reactor 7.

【0014】反対に、熱水供給路5を介して低温反応器
8に熱水を供給すると、低温反応器8内部の塩化カルシ
ウムのアンモニア錯体が、吸熱してアンモニアガスを放
出し、この状態で、高温反応器7に熱水流路22を介し
て熱水を供給すると、高温反応器7内部の塩化第一鉄の
アンモニア錯体が、ガス流路18を介して高温反応器7
へ移動してきたアンモニアガスを吸収し放熱する。
On the contrary, when hot water is supplied to the low temperature reactor 8 through the hot water supply passage 5, the ammonia complex of calcium chloride inside the low temperature reactor 8 absorbs heat and releases ammonia gas. When hot water is supplied to the high temperature reactor 7 through the hot water flow passage 22, the ammonia complex of ferrous chloride inside the high temperature reactor 7 passes through the gas flow passage 18 and the high temperature reactor 7
The ammonia gas that has moved to is absorbed and released.

【0015】これにより、高温反応器7内の塩化第一鉄
のアンモニア錯体から熱が放出され、熱水が加熱され
て、蒸気が発生する。
As a result, heat is released from the ammonia complex of ferrous chloride in the high temperature reactor 7, the hot water is heated, and steam is generated.

【0016】請求項2の発明の作動は以下の通りであ
る。
The operation of the invention of claim 2 is as follows.

【0017】高温反応器7に蒸気流路21を介して高温
の蒸気を供給すると、高温反応器7内部の塩化カルシウ
ムのメタノール化物が吸熱してメタノールガスを放出
し、この状態で、水供給路19を介して低温反応器29
に冷却水を供給すると、低温反応器29内部で、ガス流
路18を介して低温反応器29へ移動してきたメタノー
ルガスが凝縮される。
When high-temperature steam is supplied to the high-temperature reactor 7 through the steam passage 21, the hydrated calcium chloride methanol in the high-temperature reactor 7 absorbs heat and releases methanol gas. Low temperature reactor via 19
When the cooling water is supplied to the inside of the low temperature reactor 29, the methanol gas that has moved to the low temperature reactor 29 through the gas flow path 18 is condensed.

【0018】これにより、高温反応器7内の塩化カルシ
ウムのメタノール化物に熱が蓄えられる。
As a result, heat is stored in the methanolized product of calcium chloride in the high temperature reactor 7.

【0019】反対に、熱水供給路5を介して低温反応器
29に熱水を供給すると、低温反応器29内部の液体メ
タノールが、蒸発してメタノールガスを放出し、この状
態で、高温反応器7に熱水流路22を介して熱水を供給
すると、高温反応器7内部の塩化カルシウムのメタノー
ル化物が、ガス流路18を介して高温反応器7へ移動し
てきたメタノールガスを吸収し放熱する。
On the contrary, when hot water is supplied to the low temperature reactor 29 through the hot water supply passage 5, the liquid methanol inside the low temperature reactor 29 evaporates and releases methanol gas, and in this state, the high temperature reaction is carried out. When hot water is supplied to the reactor 7 through the hot water flow passage 22, the methanolate of calcium chloride inside the high temperature reactor 7 absorbs the methanol gas that has moved to the high temperature reactor 7 through the gas flow passage 18 and radiates heat. To do.

【0020】これにより、高温反応器7内の塩化カルシ
ウムのメタノール化物から熱が放出され、熱水が加熱さ
れて、蒸気が発生する。
As a result, heat is released from the methanolized product of calcium chloride in the high temperature reactor 7, the hot water is heated, and steam is generated.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照しつつ説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0022】図1、図2は、本発明の第一の実施例であ
る。
1 and 2 show a first embodiment of the present invention.

【0023】図中1は例えばコージェネレーションなど
の発熱施設、2は熱利用設備、3は発熱施設1で発生し
た蒸気を熱利用設備2へ供給する蒸気供給路、4は熱利
用設備2から発熱施設1へ蒸気が凝縮して成る熱水を戻
す戻り路、5は発熱施設1で発生した熱水を図示しない
設備へ供給する熱水供給路、6は前記図示しない設備か
ら発熱施設1へ熱水を循環させる戻り路である。
In the figure, 1 is a heat generating facility such as a cogeneration facility, 2 is a heat utilizing facility, 3 is a steam supply path for supplying the steam generated in the heat generating facility 1 to the heat utilizing facility 2, and 4 is heat from the heat utilizing facility 2. A return path 5 for returning hot water formed by condensation of steam to the facility 1, 5 is a hot water supply path for supplying hot water generated in the heat generating facility 1 to a facility (not shown), and 6 is heat from the facility (not shown) to the heat generating facility 1. It is a return route for circulating water.

【0024】そして、蒸気供給路3と戻り路4との間に
高温反応器7を並列に設け、又、熱水供給路5と戻り路
6との間に低温反応器8を並列に設ける。
A high temperature reactor 7 is provided in parallel between the steam supply passage 3 and the return passage 4, and a low temperature reactor 8 is provided in parallel between the hot water supply passage 5 and the return passage 6.

【0025】前記高温反応器7及び低温反応器8は、例
えば、両端を一対の管板9で仕切って中央部にガス室1
0を形成すると共に両端にヘッダ空間11,12を形成
した反応器本体13と、該反応器本体13のガス室10
を通過して両ヘッダ空間11,12に連通するフィン付
きの熱媒管14と、該熱媒管14の外周を包囲すると共
に熱媒管14との間に多数のセル15を形成する多孔質
管16又は多孔質膜とによって構成された固相反応器で
できており、高温反応器7のセル15には塩化第一鉄の
アンモニア錯体(FeCl2・nNH3;n=2又は6)
が充填され、又、低温反応器8のセル15には塩化カル
シウムのアンモニア錯体(CaCl2・nNH3;n=4
又は8)が充填されている。
The high temperature reactor 7 and the low temperature reactor 8 are, for example, partitioned by a pair of tube plates 9 at both ends, and the gas chamber 1 is provided at the center.
0 and a reactor body 13 in which header spaces 11 and 12 are formed at both ends, and a gas chamber 10 of the reactor body 13.
A heat transfer medium pipe 14 with fins that communicates with both header spaces 11 and 12 by passing through and a porous body that surrounds the outer periphery of the heat transfer medium pipe 14 and forms a large number of cells 15 between the heat transfer medium pipe 14. It is made of a solid-phase reactor composed of a tube 16 or a porous membrane, and a ferrous chloride ammonia complex (FeCl 2 · nNH 3 ; n = 2 or 6) is provided in the cell 15 of the high temperature reactor 7.
And the cell 15 of the low temperature reactor 8 is filled with an ammonia complex of calcium chloride (CaCl 2 · nNH 3 ; n = 4).
Or 8) is filled.

【0026】尚、高温反応器7は、蒸気供給路3と戻り
路4との間に並列に設けられている関係上、片側のヘッ
ダ空間11を仕切板17で二つに仕切って、それぞれを
蒸気流路21,熱水流路22を介して蒸気供給路3と戻
り路4へ接続し、内部で蒸気が折返されるようになって
いるが、機能上、低温反応器8と差異はない。
Since the high temperature reactor 7 is provided in parallel between the steam supply path 3 and the return path 4, the header space 11 on one side is divided into two by a partition plate 17, and each of them is divided into two parts. It is connected to the steam supply path 3 and the return path 4 via the steam flow path 21 and the hot water flow path 22 so that the steam is folded back inside, but there is no difference in function from the low temperature reactor 8.

【0027】又、低温反応器8と熱水供給路5及び戻り
路6との間をそれぞれ熱水供給路30及び戻り路31で
接続する。
Further, the low temperature reactor 8 and the hot water supply passage 5 and the return passage 6 are connected by a hot water supply passage 30 and a return passage 31, respectively.

【0028】更に、高温反応器7と低温反応器8のガス
室10どうしをガス流路18で接続する。
Further, the gas chambers 10 of the high temperature reactor 7 and the low temperature reactor 8 are connected to each other by a gas passage 18.

【0029】加えて、熱水供給路30に冷却水供給路1
9を接続し、又、戻り路31に冷却水排出路20を接続
する。
In addition, the hot water supply passage 30 has a cooling water supply passage 1
9 is connected, and the cooling water discharge path 20 is connected to the return path 31.

【0030】尚、図中23,24は蒸気流路21,熱水
流路22に設けられた切換弁、25,26,27,28
は弁である。
In the figure, 23 and 24 are switching valves provided in the steam passage 21 and the hot water passage 22, and 25, 26, 27 and 28.
Is a valve.

【0031】次に、作動について説明する。Next, the operation will be described.

【0032】発熱施設1で発電を行うと、発電量に応じ
た熱が発生される。この時生じた熱から熱交換などによ
り150度の蒸気と80度の熱水を得るようにし、この
うち蒸気を蒸気供給路3を介して熱利用設備2へ供給す
る。
When power is generated in the heat generating facility 1, heat is generated according to the amount of power generation. From the heat generated at this time, steam of 150 degrees and hot water of 80 degrees are obtained by heat exchange or the like, of which steam is supplied to the heat utilization facility 2 through the steam supply path 3.

【0033】これによって、熱利用設備2では、必要に
応じて蒸気を利用することができるようになる。
As a result, the heat utilization facility 2 can utilize steam as needed.

【0034】熱利用設備2へ供給された蒸気は、凝縮し
て熱水となり戻り路4を介して発熱施設1へ循環され
る。
The steam supplied to the heat utilization facility 2 is condensed into hot water and circulated to the heat generating facility 1 via the return path 4.

【0035】又、発熱施設1で発生した80度の熱水
は、熱水供給路5を介して図示しない設備へ供給する。
The hot water of 80 degrees generated in the heat generating facility 1 is supplied to a facility (not shown) via the hot water supply passage 5.

【0036】これによって、図示しない設備では、必要
に応じて熱水を利用することができるようになる。
As a result, the facility (not shown) can use hot water as needed.

【0037】前記図示しない設備へ供給された熱水は、
戻り路6を介して発熱施設1へ循環される。
The hot water supplied to the equipment (not shown) is
It is circulated to the heat generating facility 1 via the return path 6.

【0038】そして、夜間などの、発熱施設1における
発電量に応じた発熱量(発熱量のうちの蒸気発生量)に
比べて、熱利用設備2における熱(蒸気)の利用量が少
い場合には、余剰となる蒸気を利用して、本実施例の蓄
熱装置で熱を蓄えるようにする。
When the amount of heat (steam) used in the heat utilization facility 2 is smaller than the amount of heat generated in the heat generating facility 1 (the amount of steam generated out of the amount of heat generated) at night, etc. For this purpose, excess steam is used to store heat in the heat storage device of this embodiment.

【0039】即ち、蒸気流路21途中の切換弁23を高
温反応器7側に切換え、熱水流路22途中の切換弁24
を反高温反応器7側に切換えて、弁26,28を開、弁
25,27を閉にし、蒸気供給路3を流れる150度の
蒸気を高温反応器7へ供給し、冷却水供給路19から3
0度の冷却水を低温反応器8へ供給するようにする。
That is, the switching valve 23 in the steam flow passage 21 is switched to the high temperature reactor 7 side, and the switching valve 24 in the hot water flow passage 22 is changed.
To the anti-high temperature reactor 7 side, the valves 26 and 28 are opened, the valves 25 and 27 are closed, 150 ° C. steam flowing through the steam supply passage 3 is supplied to the high temperature reactor 7, and the cooling water supply passage 19 From 3
0 ° C. cooling water is supplied to the low temperature reactor 8.

【0040】すると、先ず、高温反応器7では、熱媒管
14を流れる蒸気により、セル15内の塩化第一鉄のア
ンモニア錯体(FeCl2・6NH3)が加熱され、以下
のような吸熱反応が生じて、アンモニアガス(NH3
を放出する。
Then, first, in the high temperature reactor 7, the ammonia complex of ferrous chloride (FeCl 2 .6NH 3 ) in the cell 15 is heated by the steam flowing through the heat medium pipe 14, and the following endothermic reaction is carried out. Occurs, ammonia gas (NH 3 )
To release.

【0041】 FeCl2・6NH3→FeCl2・2NH3+4NH3 [0041] FeCl 2 · 6NH 3 → FeCl 2 · 2NH 3 + 4NH 3

【0042】この時放出されたアンモニアガスは、多孔
質管16を通って、反応器本体13のガス室10に貯ま
り、高温反応器7内部の圧力を2〜4atm程度に増加
させる。
The ammonia gas released at this time passes through the porous tube 16 and is stored in the gas chamber 10 of the reactor main body 13 to increase the pressure inside the high temperature reactor 7 to about 2 to 4 atm.

【0043】こうして、高温反応器7内部の圧力が高ま
ると、高温反応器7内部の圧力を下げようとして、ガス
流路18を介して高温反応器7から低温反応器8へのア
ンモニアガスの流れが生じる。
Thus, when the pressure inside the high temperature reactor 7 increases, the flow of ammonia gas from the high temperature reactor 7 to the low temperature reactor 8 through the gas flow path 18 in an attempt to lower the pressure inside the high temperature reactor 7. Occurs.

【0044】一方、低温反応器8では、熱媒管14を流
れる30度の冷却水により、セル15内の塩化カルシウ
ムのアンモニア錯体(CaCl2・4NH3)が冷却さ
れ、高温反応器7から移動してきたアンモニアガスを吸
収して以下のような発熱反応を生じる。
On the other hand, in the low temperature reactor 8, the ammonia complex of calcium chloride (CaCl 2 .4NH 3 ) in the cell 15 is cooled by the cooling water of 30 degrees flowing through the heat transfer medium pipe 14 and moved from the high temperature reactor 7. The generated exothermic gas is absorbed to cause the following exothermic reaction.

【0045】 CaCl2・4NH3+4NH3→CaCl2・8NH3 The CaCl 2 · 4NH 3 + 4NH 3 → CaCl 2 · 8NH 3

【0046】このアンモニアガスの吸収反応により低温
反応器8内部の圧力は、1〜3atm程度となるので、
高温反応器7から低温反応器8へのアンモニアガスの移
動が促進され、両反応器7,8における反応も促進さ
れ、結果として、高温反応器7に熱が蓄えられる。
The pressure inside the low temperature reactor 8 becomes about 1 to 3 atm due to the absorption reaction of the ammonia gas.
The transfer of ammonia gas from the high temperature reactor 7 to the low temperature reactor 8 is promoted, the reaction in both reactors 7 and 8 is promoted, and as a result, heat is stored in the high temperature reactor 7.

【0047】尚、高温反応器7で熱を奪われた蒸気は、
凝縮し、熱水流路22から戻り路4へと排出され、又、
低温反応器8で熱を得た冷却水は、冷却水排出路20か
ら外部へ排出される。
The steam deprived of heat in the high temperature reactor 7 is
It is condensed and discharged from the hot water flow path 22 to the return path 4, or
The cooling water that has obtained heat in the low temperature reactor 8 is discharged to the outside from the cooling water discharge passage 20.

【0048】そして、昼間などの、発熱施設1における
発電量に応じた発熱量(発熱量のうちの蒸気発生量)に
比べて、熱利用設備2における熱(蒸気)の利用量が多
い場合には、蒸気が不足するので、高温反応器7で蓄え
た熱を放出させ、熱利用設備2で利用できるようにす
る。
When the amount of heat (steam) used in the heat utilization facility 2 is larger than the amount of heat generated in the heat generating facility 1 (the amount of steam generated out of the amount of heat generated) according to the amount of power generated in the heat generating facility 1, such as during the daytime. Since the steam is insufficient, the heat stored in the high temperature reactor 7 is released so that the heat can be used in the heat utilization equipment 2.

【0049】即ち、蒸気流路21途中の切換弁23を反
高温反応器7側に切換え、熱水流路22途中の切換弁2
4を高温反応器7側に切換えて、弁26,28を閉、弁
25,27を開にし、熱水供給路5から80度の熱水を
低温反応器8へ供給し、戻り路4を流れる熱水を高温反
応器7へ供給するようにする。
That is, the switching valve 23 in the middle of the steam flow passage 21 is switched to the anti-high temperature reactor 7 side, and the switching valve 2 in the middle of the hot water flow passage 22.
4 is switched to the high temperature reactor 7 side, valves 26 and 28 are closed, valves 25 and 27 are opened, hot water of 80 degrees is supplied from the hot water supply path 5 to the low temperature reactor 8, and the return path 4 is The flowing hot water is supplied to the high temperature reactor 7.

【0050】すると、先ず、低温反応器8では、熱媒管
14を流れる熱水により、セル15内の塩化カルシウム
のアンモニア錯体(CaCl2・8NH3)が加熱され、
以下のような吸熱反応が生じて、アンモニアガス(NH
3)を放出する。
Then, first, in the low temperature reactor 8, the ammonia complex of calcium chloride (CaCl 2 .8NH 3 ) in the cell 15 is heated by the hot water flowing through the heat medium pipe 14,
The following endothermic reaction occurs and ammonia gas (NH
Release 3 ).

【0051】 CaCl2・8NH3→CaCl2・4NH3+4NH3 CaCl 2 · 8NH 3 → CaCl 2 · 4NH 3 + 4NH 3

【0052】この時放出されたアンモニアガスは、多孔
質管16を通って、反応器本体13のガス室10に貯ま
り、低温反応器8内部の圧力を6〜9atm程度に増加
させる。
The ammonia gas released at this time passes through the porous tube 16 and is stored in the gas chamber 10 of the reactor main body 13 to increase the internal pressure of the low temperature reactor 8 to about 6 to 9 atm.

【0053】こうして、低温反応器8内部の圧力が高ま
ると、低温反応器8内部の圧力を下げようとして、ガス
流路18を介して低温反応器8から高温反応器7へのア
ンモニアガスの流れが生じる。
Thus, when the pressure inside the low temperature reactor 8 increases, the flow of ammonia gas from the low temperature reactor 8 to the high temperature reactor 7 through the gas flow path 18 in an attempt to lower the pressure inside the low temperature reactor 8. Occurs.

【0054】一方、高温反応器7では、熱媒管14を流
れる熱水により、セル15内の塩化第一鉄のアンモニア
錯体(FeCl2・2NH3)が冷却され、低温反応器8
から移動してきたアンモニアガスを吸収して以下のよう
な発熱反応を生じる。
On the other hand, in the high temperature reactor 7, the hot water flowing through the heat transfer medium pipe 14 cools the ammonia complex of ferrous chloride (FeCl 2 .2NH 3 ) in the cell 15 and the low temperature reactor 8
The following exothermic reaction is caused by absorbing the ammonia gas transferred from the.

【0055】 FeCl2・2NH3+4NH3→FeCl2・6NH3 [0055] FeCl 2 · 2NH 3 + 4NH 3 → FeCl 2 · 6NH 3

【0056】このアンモニアガスの吸収反応により高温
反応器7内部の圧力は、5〜7atm程度となるので、
低温反応器8から高温反応器7へのアンモニアガスの移
動が確保促進され、両反応器7,8における反応も促進
され、結果として、高温反応器7から熱が発生される。
Since the pressure inside the high temperature reactor 7 becomes about 5 to 7 atm due to the absorption reaction of this ammonia gas,
The movement of the ammonia gas from the low temperature reactor 8 to the high temperature reactor 7 is secured and promoted, the reactions in both reactors 7 and 8 are promoted, and as a result, heat is generated from the high temperature reactor 7.

【0057】この際、高温反応器7で熱を与えられて1
50度となった蒸気は、蒸気流路21から蒸気供給路3
を介して熱利用設備2へと供給され、熱利用設備2で利
用される。
At this time, heat is applied by the high temperature reactor 7 to 1
The steam having the temperature of 50 degrees enters the steam supply path 3 from the steam flow path 21.
It is supplied to the heat utilization equipment 2 via and is used in the heat utilization equipment 2.

【0058】尚、低温反応器8で熱を奪われた熱水は、
戻り路6から発熱施設1へと戻される。
The hot water deprived of heat in the low temperature reactor 8 is
It is returned from the return path 6 to the heat generating facility 1.

【0059】このように、本実施例では、アンモニアガ
スの授受によって蓄熱及び放熱を行うことにより、発熱
施設1で発生した熱を有効に利用し、熱運用の平準化を
行うことができる。
As described above, in the present embodiment, the heat generated in the heat generating facility 1 is effectively used by performing the heat storage and the heat radiation by the transfer of the ammonia gas, and the heat operation can be leveled.

【0060】そして、塩化第一鉄のアンモニア錯体と塩
化カルシウムのアンモニア錯体とを利用しているため、
固相反応器を使用することができ、しかも、発生するア
ンモニアもガス状と成るので、低い圧力で運転すること
ができ、且つ、アンモニアの扱いが容易で安全性も高
い。
Since the ferrous chloride ammonia complex and the calcium chloride ammonia complex are used,
Since a solid-phase reactor can be used and the generated ammonia is also in a gaseous state, it can be operated at a low pressure, and the ammonia can be easily handled and is highly safe.

【0061】図3は、本発明の第二の実施例であり、高
温反応器7のセル15に塩化カルシウムのメタノール化
物(CaCl2・2CH3OH)を充填し、低温反応器2
9をメタノールの凝縮蒸発が可能な通常の熱交換型の凝
縮蒸発器として、塩化カルシウムのメタノール化物によ
るメタノールの放出吸収作用を利用するようにした以外
は図1と同様の構成を備えており、低温反応器29を低
価格化し得る以外はほぼ同様の作用・効果を得ることが
できる。
FIG. 3 shows a second embodiment of the present invention, in which the cell 15 of the high temperature reactor 7 is filled with a methanolized product of calcium chloride (CaCl 2 .2CH 3 OH) and the low temperature reactor 2
9 is an ordinary heat exchange type condensing evaporator capable of condensing and evaporating methanol, and has the same configuration as that of FIG. 1 except that the action of releasing and absorbing methanol by the methanolization product of calcium chloride is utilized. It is possible to obtain substantially the same actions and effects except that the low temperature reactor 29 can be reduced in price.

【0062】尚、蓄熱時と放熱時の高温反応器7と低温
反応器29における反応は以下の通りである。
The reactions in the high temperature reactor 7 and the low temperature reactor 29 during heat storage and heat release are as follows.

【0063】蓄熱時における高温反応器7内の反応 CaCl2・2CH3OH→CaCl2+2CH3OH(吸
熱反応)
Reaction in high temperature reactor 7 during heat storage CaCl 2 .2CH 3 OH → CaCl 2 + 2CH 3 OH (endothermic reaction)

【0064】蓄熱時における低温反応器29内の反応 CH3OH(気体)→CH3OH(液体)Reaction in the low temperature reactor 29 during heat storage CH 3 OH (gas) → CH 3 OH (liquid)

【0065】放熱時における高温反応器7内の反応 CaCl2+2CH3OH→CaCl2・2CH3OH(発
熱反応)
Reaction in high temperature reactor 7 during heat radiation CaCl 2 + 2CH 3 OH → CaCl 2 · 2CH 3 OH (exothermic reaction)

【0066】放熱時における低温反応器29内の反応 CH3OH(液体)→CH3OH(気体)Reaction in low temperature reactor 29 during heat dissipation CH 3 OH (liquid) → CH 3 OH (gas)

【0067】尚、本発明は、上述の実施例にのみ限定さ
れるものではなく、発熱施設はコージェネレーションに
限らないこと、高温反応器と低温反応器を複数セット設
けて交代で使用するようにしても良いこと、その他、本
発明の要旨を逸脱しない範囲内において種々変更を加え
得ることは勿論である。
The present invention is not limited to the above-mentioned embodiment, the heat generating facility is not limited to the cogeneration, and a plurality of sets of high temperature reactors and low temperature reactors are provided to be used alternately. Of course, various modifications may be made without departing from the scope of the present invention.

【0068】[0068]

【発明の効果】以上説明したように、請求項1・請求項
2の蓄熱装置によれば、余剰の熱を有効利用できるとい
う優れた効果を奏し得る。
As described above, according to the heat storage device of the first and second aspects, it is possible to obtain an excellent effect that the surplus heat can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例の図である。FIG. 1 is a diagram of a first embodiment of the present invention.

【図2】図1の熱媒管の拡大図である。FIG. 2 is an enlarged view of the heat transfer medium pipe of FIG.

【図3】本発明の第二の実施例の図である。FIG. 3 is a diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

5 熱水供給路 7 高温反応器 8 低温反応器 18 ガス流路 19 冷却水供給路(水供給路) 21 蒸気流路 22 熱水流路 29 低温反応器 5 Hot Water Supply Channel 7 High Temperature Reactor 8 Low Temperature Reactor 18 Gas Flow Channel 19 Cooling Water Supply Channel (Water Supply Channel) 21 Steam Flow Channel 22 Hot Water Flow Channel 29 Low Temperature Reactor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊山 正道 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 (72)発明者 明石 重治 東京都江東区豊洲三丁目2番16号 石川島 播磨重工業株式会社豊洲総合事務所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Masamichi Toyoyama 3-2-16 Toyosu, Koto-ku, Tokyo Ishikawajima Harima Heavy Industries Ltd. Toyosu General Office (72) Inventor Shigeharu Akashi 3-2-1 Toyosu, Koto-ku, Tokyo No. 16 Ishikawajima Harima Heavy Industries Co., Ltd.Toyosu General Office

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 加熱によりアンモニアガスを放出すると
共に冷却によりアンモニアガスを吸収する塩化第一鉄の
アンモニア錯体を内部に充填された高温反応器7と、冷
却によりアンモニアガスを吸収すると共に加熱によりア
ンモニアガスを放出する塩化カルシウムのアンモニア錯
体を内部に充填された低温反応器8と、高温反応器7と
低温反応器8との間にアンモニアガスが自在に移動し得
るように接続されたガス流路18と、高温反応器7へ高
温の蒸気又は熱水を切換えて供給可能な蒸気流路21及
び熱水流路22と、低温反応器8へ冷却水又は熱水を切
換えて供給可能な水供給路19及び熱水供給路5を備え
たことを特徴とする蓄熱装置。
1. A high-temperature reactor 7 which is filled with an ammonia complex of ferrous chloride, which releases ammonia gas by heating and absorbs ammonia gas by cooling, and ammonia by absorbing ammonia gas by cooling and ammonia by heating. A low temperature reactor 8 in which an ammonia complex of calcium chloride for releasing gas is filled, and a gas flow path connected between the high temperature reactor 7 and the low temperature reactor 8 so that the ammonia gas can freely move. 18, a steam flow path 21 and a hot water flow path 22 capable of switching and supplying high temperature steam or hot water to the high temperature reactor 7, and a water supply path capable of switching and supplying cooling water or hot water to the low temperature reactor 8. 19 and a hot water supply path 5.
【請求項2】 加熱によりメタノールガスを放出すると
共に冷却によりメタノールガスを吸収する塩化カルシウ
ムのメタノール化物を内部に充填された高温反応器7
と、冷却によりメタノールガスを凝縮すると共に加熱に
よりメタノールガスを蒸発させる低温反応器29と、高
温反応器7と低温反応器29との間にメタノールガスが
自在に移動し得るように接続されたガス流路18と、高
温反応器7へ高温の蒸気又は熱水を切換えて供給可能な
蒸気流路21及び熱水流路22と、低温反応器29へ冷
却水又は熱水を切換えて供給可能な水供給路19及び熱
水供給路5を備えたことを特徴とする蓄熱装置。
2. A high temperature reactor 7 in which a methanolized product of calcium chloride, which releases methanol gas by heating and absorbs methanol gas by cooling, is filled inside.
And a low temperature reactor 29 for condensing the methanol gas by cooling and evaporating the methanol gas by heating, and a gas connected so that the methanol gas can freely move between the high temperature reactor 7 and the low temperature reactor 29. Flow channel 18, steam flow channel 21 and hot water flow channel 22 capable of switching and supplying high temperature steam or hot water to the high temperature reactor 7, and water capable of switching and supplying cooling water or hot water to the low temperature reactor 29. A heat storage device comprising a supply path 19 and a hot water supply path 5.
JP4091609A 1992-03-17 1992-03-17 Heat accumulating device Pending JPH05264187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4091609A JPH05264187A (en) 1992-03-17 1992-03-17 Heat accumulating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4091609A JPH05264187A (en) 1992-03-17 1992-03-17 Heat accumulating device

Publications (1)

Publication Number Publication Date
JPH05264187A true JPH05264187A (en) 1993-10-12

Family

ID=14031318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4091609A Pending JPH05264187A (en) 1992-03-17 1992-03-17 Heat accumulating device

Country Status (1)

Country Link
JP (1) JPH05264187A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007822A (en) * 2010-06-25 2012-01-12 Denso Corp Chemical heat storage device
WO2012108343A1 (en) 2011-02-10 2012-08-16 株式会社豊田中央研究所 Chemical heat accumulator and method for producing same
JP2012172902A (en) * 2011-02-21 2012-09-10 Toyota Central R&D Labs Inc Heat transfer system and heat exchanger type reactor
JP2012172901A (en) * 2011-02-21 2012-09-10 Toyota Central R&D Labs Inc Chemical heat storage heat transfer device and heat exchanger type reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007822A (en) * 2010-06-25 2012-01-12 Denso Corp Chemical heat storage device
WO2012108343A1 (en) 2011-02-10 2012-08-16 株式会社豊田中央研究所 Chemical heat accumulator and method for producing same
JP2012172902A (en) * 2011-02-21 2012-09-10 Toyota Central R&D Labs Inc Heat transfer system and heat exchanger type reactor
JP2012172901A (en) * 2011-02-21 2012-09-10 Toyota Central R&D Labs Inc Chemical heat storage heat transfer device and heat exchanger type reactor

Similar Documents

Publication Publication Date Title
Meunier Theoretical performances of solid adsorbent cascading cycles using the zeolite-water and active carbon-methanol pairs: four case studies
US4573321A (en) Power generating cycle
EP0343650B1 (en) Heat accumulation system
CN110118160B (en) Solar supercritical carbon dioxide Brayton cycle system
JPS6213485B2 (en)
JPH0228232B2 (en)
US4262739A (en) System for thermal energy storage, space heating and cooling and power conversion
CN107514837A (en) The cooling heating and power generation system that heat pump couples with supercritical carbon dioxide Brayton cycle
JP2004211979A (en) Absorption refrigerating system
JPH05264187A (en) Heat accumulating device
CN113803156A (en) Combined cooling heating and power system of ORC-jet type refrigerating device
US20010050163A1 (en) Low-temperature waste-heat-gas driven refrigeration system
JPH0260060A (en) Fuel cell system with exhaust heat energy recovery unit
JP6666148B2 (en) Electrical installation having a cooled fuel cell with an absorption heat engine
JP2001160404A (en) Power storage system
JP2606728B2 (en) Thermal energy effective use system
CN113571807B (en) Heat management system for liquid cooling and heating of energy storage battery
JP3114950B2 (en) Direct contact heat exchanger for fuel cells
JPS61218072A (en) Thermal power generating equipment
JPS6036774Y2 (en) Power generation device using engine waste heat
JPH05223389A (en) Fuel cell-refrigerator integral system and controlling method therefor
JPH0443567A (en) Waste heat recovery device for fuel cell power generating plant
CN117211950A (en) Hydrogen energy power generation system utilizing air heat energy
CN117073419A (en) Hydrogen energy power generation system
CN118442143A (en) High-efficiency hydrogen energy power generation system