JPS58200027A - Flow duct controller of helical suction port - Google Patents

Flow duct controller of helical suction port

Info

Publication number
JPS58200027A
JPS58200027A JP57081586A JP8158682A JPS58200027A JP S58200027 A JPS58200027 A JP S58200027A JP 57081586 A JP57081586 A JP 57081586A JP 8158682 A JP8158682 A JP 8158682A JP S58200027 A JPS58200027 A JP S58200027A
Authority
JP
Japan
Prior art keywords
negative pressure
valve
inlet passage
intake
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57081586A
Other languages
Japanese (ja)
Inventor
Mitsuharu Taura
田浦 光晴
Itsuo Koga
古賀 逸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57081586A priority Critical patent/JPS58200027A/en
Publication of JPS58200027A publication Critical patent/JPS58200027A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/082Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets the main passage having a helical shape around the intake valve axis; Engines characterised by provision of driven charging or scavenging pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE:To enable to control an opening and closing valve in accordance with a suction air quantity without applying an electronic control unit, by holding the opening and closing valve at a fully-closed, a half-opened and a fully-opened positions according to the suction air quantity by leading negative pressure into a pair of negative pressure chambers selectively. CONSTITUTION:When an opening of a primary side throttle valve 55 is small, negative pressure to be generated at a venturi part 53 is small and large negative pressure is generated within a suction manifold 37. Then, when the opening of the primary side throttle valve 55 becomes large, a stopper 50 is pushed by a diaphragm 44 and a rotary valve 25 is turned into a half-opened state, as negative pressure to be applied to a negative pressure chamber (d) becomes larger than about 8mm.Hg and the inside of a second negative chamber 47 becomes the atmospheric pressure. Then, when the opening of the primary side throttle valve 55 becomes larger than about 20mm.Hg, that is, at the time of a high speed and a high load, the inside of a first negative pressure chamber 46 becomes atmospheric pressure, too, and the rotary valve is fully opened.

Description

【発明の詳細な説明】 本発明はヘリカル型吸気ポートの流路制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a flow path control device for a helical intake port.

ヘリカル型吸気/−)は通常吸気弁Mシに形成された渦
巻部と、この渦巻部に接線状に接続されかつほぼまっす
ぐに延びる入口通路部とにより構成される。このような
ヘリカル型吸気ポートを用いて吸入空気量の少ない機関
低速低負荷運転時に機関燃焼室内に強力な旋回流を発生
せしめようとすると吸気ポート形状が流れ抵抗の大きな
形状になってしまうので吸入空気蓋の多い機関高速高負
荷運転時に充填効率が低下するという問題を生ずる。こ
のような問題を解決するためにヘリカル型吸気/−)入
口通路部から分岐されてヘリカル型吸気ポート渦巻部の
渦巻終端部に連通ずる分岐路をシリンヘッド内に形成し
、分岐路内に開閉弁を設けてこの開閉弁を吸入空気量の
増大に応じて開弁するようにしたヘリカル型吸気ポート
が本出願人により既に提案されている。このヘリカル型
吸気ポートでは吸入空気量が多いときにヘリカル型吸気
ポート入口通路部□内に送9込まれた吸入空気の一部が
分岐路を介してヘリカル型吸気ポート渦巻部内に送り込
まれるために吸入空気の流路断面積が増大し、斯くして
充填効率を向上することができる。しかしながらこのヘ
リカル型吸気I−トでは分岐路が入口通路部から完全に
独立した筒状の通路として形成されているので分岐路の
流れ抵抗が比較的大きく、しかも分岐路を入口通路部に
隣接して形成しなければならないために入口通路部の断
面積が制限を受けるので十分に満足のいく高い充填効率
を得るのが困難となっている。更に、ヘリカル型吸気ポ
ートはそれ自体の形状が複雑であり、しかも入口通路部
か:ら完全に独立した分岐路を併設した場合には吸気ポ
ートの全体構造が極めて複雑となるのでこのような分岐
路を具えたヘリカル型吸気ポートをシリンダヘッド内に
形成するqまかなシ困離である。更に、このヘリカル型
吸気ポートでは吸入空気量の増大に応じて開閉弁を開弁
させるために、電子制御ユニットが必要となるので開閉
弁の制御装置が複雑となシ、その結果制御装置の製造コ
ストが上昇すると共に制御装置の信頼性が低下するとい
う問題がある。
The helical intake valve M is usually composed of a spiral portion formed in the intake valve M, and an inlet passage portion that is tangentially connected to the spiral portion and extends substantially straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine when the engine is operating at low speed and low load with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that the filling efficiency decreases during high-speed, high-load operation of the engine with many air caps. To solve this problem, a branch path is formed in the cylinder head that branches off from the helical intake/-) inlet passage and communicates with the spiral end of the helical intake port spiral section, and an opening/closing mechanism is formed within the branch path. The applicant has already proposed a helical intake port which is provided with a valve and is opened in response to an increase in the amount of intake air. In this helical type intake port, when the amount of intake air is large, a part of the intake air that is sent into the helical type intake port inlet passage □ is sent into the helical type intake port spiral part through the branch path. The cross-sectional area of the intake air flow path is increased, and thus the filling efficiency can be improved. However, in this helical intake I-T, the branch passage is formed as a cylindrical passage completely independent from the inlet passage, so the flow resistance of the branch passage is relatively large. Since the cross-sectional area of the inlet passage is limited, it is difficult to obtain a sufficiently high filling efficiency. Furthermore, the helical intake port itself has a complicated shape, and if a branch passage that is completely independent from the inlet passage is added, the overall structure of the intake port will become extremely complicated. A helical intake port with a groove is formed in the cylinder head. Furthermore, this helical intake port requires an electronic control unit to open the on-off valve in response to an increase in the amount of intake air, so the on-off valve control device is complicated, and as a result, the manufacturing of the control device is complicated. There are problems in that the cost increases and the reliability of the control device decreases.

本発明は機関高速高貴を」運転時に高い充−効率を得る
ことができると共に電子制御ユニットを用いることなく
吸気空気量の増大に応じて開閉弁を開弁すZことのでき
るヘリカル型吸気ポートの流路制御装置を提供すること
にある。
The present invention provides a helical intake port that can obtain high charging efficiency when the engine is operated at high speeds and can open and close the valve according to the increase in intake air amount without using an electronic control unit. An object of the present invention is to provide a flow path control device.

以下、添附図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

紀1図並びに第2図を参照すると、1はシリンダブロッ
ク、2はシリンダブロック1内で往復動するピストン、
3はシリンダブロック1上に固締されたシリンダヘラY
、4はピストン2とシリンダヘッド3間に形成された燃
焼室、5は吸気弁、6はシリンダヘッド3内に形成され
たヘリカル型吸気ポート、7は排気弁、8はシリンダヘ
ッド3内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5aを案内す
るステムガイドを夫々示す。第1図並びに第2図に示さ
れるようVC吸気ポート6の土壁面11上に;1下方に
突出する隔壁12が一体成形され、この隔壁12によっ
て渦巻部Bと、この渦巻部Bに接線状に接続された人口
通路部Aからなるヘリカル型吸気ポート6が形成される
。この隔ki12は入口通路部A(ハ)から吸気弁5の
ステムガイドlOの周囲まで延びており、第2図かられ
かるようい−この隔壁12の根元部の巾りは入口通路部
Aからステムガイド10に近づくにつれて徐々に広くな
る。隔に412&:t、吸気ポート6の入1]開口6a
に最も近い側に位置する先端部13を有し、更tci4
壁12は第2図においてこの先端部13から反時計回り
にステムガイド10まで延びる第1側!IJ而14aと
、先端figs l 3からn、y針目りにステムガイ
ド10まで延びる第2側壁而14bとを有する。
1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1,
3 is a cylinder spatula Y fixed on the cylinder block 1
, 4 is a combustion chamber formed between the piston 2 and the cylinder head 3, 5 is an intake valve, 6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, 8 is formed in the cylinder head 3 9 indicates an ignition plug disposed within the combustion chamber 4, and 10 indicates a stem guide for guiding the stem 5a of the intake valve 5. As shown in FIGS. 1 and 2, a partition wall 12 projecting downward is integrally formed on the earthen wall surface 11 of the VC intake port 6, and this partition wall 12 forms a spiral portion B and a line tangential to the spiral portion B. A helical intake port 6 consisting of an artificial passageway portion A connected to is formed. This partition ki12 extends from the inlet passage part A (c) to around the stem guide lO of the intake valve 5, and as can be seen from FIG. It gradually becomes wider as it approaches the stem guide 10. 412&:t at the interval, intake port 6 entry 1] opening 6a
has a tip 13 located on the side closest to tci4
The wall 12 is a first side extending counterclockwise from this tip 13 to the stem guide 10 in FIG. It has an IJ 14a and a second side wall 14b extending from the tip figs 13 to the stem guide 10 in the n and y stitches.

第1側壁面14a&よ先端部13からステムガイド10
の側方を通って渦巻部Bの@壁面15の近傍まで延びて
渦巻部側壁面15との間に狭窄部16を形成する。次い
で第1側壁面14mは渦巻部側壁面15から徐々に間隔
を隔てるように彎曲しつつステムガイド10まで延びる
。一方、第2側壁面14bは先端部13からステムガイ
ド10までほぼまっすぐに延びる。
The stem guide 10 from the first side wall surface 14a & the tip end 13
It extends to the vicinity of the @ wall surface 15 of the spiral portion B through the side thereof, and forms a narrow portion 16 between the spiral portion side wall surface 15 and the spiral portion B. Next, the first side wall surface 14m extends to the stem guide 10 while being curved so as to be gradually spaced apart from the spiral portion side wall surface 15. On the other hand, the second side wall surface 14b extends substantially straight from the distal end portion 13 to the stem guide 10.

第1図から第9図を参照すると、入口通路部Aの側壁面
17.18社には垂直配置され、一方入口通路部人の上
壁面19は渦巻部Bに向けて徐々に下降する。人口通路
部人の側壁面17は渦巻部Bの側壁面15に滑らかに接
続され、入口通路部人の上壁面19は渦巻部Bの上壁面
20に滑らかに接続される、渦巻部Bの土壁面20は渦
巻部Bと入口通路部人の接続部から狭窄部16に向けて
下降しつつ徐々に巾を狭め、次いで狭窄部16を通過す
ると徐々に巾を広げる。一方、入口通路部6の下壁面2
1は第5図に示すように入ロ開ロ頷の近傍においてはそ
の全体が#デは水平をなしており、側壁面17に隣接す
る底壁面部分21mは第8図に示すように渦巻部Bに近
づくに従って隆起して傾斜面を形成する。この傾斜底壁
面部分21aの#1fi4角は渦巻部Bに近づくにつれ
て徐々に大きくなる。
Referring to FIGS. 1 to 9, the side walls 17, 18 of the inlet passage A are arranged vertically, while the upper wall 19 of the inlet passage A gradually descends toward the spiral part B. The side wall surface 17 of the artificial passage section is smoothly connected to the side wall surface 15 of the spiral section B, and the upper wall surface 19 of the entrance passage section is smoothly connected to the upper wall surface 20 of the spiral section B. The wall surface 20 gradually narrows in width as it descends from the connection between the spiral portion B and the inlet passageway toward the narrowed portion 16, and then gradually widens as it passes through the narrowed portion 16. On the other hand, the lower wall surface 2 of the inlet passage section 6
As shown in FIG. 5, the entire #de is horizontal in the vicinity of the entrance opening nozzle, and the bottom wall surface portion 21m adjacent to the side wall surface 17 has a spiral portion as shown in FIG. As it approaches B, it rises and forms an inclined surface. The #1fi4 angle of this inclined bottom wall surface portion 21a gradually increases as it approaches the spiral portion B.

一方、隔壁12の第1側壁而14aはわずかばかり傾斜
した下向きの傾斜面からなり、第2個壁面14bはほぼ
垂直をなす。隔壁12の底壁面22は先端部13からス
テムガイド10に向う−に従って入口通路部6の土壁面
11との間隔が次第に大きくなるように入口通路部Aか
ら渦巻部Bに向けてわずかばかり彎曲しつつ下降する。
On the other hand, the first side wall 14a of the partition wall 12 has a slightly downwardly inclined surface, and the second wall surface 14b is substantially vertical. The bottom wall surface 22 of the partition wall 12 is slightly curved from the inlet passage section A toward the spiral section B so that the distance from the earth wall surface 11 of the inlet passage section 6 gradually increases from the tip end 13 toward the stem guide 10. Go down.

隔壁12の底壁面22上には第4図のノ・ツチングで示
す領域に底壁面22から下方に突出するリブ23が形成
され、このリブ23の底面および底壁面22はわずかば
かシ彎曲した傾斜面を形成する。
On the bottom wall surface 22 of the partition wall 12, a rib 23 is formed which projects downward from the bottom wall surface 22 in the area shown by the notch in FIG. form a surface.

一方、シリンダヘッド3内には渦巻部Bの渦巻終端部C
と入口通路部Aとを連通ずる分岐路24が形成され、こ
の分岐路i4の入口部にロータリ弁25が配置される。
On the other hand, inside the cylinder head 3, there is a spiral end portion C of the spiral portion B.
A branch passage 24 is formed that communicates the branch passage i4 with the inlet passage A, and a rotary valve 25 is disposed at the entrance of the branch passage i4.

この分岐路24は隔壁12によって入口通路部Aから分
離されており、分岐路24の下側空間全体が人口通路部
Aに連通している。分岐路24の上壁面26はほぼ一様
な巾を有し、渦巻終端部Cに向けて徐々に下降して渦巻
部Bの上壁面20に滑らかに接続される。隔壁12の第
2側壁面14bK対面する分岐路24の側壁面27はほ
ぼ垂直をなし、更にこの側壁面27はほぼ入口通路部A
の側壁面18の延長上に位置する。なお、第1図かられ
かるように隔壁12上に形成されたリブ23はロータリ
弁25の近傍から吸気弁5に向けて延びている。
This branch passage 24 is separated from the entrance passage section A by the partition wall 12, and the entire lower space of the branch passage 24 communicates with the artificial passage section A. The upper wall surface 26 of the branch passage 24 has a substantially uniform width, gradually descends toward the spiral terminal end C, and is smoothly connected to the upper wall surface 20 of the spiral section B. A side wall surface 27 of the branching passage 24 facing the second side wall surface 14bK of the partition wall 12 is substantially vertical, and furthermore, this side wall surface 27 is substantially parallel to the inlet passage section A.
It is located on an extension of the side wall surface 18 of. As can be seen from FIG. 1, the rib 23 formed on the partition wall 12 extends from the vicinity of the rotary valve 25 toward the intake valve 5.

第10図に示されるようにロータリ弁25はロータリ弁
ホルダ28と、ロータリ弁ホルダ28内において回転可
能に支持され九弁軸29とにより構成され、このロータ
リ弁ホを!21tシリンダヘッド3に穿設されたねじ孔
30内に螺着される。
As shown in FIG. 10, the rotary valve 25 is composed of a rotary valve holder 28 and a nine-valve shaft 29 rotatably supported within the rotary valve holder 28. It is screwed into a screw hole 30 drilled in the 21t cylinder head 3.

弁軸29の下端部には薄板状の弁体31が一体形成され
、第1図に示されるようにこの弁体31は分岐路24の
上壁面26から底壁面21まで延びる8一方、弁軸29
の上端部にはアーム32が固      、1定される
。また弁軸四の外周面上にはりフグ溝33が形成され、
このリング溝33内にはE字型位置決めリング34が嵌
込まれる。更にロータリ弁ホルダ28の上端部にはシー
ル部材35が嵌着され、このシール部材35によって弁
軸29のシール作用が行表われる。
A thin plate-shaped valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG. 29
An arm 32 is fixed to the upper end of the holder. Further, a puffer groove 33 is formed on the outer peripheral surface of the valve stem 4,
An E-shaped positioning ring 34 is fitted into this ring groove 33. Furthermore, a seal member 35 is fitted to the upper end of the rotary valve holder 28, and the seal member 35 performs a sealing action on the valve shaft 29.

第11図を参照すると、シリンダへラド3には1次側気
化器36&と2次側気化器36bからなるコンノヤウン
ド型気化′a36を具えた吸気マニホルド37が取付け
られ、またロータリ弁25の上端部に固着されたアーム
32の先端部は負圧ダイアフラム装置40の制御ロッド
41に連結ロッド42を介して連結される。この負圧ダ
イアフラム装置40はタンデム状に配置された一対のダ
イアフラム43 、44tl−具備し、これらダイアフ
ラム43.44によって負圧ダイアフラム装置1140
の内部は大気圧室45、第1負圧室46、第2負圧室4
7に3分割される。・第1負圧室46内にはダイアフラ
ム43を押圧する圧縮ばね48が挿入され、第2負圧室
47内にはダイアフラム44に一押圧する圧縮ばね49
が挿入される。史シC,ダイアノフム43にはダイアフ
ラム44に当接可能なストッパ50が固定される。第1
1図に示すように第1負圧室46は第1切換弁51に連
結され、第2負圧室47は、第2切換弁52に接続され
る。これらの切換弁51.52は同様な構造を有してお
り、従って同様な構成要素は同一の符号で示す。切換f
f51 、52は夫々第1負圧室46および第2負圧室
47に連結された通路aを有し、これらの通路aFi逆
止弁すを介して吸気マニホルド37内に連結される。ま
た、切換弁51.52は夫々ダイアフラムCによって分
離された負圧室dと大気圧室6とを有し、負圧室dFi
1次側気化器36aのベンチュリ部53.に開口するポ
ート54に連結される。一方、ダイアフラムcKは弁、
+?−)fの開閉制御をする弁体gが固定される、大気
圧室eは一方では弁ポートfおよび通路aを介して対応
する負圧室46.47に連結され、他方ではエアフィル
タhを介して大気に連通すム負圧室d内にはダイアフラ
J、 Cを押圧する圧縮ばねiが挿入され、第1切換弁
51の圧縮ばねiは第2切換弁52の圧縮ばねiよシも
大きなばね力を有する。従って負圧室d内の負圧が大き
くなると、まず始めに第2切換弁52の弁体gが弁ポー
トfを開口し、次いで第1切換弁51の弁体gが弁ボー
トfを開口する。
Referring to FIG. 11, an intake manifold 37 is attached to the cylinder head 3, and the intake manifold 37 is equipped with a conno-round type carburetor a36 consisting of a primary carburetor 36& and a secondary carburetor 36b. The distal end of the arm 32 fixed to is connected to a control rod 41 of a negative pressure diaphragm device 40 via a connecting rod 42. This negative pressure diaphragm device 40 includes a pair of diaphragms 43 and 44tl arranged in tandem, and these diaphragms 43 and 44 cause a negative pressure diaphragm device 1140 to
The inside of is an atmospheric pressure chamber 45, a first negative pressure chamber 46, and a second negative pressure chamber 4.
It is divided into 7 and 3 parts. - A compression spring 48 that presses the diaphragm 43 is inserted into the first negative pressure chamber 46, and a compression spring 49 that presses the diaphragm 44 is inserted into the second negative pressure chamber 47.
is inserted. History C: A stopper 50 that can come into contact with the diaphragm 44 is fixed to the diaphragm 43. 1st
As shown in FIG. 1, the first negative pressure chamber 46 is connected to the first switching valve 51, and the second negative pressure chamber 47 is connected to the second switching valve 52. These switching valves 51, 52 have a similar construction, and therefore similar components are designated with the same reference numerals. switching f
f51 and 52 have passages a connected to the first negative pressure chamber 46 and the second negative pressure chamber 47, respectively, and these passages aFi are connected into the intake manifold 37 via check valves aFi. The switching valves 51 and 52 each have a negative pressure chamber d and an atmospheric pressure chamber 6 separated by a diaphragm C, and the negative pressure chamber dFi
Venturi portion 53 of the primary side carburetor 36a. The port 54 is connected to the port 54 which is open to the port 54. On the other hand, the diaphragm cK is a valve,
+? -) The atmospheric pressure chamber e, in which the valve body g for controlling the opening and closing of f is fixed, is connected on the one hand to the corresponding negative pressure chamber 46, 47 via the valve port f and the passage a, and on the other hand, the air filter h is A compression spring i that presses the diaphragms J and C is inserted into a negative pressure chamber d that communicates with the atmosphere through the diaphragm, and the compression spring i of the first switching valve 51 is also similar to the compression spring i of the second switching valve 52. Has a large spring force. Therefore, when the negative pressure in the negative pressure chamber d increases, first the valve body g of the second switching valve 52 opens the valve port f, and then the valve body g of the first switching valve 51 opens the valve boat f. .

気化器36は通常用いられる気化器であって、1次側ス
ロットル弁55が所定間°度以上開弁じたときに2次側
スロットル弁56が開弁し、1次側スロットル弁55が
全開すれば2次側スロットル弁56も全開する。1次側
気化器36mのベンチュリ部53に発生する負圧は機関
シリンダ内に供給される吸入空気量が増大するほど大き
くなり、従って1次側スロットル弁55の開度が小さい
ときにはベンチュリ部53に発生する負圧が小さなため
に切換弁51.52のダイアフラムCは圧縮ばねtのば
ね力により大気圧室allVC移動して弁体gが弁ポー
トfを閉鎖する。更にこのように1次側スロットル弁5
5の開度が小さいときには吸気マニホルド37P3には
大きな負圧が発生している。逆止弁すは吸気マニホルド
37内の負圧が負圧ダイアフラム装置40の負圧室46
,47内の37内の負圧が貴家4647内の負圧よりも
小さくなると閉弁するので弁体gが弁ポートfを閉鎖し
ている限9負圧室46,47内の負圧は吸気マニホルド
37内に発生した最大負圧に維持される。負圧室46,
47P3に負圧が加わると両ダイアフラム43.4a圧
縮ばね4B、49に抗して第2負圧室4711に移動す
る4、このときストツz譬50ijダイアフラム44に
当接している。このように両ダイアスラム43 、44
がWi2負圧室47側に移動するとロータリ弁25は分
岐路24を全閉する。
The carburetor 36 is a commonly used carburetor, and when the primary throttle valve 55 is opened for a predetermined period of time or more, the secondary throttle valve 56 opens, and when the primary throttle valve 55 is fully opened. If so, the secondary throttle valve 56 is also fully opened. The negative pressure generated in the venturi part 53 of the primary side carburetor 36m increases as the amount of intake air supplied into the engine cylinder increases. Therefore, when the opening degree of the primary side throttle valve 55 is small, the negative pressure generated in the venturi part 53 Since the generated negative pressure is small, the diaphragm C of the switching valve 51, 52 moves into the atmospheric pressure chamber allVC by the spring force of the compression spring t, and the valve body g closes the valve port f. Furthermore, in this way, the primary side throttle valve 5
5 is small, a large negative pressure is generated in the intake manifold 37P3. The check valve allows the negative pressure in the intake manifold 37 to be transferred to the negative pressure chamber 46 of the negative pressure diaphragm device 40.
, 47 becomes smaller than the negative pressure in the noble house 4647, the valve closes, so as long as the valve body g closes the valve port f, the negative pressure in the negative pressure chambers 46 and 47 is the intake air. The maximum negative pressure developed within the manifold 37 is maintained. Negative pressure chamber 46,
When negative pressure is applied to 47P3, both diaphragms 43.4a move to the second negative pressure chamber 4711 against the compression springs 4B and 49, and at this time they come into contact with the diaphragm 44. In this way, both dia slams 43, 44
moves toward the Wi2 negative pressure chamber 47, the rotary valve 25 completely closes the branch passage 24.

次1で1次狽4スロットル弁55の開度が大きくなって
切換弁51,52の負圧室dに加わる負圧が第1の設定
負圧1例えば−811Hfよりも大きくなると第1切換
升52の弁体gが弁ポー)fを開口する。その結果、第
2貝圧室47内は大気圧となるためにダイアフラム44
はストッパ50と当接したまま圧縮ばね49のばね力に
よって第1負王室46′側に移動する。その結果、制呻
ロッド41が突出するのでロータリ弁25が回動せしめ
られ、このときロータリ弁25は・452図において破
細で示す半開位置に保持される。
Next, when the opening degree of the primary 4 throttle valve 55 increases and the negative pressure applied to the negative pressure chamber d of the switching valves 51 and 52 becomes larger than the first set negative pressure 1, for example -811Hf, the first switching cell The valve body g of 52 opens the valve port f. As a result, the inside of the second shell pressure chamber 47 becomes atmospheric pressure, so that the diaphragm 44
is moved toward the first negative crown 46' by the spring force of the compression spring 49 while in contact with the stopper 50. As a result, the damping rod 41 protrudes, causing the rotary valve 25 to rotate, and at this time, the rotary valve 25 is held in the half-open position shown in phantom in Figure 452.

次いで1次側スロットル弁55の開腹が更に大きくなっ
て切換弁51,520負圧室dに加わる負圧が第1の設
定負圧、例りvr−zomHtよシも大きくなると、即
ち機関筒速萬負荷運転時には第2切換弁51の弁体g4
5Fポートfを開口し、斯くして@1負圧至46内も大
気圧となる。従ってこのときダイアフラム43iJ[1
1図に示すように大気圧室45 $1..に移動し、ロ
ータリ弁25が分岐路24を全開する。
Next, the opening of the primary throttle valve 55 becomes even larger, and the negative pressure applied to the negative pressure chamber d of the switching valves 51, 520 becomes larger than the first set negative pressure, for example, vr-zomHt, that is, the engine cylinder speed increases. Valve body g4 of the second switching valve 51 during multi-load operation
The 5F port f is opened, and the inside of the @1 negative pressure 46 also becomes atmospheric pressure. Therefore, at this time, the diaphragm 43iJ[1
As shown in Figure 1, atmospheric pressure chamber 45 $1. .. The rotary valve 25 fully opens the branch passage 24.

上述したように吸入9気献が小ない機関区速低負荷運転
時にはロータリ弁25か分MM24を閉鎖して−る。こ
のとき、人口通路TBA内に送り込まれた混合気の一部
は上壁面19.20に椙って進み、残りの混合気のうち
の一部の混合気はロータリ弁25に側突して入口通路F
M5AoII壁面17の方へ向きを変えた後に渦巻8B
の一壁面15に沿って進む。前述したように上壁面19
.20の巾は狭窄816に近づくに従って次第に狭くな
るために上壁面19.20に沿って流れる混合気の流路
は次第に狭ばまシ、斯くして上壁面19.20に沿う混
合気流は次第に増速される。更に、前述したように隔壁
12の第1@壁面14mは渦巻部Bの側壁面15の近傍
まで延びているので土壁面19.20に沿って進む混合
気流は渦巻部Bの側壁面15上に押しやられ、次いで側
壁面15に沿って進むために渦巻部B内には強力な旋回
流が発生せしめられる。次いで混合気は旋回しつつ吸気
弁5とその弁座間に形成される間隙を通って燃焼室4内
に流入して燃焼室4内に強力な旋回流を発生せしめる。
As mentioned above, during engine speed and low load operation where the intake air is small, the rotary valve 25 and the MM 24 are closed. At this time, a part of the air-fuel mixture sent into the artificial passageway TBA flows onto the upper wall surface 19.20, and a part of the remaining air-fuel mixture collides with the rotary valve 25 and enters the inlet. Passage F
M5AoII After turning towards wall 17, spiral 8B
Proceed along one wall 15 of . As mentioned above, the upper wall surface 19
.. Since the width of 20 gradually narrows as it approaches the constriction 816, the flow path for the mixture flowing along the upper wall surface 19.20 becomes gradually narrower, and thus the flow of the mixture gas along the upper wall surface 19.20 gradually increases. be speeded up. Furthermore, as described above, the first@wall surface 14m of the partition wall 12 extends to the vicinity of the side wall surface 15 of the spiral portion B, so the air mixture flowing along the soil wall surface 19.20 flows onto the side wall surface 15 of the spiral portion B. A strong swirling flow is generated in the spiral portion B because the fluid is pushed away and then proceeds along the side wall surface 15. Next, the air-fuel mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat, generating a strong swirling flow within the combustion chamber 4.

一方、1次側スロットル弁55の開度が大きくなって吸
入空気流が増大すると前述したようにロータリ弁25が
開弁せしめられて半開状態に保持される。このとき入口
通路部A内に供給された混合気の一部が分岐路24t−
介して渦巻部B内に送シ込まれるために旋回流が若干剥
められ、これに対して吸入空気流に対する抵抗が小さく
なるために充填効率が向上する。吸入空気量が少ないと
きには安定した燃焼を確保するために強力な乱れを燃焼
室4内に発生せしめることが必要であるが吸入空気量が
増大すると自然発生の乱れが強力となるためにむしろ旋
回流のような強制的な乱れを抑制することが必要され、
更に吸入空気量が増大するにつれて出力低下をひき起こ
す充填効率の低下を阻止することが必要となる。従って
吸入空気量が増大するにつれてロータリ弁25の開口面
積を大きくすることによって旋回流の発生を抑制しつつ
充填効率の低下が阻止され、斯くして吸入空気蓋に応じ
た最適の旋回流と高い充填効率を確保することができる
On the other hand, when the opening degree of the primary throttle valve 55 increases and the intake air flow increases, the rotary valve 25 is opened and held in the half-open state as described above. At this time, part of the air-fuel mixture supplied into the inlet passage section A is transferred to the branch passage 24t-
Since the swirling air is fed into the spiral portion B through the air, the swirling flow is slightly separated, and the resistance to the intake airflow is reduced, so that the filling efficiency is improved. When the amount of intake air is small, it is necessary to generate strong turbulence within the combustion chamber 4 in order to ensure stable combustion, but as the amount of intake air increases, the naturally occurring turbulence becomes stronger, and the swirling flow is more likely to occur. It is necessary to suppress forced disturbances such as
Furthermore, as the amount of intake air increases, it is necessary to prevent the charging efficiency from decreasing, which causes a decrease in output. Therefore, as the amount of intake air increases, by increasing the opening area of the rotary valve 25, the generation of swirling flow is suppressed and a decrease in filling efficiency is prevented. Filling efficiency can be ensured.

一方、吸入空気量が多い機関高速高負荷運転時にはロー
タリ弁25が全開するので入口通路部A内に送シ込まれ
た混合気は大別すると3コの流れに分流話机即ち・第譬
流關隔壁り2″第1側壁面14aと入口通路sAの側壁
面17間に流入し、次いで渦巻部Aの上壁面20に沿っ
て旋回しつつ流れる混合気流であり、第2の流れは分岐
路24を介して渦巻部B内に流入する混合気流であり、
第3の流れは入口通路部Aの底壁面21に沿って渦巻部
B内に流入する混合気流である。
On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 25 is fully opened, so the air-fuel mixture sent into the inlet passage A can be roughly divided into three flows: This is a mixed air flow that flows between the first side wall surface 14a of the partition wall 2'' and the side wall surface 17 of the inlet passage sA, and then flows while swirling along the upper wall surface 20 of the spiral part A, and the second flow flows into the branch passage. is a mixed air flow flowing into the swirl part B via 24,
The third flow is a mixed air flow that flows into the swirl section B along the bottom wall surface 21 of the inlet passage section A.

分岐路24の流れ抵抗は第1側壁面14a、!=II壁
面17間の流れ抵抗に比べて小さく、従って第2の混合
気流の方が第1の混合気流よりも多くなる。
The flow resistance of the branch path 24 is the first side wall surface 14a,! =II is smaller than the flow resistance between the wall surfaces 17, so the second mixed air flow is larger than the first mixed air flow.

更に、渦巻部B内を旋回しつつ流れる第1混合気流の流
れ方向は第2混合気流によって下向きに偏向され、斯く
して第1混合気流の旋回力が弱められることになる。こ
のように流れ抵抗の小さな分岐路24からの混合気流が
増大し、更に第1混合気流の流れ方向が下向きに偏向さ
れるので高い充填効率が得られることになる。
Furthermore, the flow direction of the first air mixture flowing while swirling in the swirl portion B is deflected downward by the second air mixture, thus weakening the swirling force of the first air mixture. In this way, the mixed air flow from the branch passage 24 with low flow resistance is increased, and the flow direction of the first mixed air flow is further deflected downward, so that high filling efficiency can be obtained.

また、本発明によるヘリカル型@l’−)は吸気ポート
6の土壁面上に隔壁12を一体成形すればよいのでヘリ
カル型吸気ポートを容易に製造することができる。
Further, in the helical type (@l'-) according to the present invention, the partition wall 12 can be integrally formed on the earthen wall surface of the intake port 6, so that the helical type intake port can be easily manufactured.

以上述べたように本発明によれば機関低速低置、) 荷運転時には分岐路t−遮断して多量の混合気を渦巻部
の上壁面に沿って流すことにより強力な旋回流を燃焼室
内に発生せしめることができる。更に、吸入空気量が増
大するにつれて旋回流を抑制しつつ充填効率を高めるこ
とができるので安定した燃焼を確保することができる。
As described above, according to the present invention, the engine speed is low and the engine is placed low.) During load operation, the branch path T- is shut off and a large amount of air-fuel mixture flows along the upper wall surface of the vortex part, thereby creating a strong swirling flow inside the combustion chamber. can be caused to occur. Furthermore, as the amount of intake air increases, the swirling flow can be suppressed and the charging efficiency can be increased, so stable combustion can be ensured.

また、吸気/−)内には隔壁が突出しているだけなので
吸入空気流に対する流れ抵抗は小さく、斯くして機関高
速高負荷運転時に高い充填効率を得ることができる。更
に、ロータリ弁の開閉制御を機械的に行なえるのでロー
タリ弁開閉制御装置の製造コストを低減できると共にロ
ーグツ弁開閉制御装置の信頼性を向上することができる
Further, since only the partition wall protrudes into the intake air (/-), the flow resistance to the intake air flow is small, and thus high filling efficiency can be obtained during engine high-speed, high-load operation. Furthermore, since the rotary valve opening/closing control can be performed mechanically, the manufacturing cost of the rotary valve opening/closing control device can be reduced, and the reliability of the Roguts valve opening/closing control device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2図のI−1@に沿ってみた本発明に係る内
燃機関の側面断面図、第2図は第1図のト」線に沿って
みた平面断面図、第3図は本発明によるヘリカル型吸気
ポートの形状を図解的に示す側面図、第4図はヘリカル
型吸気/−)の形状を図解的に示す平面図、第5図は第
3図および第4図のV−V線に沿ってみた断面図、第6
図は第3図および第4図のW−11線に沿ってみた断面
図、第7図は第3図および第4図の■−■線に沿つてみ
た断面図、第8図は第3図および第4図の■−■−線に
沿ってみた断面図、第9図は第3図および第4図のに−
に線に沿ってみた断面図、第10図はロータリ弁の側面
断面図、第11図はロータリ弁の駆動制御装置を示す図
である。 4・・・燃焼室、6・・・ヘリカル型吸気ポート、12
・・・隔壁、24・・・分岐路、25・・・ロータリ弁
、4゜・・・負圧ダイアフラム装置、51.52・・・
切換弁。 特許出願人 トヨタ自動車工業株式会社 特許出願代理人 弁理士  青 木    朗 弁理士  西  舘  和  之 弁理士  中 山 恭 介 弁理士  山 口 昭 之 第1図 !lsZ図 第7図 第9図 $8図 第10図
FIG. 1 is a side sectional view of an internal combustion engine according to the present invention taken along line I-1 in FIG. 2, FIG. 2 is a plan sectional view taken along line T in FIG. 1, and FIG. FIG. 4 is a side view schematically showing the shape of the helical intake port according to the present invention; FIG. 4 is a plan view schematically showing the shape of the helical intake port; FIG. 5 is the V of FIGS. - Cross-sectional view along line V, No. 6
The figure is a sectional view taken along the line W-11 in Figs. 3 and 4, Fig. 7 is a sectional view taken along the line ■-■ in Figs. 3 and 4, and Fig. 8 is a sectional view taken along the line Figure 9 is a sectional view taken along the line ■-■- in Figures 3 and 4, and Figure 9 is a cross-sectional view taken along the line -
10 is a side sectional view of the rotary valve, and FIG. 11 is a diagram showing a drive control device for the rotary valve. 4... Combustion chamber, 6... Helical intake port, 12
...Partition wall, 24... Branch passage, 25... Rotary valve, 4°... Negative pressure diaphragm device, 51.52...
switching valve. Patent Applicant Toyota Motor Corporation Patent Application Agent Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Kyo Nakayama Patent Attorney Akira Yamaguchi Figure 1! lsZ diagram Figure 7 Figure 9 Figure $8 Figure 10

Claims (1)

【特許請求の範囲】[Claims] 吸気弁脚シに形成された渦巻部と、該渦巻部に接線状に
接続されかつほぼまつす°ぐに延びる入口通路部とによ
り構成されたヘリカル型吸気ポートにおいて、上記入口
通路部から分岐されて上記渦巻部の渦巻終端部に連通ず
る分岐路を上記入口通路部に併設し、吸気ポート上壁面
から下方に突出しかつ入口通路部から吸気弁ステム周り
まで廷びる隔壁によって砂分岐路が入口通路部から分離
され、該分岐路の下側空間全体が横断面内において上記
入口通路部に連通ずると共に該入口通路部と分岐路との
通路壁を一体的に連結形成し、該分岐路内に開閉弁を設
けると共に一対の負圧室を具備した負圧ダイアフラム装
置に該開閉弁を連結し、上記一対の負圧室を吸入空気量
に応動する切換弁金倉して負圧源に連結して該切換弁の
切換動作によシ上記一対の負圧室に選択的に負圧を導入
することにより上記開閉弁を吸入空気量に応じて全閉位
置、半開位置および全開位置のいずれか1つの位置に保
持するようにしたヘリカル型吸気ポートの流路制御装置
In a helical intake port configured by a spiral portion formed in the intake valve leg and an inlet passage portion that is tangentially connected to the spiral portion and extends almost straight, the intake port is branched from the inlet passage portion. A branch passage communicating with the spiral end of the spiral part is provided in the inlet passage part, and a sand branch passage is connected to the inlet passage part by a partition wall that projects downward from the upper wall surface of the intake port and extends from the inlet passage part to around the intake valve stem. The entire lower space of the branch passage communicates with the inlet passage part in the cross section, and the passage walls of the inlet passage part and the branch passage are integrally connected, and an opening/closing part is provided in the branch passage. The opening/closing valve is connected to a negative pressure diaphragm device provided with a valve and a pair of negative pressure chambers, and the pair of negative pressure chambers are connected to a negative pressure source as a switching valve responsive to the amount of intake air. By selectively introducing negative pressure into the pair of negative pressure chambers through the switching operation of the switching valve, the on-off valve is set to one of the fully closed, half-open, and fully open positions depending on the amount of intake air. A flow path control device for a helical intake port that maintains
JP57081586A 1982-05-17 1982-05-17 Flow duct controller of helical suction port Pending JPS58200027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57081586A JPS58200027A (en) 1982-05-17 1982-05-17 Flow duct controller of helical suction port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57081586A JPS58200027A (en) 1982-05-17 1982-05-17 Flow duct controller of helical suction port

Publications (1)

Publication Number Publication Date
JPS58200027A true JPS58200027A (en) 1983-11-21

Family

ID=13750419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57081586A Pending JPS58200027A (en) 1982-05-17 1982-05-17 Flow duct controller of helical suction port

Country Status (1)

Country Link
JP (1) JPS58200027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0725210A1 (en) * 1995-02-04 1996-08-07 FILTERWERK MANN & HUMMEL GMBH Suction module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0725210A1 (en) * 1995-02-04 1996-08-07 FILTERWERK MANN & HUMMEL GMBH Suction module

Similar Documents

Publication Publication Date Title
JPS6158921A (en) Intake device of internal-combustion engine
JPS58204924A (en) Helical intake port
JPS5922046B2 (en) Internal combustion engine intake system
JPS58200027A (en) Flow duct controller of helical suction port
JPS58195016A (en) Helical suction port
JPH0415944Y2 (en)
JPS5939928A (en) Helical type suction port
JPS6335166Y2 (en)
JPS6231619Y2 (en)
JPS58204927A (en) Helical intake port
JPH0410339Y2 (en)
JPS58195015A (en) Helical suction port
JPS58204930A (en) Helical intake port
JPS5828524A (en) Flow-passage controller for helical-type intake port
JPH0245474Y2 (en)
JPS58202330A (en) Helical type suction port
JPS6229624Y2 (en)
JPS6350527B2 (en)
JPS6229623Y2 (en)
JPS58222917A (en) Intake port of helical type
JPH0144891B2 (en)
JPH027236Y2 (en)
JPS58204933A (en) Helical intake port
JPS6238534B2 (en)
JPS6053617A (en) Flow passage controller for helical type suction port