JPH0132426B2 - - Google Patents

Info

Publication number
JPH0132426B2
JPH0132426B2 JP57084440A JP8444082A JPH0132426B2 JP H0132426 B2 JPH0132426 B2 JP H0132426B2 JP 57084440 A JP57084440 A JP 57084440A JP 8444082 A JP8444082 A JP 8444082A JP H0132426 B2 JPH0132426 B2 JP H0132426B2
Authority
JP
Japan
Prior art keywords
compound
generator
light energy
heat
heat absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57084440A
Other languages
Japanese (ja)
Other versions
JPS58200960A (en
Inventor
Manabu Ishizuka
Hiroshi Nakano
Noburu Fujisawa
Shoichi Suzuki
Kozo Kimura
Yoshito Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP57084440A priority Critical patent/JPS58200960A/en
Publication of JPS58200960A publication Critical patent/JPS58200960A/en
Publication of JPH0132426B2 publication Critical patent/JPH0132426B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • F25B27/007Machines, plants or systems, using particular sources of energy using solar energy in sorption type systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 本発明は太陽光エネルギを集光して冷房に用い
る太陽エネルギ利用冷房装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar energy cooling device that condenses solar energy and uses it for cooling.

従来の一般的な冷房装置は圧縮冷凍機を用いて
いるため、太陽エネルギで冷房を行なうために
は、太陽エネルギで加熱された温水を電気等の別
のエネルギに変換する必要がある。これに対し
て、吸収式冷凍機を用いる場合には、太陽光で加
熱された温水を発生器へ直接導き、冷媒ガスを高
温とすることにより冷房が可能である。
Conventional general cooling devices use compression refrigerators, so in order to perform cooling using solar energy, it is necessary to convert hot water heated by solar energy into another energy such as electricity. On the other hand, when an absorption refrigerator is used, air conditioning is possible by directing hot water heated by sunlight to a generator and heating the refrigerant gas to a high temperature.

しかし蓄熱材が水であるため、蓄熱材貯湯槽か
らの放熱が大きく、長期間の蓄熱は不可能であ
る。また太陽光コレクタで温水を加熱する場合に
は、太陽光のうち長波長域の光エネルギが比較的
効率良く集熱可能であり、短波長域(0.17〜
0.35μm)の光エネルギはあまり効率良く集熱さ
れておらず、限られた効率の太陽エネルギ利用手
段となつている。
However, since the heat storage material is water, a large amount of heat is radiated from the heat storage material hot water tank, making it impossible to store heat for a long period of time. In addition, when heating hot water with a solar collector, it is possible to collect light energy in the long wavelength range of sunlight relatively efficiently, and the short wavelength range (0.17~
0.35 μm) is not very efficiently collected, making it a limited efficient means of utilizing solar energy.

本発明は上記事実を考慮し、太陽光の中から広
い波長域に渡つて光エネルギを利用可能であり、
必要に応じて長期間のエネルギ保存が可能な太陽
エネルギ利用冷房装置を得ることが目的である。
In consideration of the above facts, the present invention can utilize light energy from sunlight over a wide wavelength range,
The objective is to obtain a cooling device using solar energy that can store energy for a long period of time if necessary.

本発明に係る太陽エネルギ利用装置は、主とし
て短波長域の光エネルギにより高歪可能化合物を
高歪化合物に変化させる光エネルギ貯蔵化合物循
環太陽光変換手段から高歪化合物を吸収式冷凍機
の発生器へ導き、この供給配管に設けた触媒装置
で高歪化合物に触媒熱反応を生じさせて発生器を
加熱し、冷媒を気化させることにより短波長域の
光エネルギを利用可能としている。この光貯蔵化
合物循環太陽光変換手段と発生器との間の供給配
管へ吸放熱材循環太陽光加熱手段からの吸放熱材
で高歪化合物を加熱する熱交換器を設けたり、発
生器を光エネルギ貯蔵化合物循環太陽光変換手段
及び吸放熱材循環太陽光加熱手段とそれぞれ供給
配管を介して連通させることにより、熱効率を向
上させ、発生熱量、発生温度を広範囲に設定でき
る。
The solar energy utilization device according to the present invention converts a highly strainable compound into a high strain compound mainly by using light energy in a short wavelength range. A catalyst device installed in this supply pipe causes a catalytic thermal reaction in the highly strained compound, heats the generator, and vaporizes the refrigerant, making it possible to utilize light energy in the short wavelength range. A heat exchanger is installed in the supply piping between the light storage compound circulating sunlight conversion means and the generator to heat the high strain compound with the heat absorbing and dissipating material from the heat absorbing and dissipating material circulating solar heating means, and the generator is By communicating with the energy storage compound circulating sunlight converting means and the heat absorbing/dissipating material circulating solar heating means through supply piping, thermal efficiency can be improved and the amount of heat generated and the generated temperature can be set over a wide range.

以上本発明の実施例を図面に従い説明する。 Embodiments of the present invention will be described above with reference to the drawings.

第1図に示される如く本実施例に係る太陽エネ
ルギ利用冷房装置では太陽光コレクタ10で集光
した太陽エネルギを吸収式冷凍機12へ導いて冷
房を行なうようになつている。この太陽光コレク
タ10は吸放熱材循環太陽光加熱手段を兼用した
水循環太陽光コレクタ部14と光エネルギ貯蔵化
合物循環太陽光変換手段を兼用したコレクタ部1
6とを有している。(以下それぞれ水循環コレク
タ部、化合物循環コレクタ部と称する) この太陽光コレクタ10は各種の形状が考えら
れるが、この実施例では一例として第2図に示さ
れる具体的構造が用いられている。この太陽光コ
レクタ10は上端が開放した箱体18の開口部へ
平凸レンズを構成する筒体20が固定されてい
る。この筒体20の平凸断面空間22は第1図の
化合物循環コレクタ部16に相当し、その長手方
向端部(第2図紙面直角方向端部)が隣接する平
凸断面空間22の長手方向端部と連通されてい
る。これによつて複数個の平凸断面空間22が互
に直列に連通されている。この平凸断面空間22
には光エネルギ貯蔵化合物が流通されるようにな
つており、矢印A方向に照射される太陽光のうち
主として短波長域の光を吸収して高歪化合物に変
化するようになつている。
As shown in FIG. 1, in the solar energy cooling system according to this embodiment, solar energy collected by a solar collector 10 is guided to an absorption refrigerator 12 for cooling. This solar light collector 10 includes a water circulation solar collector section 14 which also serves as a heat absorbing and dissipating material circulating sunlight heating means, and a collector section 1 which also serves as a light energy storage compound circulating sunlight converting means.
6. (Hereinafter, they will be referred to as a water circulation collector section and a compound circulation collector section, respectively.) Various shapes can be considered for this solar collector 10, but in this embodiment, a specific structure shown in FIG. 2 is used as an example. In this sunlight collector 10, a cylindrical body 20 constituting a plano-convex lens is fixed to an opening of a box body 18 whose upper end is open. The plano-convex cross-sectional space 22 of this cylindrical body 20 corresponds to the compound circulation collector section 16 in FIG. communicated with the end. This allows the plurality of plano-convex cross-sectional spaces 22 to communicate with each other in series. This plano-convex cross-sectional space 22
A light energy storage compound is distributed to the compound, which absorbs mainly light in the short wavelength range of sunlight irradiated in the direction of arrow A and changes into a highly strained compound.

箱体18の内部には筒体20を通過する太陽光
の集光部に吸熱管24が配置されて第1図の水循
環コレクタ部14に相当している。従つて吸熱管
24は太陽光のうち平凸断面空間22内の光エネ
ルギ貯蔵化合物で吸収されない長波長光を主とし
て吸光するようになつている。吸熱管24には集
光位置の経時変化に備えて補助吸光板26が設け
られている。これらの吸熱管24及び補助吸光板
26はその表面が選択吸収面とされていることが
望ましい。また箱体18は断熱材等を付設して保
温性を向上するようになつている。
Inside the box body 18, a heat absorption tube 24 is arranged at a condensing part for sunlight passing through the cylinder body 20, and corresponds to the water circulation collector part 14 in FIG. Therefore, the heat absorption tube 24 mainly absorbs long-wavelength light from sunlight that is not absorbed by the light energy storage compound in the plano-convex cross-sectional space 22. The heat absorbing tube 24 is provided with an auxiliary light absorbing plate 26 in preparation for changes in the condensing position over time. It is desirable that the surfaces of the heat absorbing tube 24 and the auxiliary light absorbing plate 26 are selectively absorbing surfaces. Furthermore, the box body 18 is provided with a heat insulating material or the like to improve heat retention.

循環パイプ34内を流れる光エネルギ貯蔵化合
物として本実施例では第3図に示されるノルボル
ナジエン(以下N体と称する)が用いられてい
る。このN体は常温で流動性を有する高歪可能化
合物であり、紫外線領域の短波長光を照射すると
光異性化反応により高歪化合物であるクワドリシ
クレン(以下Q体と称する)に変化する性質を有
しており、このQ体は触媒(コバルトテトラフエ
ニルポリフイリン錯体やコバルトフタロシアニン
錯体)内を通過させると、触媒熱反応を生じてN
体の状態に戻る性質がある。この時に22Kcal/
Mol=240cal/g程度の熱発生を伴う。従つて太
陽光のうち主として短波長光を蓄積し、必要に応
じて熱エネルギとして放出可能である。
In this embodiment, norbornadiene (hereinafter referred to as N-form) shown in FIG. 3 is used as the optical energy storage compound flowing through the circulation pipe 34. This N-form is a highly strainable compound that has fluidity at room temperature, and when irradiated with short wavelength light in the ultraviolet region, it changes into a highly strained compound quadricyclene (hereinafter referred to as Q-form) through a photoisomerization reaction. When this Q form is passed through a catalyst (cobalt tetraphenyl polyphylline complex or cobalt phthalocyanine complex), a catalytic thermal reaction occurs and N
It has the property of returning to its physical state. At this time 22Kcal/
It is accompanied by heat generation of about Mol=240cal/g. Therefore, it is possible to mainly accumulate short wavelength light of sunlight and release it as thermal energy as necessary.

第1図に基づいて太陽光コレクタ10と吸収式
冷凍機12との間の配管を説明する。化合物循環
コレクタ部16の一端は供給配管36を介してQ
体貯留槽38へ接続されて化合物循環コレクタ部
16で生じたQ体を貯留するようになつている。
このQ体貯留槽38の出口部は供給配管40、ポ
ンプ42を介して吸収式冷凍機12の発生器44
へ接続されている。
Piping between the solar collector 10 and the absorption chiller 12 will be explained based on FIG. One end of the compound circulation collector section 16 is connected to Q through the supply piping 36.
It is connected to a body storage tank 38 to store the Q bodies generated in the compound circulation collector section 16.
The outlet of this Q body storage tank 38 is connected to a generator 44 of the absorption refrigerator 12 via a supply pipe 40 and a pump 42.
connected to.

この吸収式冷凍機12は第4図に示される如く
発生器44部分で供給配管40がU字状に屈曲さ
れて戻り配管46の一端に接続されている。この
戻り配管46の他端は第1図に示される如くN体
貯留槽48へ接続されており、N体貯留槽48の
出口部が戻り配管50及びポンプ52を介して化
合物循環コレクタ部16の他端へ接続されてい
る。
As shown in FIG. 4, this absorption refrigerating machine 12 has a supply pipe 40 bent into a U-shape at a generator 44 portion and connected to one end of a return pipe 46. The other end of this return pipe 46 is connected to an N-body storage tank 48 as shown in FIG. connected to the other end.

吸収式冷凍機12の発生器44で反転される供
給配管40には内周部に触媒装置が設けられてい
る。従つて供給配管40内を送られるQ体はこの
触媒と反応してN体に復帰すると共に触媒熱反応
を生じて発生器44を加熱するようになつてい
る。
The supply pipe 40 that is inverted by the generator 44 of the absorption refrigerator 12 is provided with a catalyst device on its inner circumference. Therefore, the Q body sent through the supply pipe 40 reacts with the catalyst and returns to the N body, and a catalytic thermal reaction occurs to heat the generator 44.

吸収式冷凍機12は発生器44の他に蒸発器5
6、吸収器58及び凝縮器60が設けられてい
る。蒸発器56と吸収器58とは同一室内に配設
されており、冷媒(例えばアンモニアガス)は吸
収器58で希薄溶器62(例えばアンモニア水)
へ溶解するようになつており、冷媒ガスを吸収し
た濃溶液62はポンプ64、配管66を介して発
生器44へ接続されている。発生器44へ供給さ
れた濃溶液は供給配管40で加熱されることによ
り冷媒ガスを発生して希薄化されるようになつて
おり、凝縮器60の凝縮液70は配管72で蒸発
器56へ接続されている。また吸収器58及び凝
縮器60には冷却水配管74が、蒸発器56には
冷却対象である冷水配管76が設けられている。
さらに配管66には濃溶液68から希薄溶液62
へ戻る配管によつて熱交換器78が設けられ、発
生器44の希薄溶液68の一部はオーバーフロー
管80によつて吸収器58と連通されている。
The absorption refrigerator 12 includes an evaporator 5 in addition to the generator 44.
6, an absorber 58 and a condenser 60 are provided. The evaporator 56 and the absorber 58 are arranged in the same room, and the refrigerant (for example, ammonia gas) is passed through the absorber 58 to the diluted solvent 62 (for example, aqueous ammonia).
The concentrated solution 62 that has absorbed the refrigerant gas is connected to the generator 44 via a pump 64 and piping 66. The concentrated solution supplied to the generator 44 is heated in the supply pipe 40 to generate refrigerant gas and become diluted, and the condensed liquid 70 in the condenser 60 is sent to the evaporator 56 in the pipe 72. It is connected. Further, the absorber 58 and the condenser 60 are provided with a cooling water pipe 74, and the evaporator 56 is provided with a cold water pipe 76 to be cooled.
Furthermore, a pipe 66 is connected to a pipe 62 from a concentrated solution 68 to a dilute solution 62.
A heat exchanger 78 is provided by piping back to the absorber 58 , and a portion of the dilute solution 68 from the generator 44 is communicated with the absorber 58 by an overflow tube 80 .

従つてこの吸収式冷凍機12では、蒸発器56
で発生した冷媒ガスが冷却水配管74で冷却され
ながら希薄溶液に吸収され、その結果濃溶液62
が形成され、それがポンプ64、配管66で送ら
れ、熱交換器78で加熱された後に発生器44へ
至る。この発生器44では供給配管40で更に加
熱されて冷媒ガスとなり凝縮器60へ至る。この
凝縮器60では冷却水配管74で冷却されて凝縮
し凝縮液70となる。この凝縮液70は蒸発器5
6で蒸発して冷水配管76から蒸発熱を奪いこの
冷却された冷水配管76内の冷水により冷房を行
なうことができる。
Therefore, in this absorption refrigerator 12, the evaporator 56
The refrigerant gas generated is absorbed into the dilute solution while being cooled by the cooling water pipe 74, and as a result, the concentrated solution 62
is formed, is sent through a pump 64 and piping 66, is heated in a heat exchanger 78, and then reaches the generator 44. In this generator 44 , it is further heated in the supply pipe 40 and becomes a refrigerant gas, which reaches the condenser 60 . In this condenser 60 , the water is cooled and condensed through a cooling water pipe 74 to become a condensed liquid 70 . This condensate 70 is transferred to the evaporator 5
The cold water in the cold water pipe 76 is evaporated to remove heat of evaporation from the cold water pipe 76, and the cooled water in the cold water pipe 76 can perform air conditioning.

この冷房能力は冷水配管76に設けられた温度
センサ82とこの温度センサ82によつて制御さ
れる供給配管40の制御弁84によつて自動制御
される。
This cooling capacity is automatically controlled by a temperature sensor 82 provided in the cold water pipe 76 and a control valve 84 in the supply pipe 40 that is controlled by the temperature sensor 82.

第1図に示される如く水循環コレクタ部14か
らの供給配管86は貯湯槽88へ接続されてい
る。この貯湯槽88は水循環コレクタ部14で加
熱された吸放熱材である温水を貯留し、必要に応
じて給湯配管90から取り出すようになつてい
る。
As shown in FIG. 1, a supply pipe 86 from the water circulation collector section 14 is connected to a hot water storage tank 88. This hot water storage tank 88 stores hot water, which is a heat absorbing and dissipating material heated by the water circulation collector section 14, and is adapted to be taken out from the hot water supply piping 90 as needed.

この貯湯槽88から給湯配管90で消費される
水量を補うために給水源へ接続される給水配管9
2及び貯湯槽88と水循環コレクタ部14の入口
とを接続する供給配管94が設けられており、こ
の配管中にポンプ96が介在されている。
A water supply pipe 9 connected to a water supply source to supplement the amount of water consumed by the hot water supply pipe 90 from this hot water storage tank 88
A supply pipe 94 is provided that connects the hot water tank 2 and the hot water storage tank 88 to the inlet of the water circulation collector section 14, and a pump 96 is interposed in this pipe.

供給配管86には分岐配管98が連通されてお
り、この分岐配管98は熱交換器100を介して
戻り配管102へ接続されており、この戻り配管
102は供給配管94を介して水循環コレクタ部
14へ戻るようになつている。この熱交換器10
0は水循環コレクタ部14からの温水で配管40
内のQ体を加熱するようになつており、これによ
つて発生器44における発熱が更に高温となるよ
うに配慮されている。
A branch pipe 98 is connected to the supply pipe 86 , and this branch pipe 98 is connected to a return pipe 102 via a heat exchanger 100 , and this return pipe 102 is connected to the water circulation collector section 14 via a supply pipe 94 . It's starting to go back to. This heat exchanger 10
0 is hot water from the water circulation collector section 14 and pipe 40
The Q body inside the generator 44 is heated, so that the heat generated in the generator 44 becomes even higher temperature.

前記貯湯槽88にはQ体貯留槽38の供給配管
40からの分岐配管41がポンプ43を介して挿
入されており、供給配管40の場合と同様に貯湯
槽88内で触媒装置によりQ体をN体へ復帰させ
る触媒熱反応を生じさせ、貯湯槽88内の温水を
所望温度まで加熱できるようになつている。発生
したN体は戻り配管47でN体貯留槽48へ戻さ
れる。
A branch pipe 41 from the supply pipe 40 of the Q body storage tank 38 is inserted into the hot water storage tank 88 via a pump 43, and as in the case of the supply pipe 40, the Q body is generated in the hot water tank 88 by a catalyst device. A catalytic thermal reaction is generated to return the water to N-form, and the hot water in the hot water storage tank 88 can be heated to a desired temperature. The generated N bodies are returned to the N body storage tank 48 through a return pipe 47.

次に本実施例の作動を説明する。 Next, the operation of this embodiment will be explained.

第2図に示される太陽光コレクタ10で太陽光
のうち主として長波長光の照射により加熱された
温水は配管86を通つて貯湯槽88で蓄積され、
必要に応じて給湯配管90を通つて消費される。
Hot water heated by the solar collector 10 shown in FIG. 2 mainly by irradiation with long-wavelength light from sunlight passes through a pipe 86 and is accumulated in a hot water storage tank 88.
The hot water is consumed through the hot water supply piping 90 as needed.

一方化合物循環コレクタ部16は太陽光のうち
短波長光を受けて光エネルギ貯蔵化合物をQ体に
変化させる。このQ体は供給配管36を通つてQ
体貯留槽38へ蓄積されるがQ体は単独ではN体
に復帰しないのでエネルギの長期保存が可能であ
る。このQ体貯留槽38内のQ体は必要に応じて
ポンプ42で供給配管40内を吸収式冷凍機12
の発生器44へと送られる。発生器44では触媒
装置によりQ体がN体へ復帰する触媒反応が生じ
るので発生器44が加熱され濃溶液から冷媒が分
離して気化する。この気化した冷媒は凝縮器60
で冷却されて凝縮液70となり、蒸発器56で蒸
発して気化熱により冷水配管76を冷却する。こ
の冷水によつて冷房が行なわれる。ここで、発生
器44へ至る供給配管40内のQ体は熱交換器1
00で、分岐配管98の温水熱のために加熱され
ているので、発生器44における発熱効率が高く
なつている。
On the other hand, the compound circulation collector section 16 receives short wavelength light of sunlight and converts the light energy storage compound into the Q-form. This Q body passes through the supply pipe 36
Although the Q body is accumulated in the body storage tank 38, the Q body does not return to the N body by itself, so that energy can be stored for a long time. The Q body in the Q body storage tank 38 is supplied to the absorption refrigerator 12 through the supply pipe 40 by a pump 42 as needed.
is sent to the generator 44. In the generator 44, a catalytic reaction occurs in which the Q-form returns to the N-form by a catalytic device, so the generator 44 is heated and the refrigerant is separated from the concentrated solution and vaporized. This vaporized refrigerant is transferred to the condenser 60
It is cooled to become a condensate 70, which evaporates in the evaporator 56 and cools the cold water pipe 76 with the heat of vaporization. Cooling is performed by this cold water. Here, the Q body in the supply pipe 40 leading to the generator 44 is connected to the heat exchanger 1
00, the heat generation efficiency in the generator 44 is high because the water is heated by the hot water in the branch pipe 98.

発生器44の触媒装置54で発生したN体は戻
り配管46を通つてN体貯留槽48内へ蓄積され
る。このN体は必要に応じてポンプ52で戻り配
管50内を化合物循環コレクタ部16の入口へと
送られる。
The N-bodies generated in the catalyst device 54 of the generator 44 are accumulated in the N-bodies storage tank 48 through the return pipe 46 . This N-form is sent to the inlet of the compound circulation collector section 16 through the return piping 50 by the pump 52 as required.

この装置を用いて暖房を行なうには貯湯槽88
内の温水を直接暖房機へ用いることも可能であ
り、また吸収式冷凍機12の冷却水配管74内へ
温水を通せばこの温水が吸収器58及び凝縮器6
0で加熱されるのでこれによつても暖房が可能で
ある。
To perform heating using this device, the hot water storage tank 88
It is also possible to directly use the hot water in the heater for the heater, and if hot water is passed through the cooling water pipe 74 of the absorption chiller 12, this hot water can be used in the absorber 58 and condenser 6.
Since it is heated at zero, heating is also possible with this.

次に第5図には本発明の第2実施例が示されて
いる。この実施例では太陽光コレクタと化合物循
環変換手段とを分離し、太陽光コレクタ110へ
光エネルギ貯蔵化合物を供給しない構造となつて
いる。即ち太陽光コレクタ110ではレンズ11
2で複数体の光フアイバー114の一端へ太陽光
を集光し、これらの光フアイバ114を束ねたバ
ンドル光フアイバケーブル116を化合物循環変
換手段であるN−Q変換槽118へ導き、この変
換槽118内のN体をQ体へ変化させるようにな
つている。
Next, FIG. 5 shows a second embodiment of the present invention. In this embodiment, the solar collector 110 is separated from the compound circulation conversion means, and the structure is such that the solar energy storage compound is not supplied to the solar collector 110. That is, in the sunlight collector 110, the lens 11
2, sunlight is focused on one end of a plurality of optical fibers 114, and a bundle optical fiber cable 116 in which these optical fibers 114 are bundled is guided to an N-Q conversion tank 118, which is a compound circulation conversion means. The N-body in 118 is changed to the Q-body.

このN−Q変換槽118はQ体貯留槽120と
Q体配管122及びN体配管124で連通されて
おり、N体配管124の中間部にポンプ126が
設けられている。これによつてQ体貯留槽120
内のN体はポンプ126でN−Q変換槽118へ
送られ、N−Q変換槽118内で発生したQ体は
貯留槽120へ戻されるようになつている。
This N-Q conversion tank 118 is communicated with a Q body storage tank 120 through a Q body piping 122 and an N body piping 124, and a pump 126 is provided in the middle of the N body piping 124. As a result, the Q body storage tank 120
The N bodies are sent to the N-Q conversion tank 118 by a pump 126, and the Q bodies generated in the N-Q conversion tank 118 are returned to the storage tank 120.

またこのQ体貯留槽120はN2タンク128
と連通されて窒素ガスによつてQ体が3〜4Kg/
cm2Gに加圧されている。このように不活性ガスで
加圧されたQ体の触媒反応発生温度は120〜125℃
に向上する。またこのQ体貯槽は整流板による層
流型貯槽として貯留効率が向上されている。
Also, this Q body storage tank 120 is an N 2 tank 128
Q-body is communicated with 3~4kg/by nitrogen gas.
It is pressurized to cm 2 G. The temperature at which the catalytic reaction occurs in the Q body pressurized with inert gas is 120 to 125℃.
improve. In addition, this Q body storage tank has improved storage efficiency as a laminar flow type storage tank using a rectifying plate.

このQ体貯留槽120は中間部にポンプ130
を有した供給配管132及び戻り配管134で吸
収式冷凍機12へと連通されている。
This Q body storage tank 120 has a pump 130 in the middle part.
The supply pipe 132 and return pipe 134 are connected to the absorption refrigerator 12.

この実施例においても水循環コレクタ部からの
温水でQ体貯留槽120からのQ体を加熱して発
熱効率を向上させる点は同様である。
This embodiment is also similar in that the Q body from the Q body storage tank 120 is heated with hot water from the water circulation collector section to improve heat generation efficiency.

第6図に示される如くこの実施例の吸収式冷凍
機は前記実施例の発生器が第2発生器136とさ
れ、ここに第1発生器138が設けられた二重効
用型となつている。この第1発生器138は溶液
ポンプ64からの濃溶液が配管139を介して供
給されるようになつており、U字型に折り返され
て戻り配管134と連通される供給配管132に
触媒装置140が設けられて高圧触媒熱交換器と
なつている。この第1発生器138で生ずる冷媒
ガスは配管142を介して凝縮器60へ連通され
ている。また第1発生器138の半濃溶液が配管
144によつて熱交換器146へ導かれ、配管1
39内の濃溶液を加熱するようになつている。
As shown in FIG. 6, the absorption refrigerating machine of this embodiment is a dual-effect type in which the generator of the previous embodiment is used as a second generator 136, and a first generator 138 is provided here. . The first generator 138 is configured to be supplied with a concentrated solution from the solution pump 64 via a pipe 139, and a catalyst device 140 is connected to the supply pipe 132 which is folded back into a U-shape and communicates with the return pipe 134. A high-pressure catalytic heat exchanger is provided. The refrigerant gas generated in the first generator 138 is communicated to the condenser 60 via a pipe 142. The semi-concentrated solution from the first generator 138 is also led to a heat exchanger 146 by a pipe 144,
It is designed to heat the concentrated solution in 39.

従つてこの実施例では圧力上昇されたQ体が触
媒装置140へ至り、高温度の触媒熱反応を生じ
るので、前記実施例と比較して更に高効率の冷房
を行なうことができるようになつている。
Therefore, in this embodiment, the Q body whose pressure has been increased reaches the catalytic device 140 and causes a high-temperature catalytic thermal reaction, making it possible to achieve even more efficient cooling than in the previous embodiment. There is.

またこの実施例では太陽光コレクタ110がバ
ンドル光フアイバケールブル116を介してN−
Q変換槽118へ接続される構造であるため、太
陽光コレクタ110を建物屋上へ取り付け、光エ
ネルギ貯蔵化合物の循環路は建物の地下等へ収容
することができ、光エネルギ貯蔵化合物が可燃性
である場合にも安全な配置とすることができる。
Further, in this embodiment, the solar collector 110 is connected to the N-
Since the structure is connected to the Q-conversion tank 118, the solar collector 110 can be installed on the roof of the building, and the circulation path for the light energy storage compound can be stored in the basement of the building, etc., so that the light energy storage compound is flammable. It can also be a safe arrangement in some cases.

第7図は第2実施例の装置を用いて暖房を行な
う場合の配管である。この場合には吸収式冷凍機
の冷却水配管74へ温水を供給し、吸収器58、
凝縮器60でさらに加熱された高温水を暖房に用
いるようになつている。
FIG. 7 shows piping when heating is performed using the device of the second embodiment. In this case, hot water is supplied to the cooling water pipe 74 of the absorption chiller, and the absorber 58,
The high temperature water further heated in the condenser 60 is used for heating.

なおこの実施例の駆動方式は、Q体貯留槽12
0内のN体が全てQ体に変換された後にこのQ体
を冷凍機12へ送るバツヂ処理とすることができ
るが、Q体貯留槽内を隔壁でQ体貯留部とN体貯
留部に分け、Q体貯留部を配置122,132
と、N体貯留部を配管124,134と連通して
もよい。この場合の隔壁は貯留するN体、Q体の
量に応じて移動する構成とすることができる。さ
らにこの実施例のQ体貯留槽120は複数個設け
てそれぞれ太陽光コレクタ110と連結可能とす
ると共に一個の貯留槽から冷凍機12へQ体を送
りN体を他の貯留槽へ戻すようにしてもよい。
Note that the drive system of this embodiment is based on the Q body storage tank 12.
It is possible to carry out a batch process in which all the N bodies in 0 are converted into Q bodies and then the Q bodies are sent to the refrigerator 12. Separate and place Q body storage parts 122, 132
The N-body storage section may be communicated with the pipes 124 and 134. In this case, the partition wall can be configured to move depending on the amount of N bodies and Q bodies stored. Furthermore, a plurality of Q-body storage tanks 120 in this embodiment are provided so that each can be connected to the solar collector 110, and the Q-bodies are sent from one storage tank to the refrigerator 12 and the N-bodies are returned to another storage tank. It's okay.

次に第8図には本発明の第3実施例が示されて
いる。この実施例では第1実施例の分岐配管98
が直接に吸収式冷凍機12の発生器44へと導か
れて、太陽光で加熱された温水及び光エネルギ貯
蔵化合物の触媒熱反応の双方で直接に発生器44
を加熱するようになつている。従つて発生器44
の発生熱量、発生温度を広範囲に設定することが
できる。
Next, FIG. 8 shows a third embodiment of the present invention. In this embodiment, the branch pipe 98 of the first embodiment
is conducted directly to the generator 44 of the absorption chiller 12, and both the solar heated hot water and the catalytic thermal reaction of the light energy storage compound directly generate the generator 44.
It is now heated. Therefore generator 44
The amount of heat generated and the temperature generated can be set over a wide range.

上記実施例では光エネルギ貯蔵化合物としてノ
ルボルナジエンを使用したが、本発明は可逆的光
異性化反応によつて光エネルギの吸収と熱エネル
ギの放出を反複し得る流動性の光エネルギ貯蔵化
合物であれば全て適用可能であり、アゼピン等の
他の化合物も使用できる。このアゼピンは短波長
光を受けて高歪化合物であるジクロブテノジヒド
ロビロールに変化し、触媒の存在下で再び高歪可
能化合物であるアゼピンに復帰すると共に熱発生
を伴うようになつている。またその他本発明では
光エネルギ貯蔵化合物をスラリ状としても使用で
き、流動性を有する状態であれば全て適用可能で
ある。
Although norbornadiene was used as the light energy storage compound in the above embodiment, the present invention is applicable to a fluid light energy storage compound that can repeatedly absorb light energy and release thermal energy through a reversible photoisomerization reaction. All are applicable and other compounds such as azepines can also be used. When this azepine receives short-wavelength light, it changes into dichlorobutenodihydrovyrol, a highly strained compound, and in the presence of a catalyst, it reverts back to azepine, a highly strainable compound, and is accompanied by heat generation. . In addition, in the present invention, the light energy storage compound can be used in the form of a slurry, and any form of fluidity can be applied.

また上記実施例では吸放熱材として水を用いた
が、この水は純水に限らず、防錆剤、凍結防止剤
等の適宜の添加物が含まれた物でも良い。また吸
放熱材は水以外にも太陽エネルギを熱エネルギと
して吸収放出するものであれば全て適用可能であ
り、グリコール類、炭化水素系、ハロゲン化炭化
水素系等でも良い。
Further, in the above embodiments, water was used as the heat absorbing and dissipating material, but the water is not limited to pure water, and may contain appropriate additives such as rust preventives and antifreeze agents. In addition to water, the heat absorbing and dissipating material may be any material that absorbs and releases solar energy as heat energy, and may be glycols, hydrocarbons, halogenated hydrocarbons, or the like.

以上説明した如く本発明に係る太陽エネルギ利
用冷房装置は光エネルギ貯蔵化合物で吸収式冷凍
機の発生器を加熱するので、太陽光の短波長域の
光エネルギをも有効に利用することができると共
にエネルギの長時間の蓄積が可能となる優れた効
果を有する。
As explained above, since the solar energy cooling device according to the present invention heats the generator of the absorption refrigerator with the light energy storage compound, it is possible to effectively utilize light energy in the short wavelength range of sunlight. It has an excellent effect of allowing energy to be stored for a long time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る太陽エネルギ利用冷房装
置の第1実施例を示す系統図、第2図は第1実施
例に用いる太陽光コレクタを示す一部破断斜視図
第3図は本実施例に用いる光エネルギ貯蔵化合物
を示す化学反応式、第4図は吸収式冷凍機を示す
系統図、第5図は本発明の第2実施例を示す系統
図、第6図、第7図は第2実施例に用いる吸収式
冷凍機の系統図、第8図は本発明の第3実施例を
示す系統図である。 10……太陽光コレクタ、12……吸収式冷凍
機、14……水循環太陽光コレクタ部、16……
光エネルギ貯蔵化合物循環太陽光コレクタ部、3
6,40……供給配管、44………発生器、54
……触媒装置、56……蒸発器、58……吸収
器、60……凝縮器、118……N−Q変換槽、
136……第2発生器、138……第1発生器。
Fig. 1 is a system diagram showing a first embodiment of the solar energy cooling device according to the present invention, Fig. 2 is a partially cutaway perspective view showing a solar collector used in the first embodiment, and Fig. 3 is a diagram showing the present embodiment. 4 is a system diagram showing an absorption refrigerator, FIG. 5 is a system diagram showing a second embodiment of the present invention, and FIGS. A system diagram of an absorption refrigerator used in the second embodiment, and FIG. 8 is a system diagram showing a third embodiment of the present invention. 10... Solar collector, 12... Absorption chiller, 14... Water circulation solar collector section, 16...
Light energy storage compound circulating solar collector part, 3
6, 40... Supply piping, 44... Generator, 54
... Catalyst device, 56 ... Evaporator, 58 ... Absorber, 60 ... Condenser, 118 ... N-Q conversion tank,
136...second generator, 138...first generator.

Claims (1)

【特許請求の範囲】 1 高歪可能化合物を太陽光で高歪化合物に変化
させる光エネルギ貯蔵化合物循環太陽光変換手段
と、熱エネルギの吸収と放出を反復し得る流動性
の吸放熱材を太陽光で加熱する吸放熱材循環太陽
光加熱手段と、前記光エネルギ貯蔵化合物循環太
陽光変換手段と供給配管を介して連通される発生
器を備え発生器で気化した冷媒を凝縮器を介して
蒸気器へ送る吸収式冷凍機と、前記供給配管へ設
けられ高歪化合物が高歪可能化合物へ変化する触
媒熱反応を生じさせる触媒装置と、前記供給配管
へ設けられ吸放熱材循環太陽光加熱手段からの吸
放熱材で高歪化合物を加熱する熱交換器と、を備
えたことを特徴とする太陽エネルギ利用冷房装
置。 2 高歪可能化合物を太陽光で高歪化合物に変化
させる光エネルギ貯蔵化合物循環太陽光変換手段
と、熱エネルギの吸収と放熱を反復し得る流動性
の吸放熱材を太陽光で加熱する吸放熱材循環太陽
光加熱手段と、前記光エネルギ貯蔵化合物循環太
陽光変換手段及び吸放熱材循還太陽光加熱手段と
それぞれ供給配管を介して連通される発生器を備
え発生器で蒸発した冷媒を凝縮器を介して蒸発器
へ送る吸収式冷凍機と、前記光エネルギ貯蔵化合
物循環太陽光変換手段からの供給配管へ設けられ
高歪化合物が高歪可能化合物へ変化する触媒熱反
応を生じさせる触媒装置と、を有することを特徴
とした太陽エネルギ利用冷房装置。
[Claims] 1. A light energy storage compound circulation solar conversion means that converts a highly strainable compound into a high strain compound by sunlight, and a fluid heat absorbing and releasing material that can repeatedly absorb and release thermal energy. A heat absorption/dissipation material circulation solar heating means for heating with light, and a generator communicating with the light energy storage compound circulation solar conversion means through a supply piping are provided. an absorption refrigerating machine for supplying water to the container, a catalytic device installed in the supply piping to cause a catalytic thermal reaction in which a high strain compound changes into a highly strainable compound, and a heat absorbing/radiating material circulating solar heating means installed in the supply piping. 1. A cooling device using solar energy, comprising: a heat exchanger that heats a highly strained compound with a heat absorbing and dissipating material from the sun. 2. A light energy storage compound circulation solar conversion means that converts a highly strainable compound into a highly strained compound by sunlight, and a heat absorbing/radiating material that heats a fluid heat absorbing/radiating material that can repeatedly absorb and release heat energy with sunlight. A generator is provided which is connected to the material circulation solar heating means, the light energy storage compound circulation solar conversion means and the heat absorbing/radiating material circulation solar heating means through supply piping, and the refrigerant evaporated by the generator is condensed. an absorption refrigerating machine that supplies the light energy to the evaporator through a container, and a catalytic device that is installed in the supply pipe from the light energy storage compound circulation solar conversion means and causes a catalytic thermal reaction in which a highly strained compound changes into a highly strainable compound. A cooling device using solar energy, comprising:
JP57084440A 1982-05-19 1982-05-19 Refrigeration system utilizing solar energy Granted JPS58200960A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57084440A JPS58200960A (en) 1982-05-19 1982-05-19 Refrigeration system utilizing solar energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57084440A JPS58200960A (en) 1982-05-19 1982-05-19 Refrigeration system utilizing solar energy

Publications (2)

Publication Number Publication Date
JPS58200960A JPS58200960A (en) 1983-11-22
JPH0132426B2 true JPH0132426B2 (en) 1989-06-30

Family

ID=13830646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57084440A Granted JPS58200960A (en) 1982-05-19 1982-05-19 Refrigeration system utilizing solar energy

Country Status (1)

Country Link
JP (1) JPS58200960A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004039327A1 (en) * 2004-08-12 2006-03-02 Phönix Sonnen Wärme AG Absorption chiller

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280278A (en) * 1975-12-23 1977-07-05 Battelle Development Corp Catch* collection and utilization of solar energy and apparatus therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280278A (en) * 1975-12-23 1977-07-05 Battelle Development Corp Catch* collection and utilization of solar energy and apparatus therefor

Also Published As

Publication number Publication date
JPS58200960A (en) 1983-11-22

Similar Documents

Publication Publication Date Title
JP5077419B2 (en) Chemical heat storage device
EP0374179B1 (en) Intermittent solar ammonia absorption cycle refrigerator
US20140116048A1 (en) Multi-Functional Solar Combined Heat and Power System
US5584193A (en) Absorption-type refrigeration systems and methods
CN201811485U (en) Working medium energy storage and continuous refrigeration device with solar energy
JPH0252962A (en) Method and device for generating cold heat
CN108151359B (en) Domestic solar energy utilization system of second grade heat accumulation formula
JPH0145548B2 (en)
US4307577A (en) Air conditioning system making use of waste heat
CN103353180B (en) Modular solar chemical adsorption heat storage and release and temperature-raising system and method
US4458500A (en) Absorption heat pump system
WO2010067359A2 (en) Closed loop solar energy system with a push-pull electric generator
JPH0132426B2 (en)
JPS58198648A (en) Loop type heat pipe system solar heat water heater
KR101773864B1 (en) Absorption chiller-heater integrated fuel cell having sub-cycle
JPS6051019B2 (en) Cooling device using solar energy
CN101929758A (en) Continuous refrigerating system with energy storage of solar energy working medium and continuous refrigerating method
CN110030618A (en) One kind being based on transpiration-cooled heating solar heat absorber
RU2806949C1 (en) Absorption refrigeration unit and method for cooling objects in autonomous mode in regions with hot climate
CN108413626A (en) A kind of solar energy heat-collection generating device and a kind of new type solar energy-geothermal energy united collection heat generating system
CN203240799U (en) Modularization solar energy chemical adsorption heat storing-releasing and heating system
JPS5812953A (en) Cool air, hot air and hot water supply equipment utilizing solar heat
CN116817482A (en) Absorption refrigerating device
JP2514452Y2 (en) Absorption cycle regenerator equipment
SU857658A1 (en) Combined solar unit