JPH0245474Y2 - - Google Patents

Info

Publication number
JPH0245474Y2
JPH0245474Y2 JP1983098710U JP9871083U JPH0245474Y2 JP H0245474 Y2 JPH0245474 Y2 JP H0245474Y2 JP 1983098710 U JP1983098710 U JP 1983098710U JP 9871083 U JP9871083 U JP 9871083U JP H0245474 Y2 JPH0245474 Y2 JP H0245474Y2
Authority
JP
Japan
Prior art keywords
intake
partition wall
wall surface
side wall
intake port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983098710U
Other languages
Japanese (ja)
Other versions
JPS606829U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9871083U priority Critical patent/JPS606829U/en
Publication of JPS606829U publication Critical patent/JPS606829U/en
Application granted granted Critical
Publication of JPH0245474Y2 publication Critical patent/JPH0245474Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は内燃機関の吸気渦流制御装置に関す
る。 従来技術 ヘリカル型吸気ポートを用いて燃焼室内に旋回
流を発生できることは従来より知られており、こ
のヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成されている。しかしながらこのようなヘリカル
型吸気ポートを用いて吸入空気量の少ない機関低
速低負荷運転時に機関燃焼室内に強力な旋回流を
発生せしめようとすると吸気ポート形状が流れ抵
抗の大きな形状になつてしまうので吸入空気量の
多い機関高速高負荷運転時に充填効率が低下する
というという問題を生ずる。このような問題を解
決するためにヘリカル型吸気ポート入口通路部か
ら分岐されてヘリカル型吸気ポート渦巻部の渦巻
終端部に連通する分岐路をシリンダヘツド内に形
成し、分岐路内に開閉弁を設けて機関高速高負荷
運転時に開閉弁を開弁するようにしたヘリカル型
吸気ポートが本出願人により既に提案されてい
る。このヘリカル型吸気ポートでは機関高速高負
荷運転時にヘリカル型吸気ポート入口通路部内に
送り込まれた吸入空気の一部が分岐路を介してヘ
リカル型吸気ポート渦巻部内に送り込まれるため
に吸入空気の流路断面積が増大し、斯くして充填
効率を向上することができると共に機関低中速低
中負荷運転時には分岐路を閉鎖することによつて
分岐路から流入する吸入空気流を遮断し、燃焼室
内に強力な旋回流を発生せしめることができる。
ところが特にアイドリング運転時における空燃比
を更に薄くして燃料消費率を向上しようとした場
合において安定した燃焼を得るためには更に強力
な旋回流を発生せしめる必要がある。しかしなが
ら上述のヘリカル型吸気ポートでは機関中速中負
荷運転時には安定した燃焼を得るのに必要な旋回
流を発生できるものの、アイドリング運転時には
いま一つ旋回流が弱すぎるという問題がある。 考案の目的 本考案は機関中速中負荷運転時に発生する旋回
流よりも機関低速低負荷運転時に発生する旋回流
を強めることによつてアイドリング時における混
合気を薄くしても安定したアイドリング運転を確
保できるようにした吸気渦流制御装置を提供する
ことにある。 考案の構成 本考案の構成は、上壁面、下壁面、第1側壁面
および第2側壁面によつて画定された吸気ポート
を具備し、吸気ポート上壁面から下方に突出しか
つ互に間隔を隔てて吸気ポートの軸線方向に延び
る第1隔壁および第2隔壁を吸気ポート内に設
け、第1隔壁に対面する吸気ポート第1側壁面と
第1隔壁間に第1吸気通路を形成すると共に第1
隔壁と第2隔壁間に第2吸気通路を形成し、更に
第2隔壁に対面する吸気ポート第2側壁面と第2
隔壁間に第3吸気通路を形成し、機関高速高負荷
運転時に開弁する第1吸気制御弁を第1吸気通路
内に配置すると共に機関高速高負荷運転時および
機関中速中負荷運転時に開弁する第2吸気制御弁
を第2吸気通路内に配置したことにある。 実施例 第1図および第2図を参照すると、1はシリン
ダヘツド、2はシリンダヘツド1内に形成された
吸気ポート、3は吸気弁、4は燃焼室を夫々示
し、吸気ポート2は第1側壁面5と、第1側壁面
5に対向配置された第2側壁面6と、上壁面7
と、下壁面8とを有する。更に吸気ポート2は吸
気弁3の弁ステム9周りに形成された半円筒状の
側壁面10を具備し、第1側壁面5および第2側
壁面6は半円筒状側壁面10の対応する両端部に
夫々滑らかに接続される。半円筒状側壁面10は
第2側壁面6と半円筒状側壁面10との交点付近
において吸気弁3のかさ部外周縁よりも外方に膨
出しており、この半円筒状側壁面10は第1側壁
面5に近づくに従つて吸気弁3のかさ部外周縁に
徐々に近づく。一方、第2図に示されるように上
壁面7は湾曲壁面11を介して半円筒状側壁面1
0の上端部に滑らかに接続される。 第1図および第2図に示されるように上壁面7
上には下方に突出する第1隔壁12と第2隔壁1
3が一体的に形成され、これら第1隔壁12と第
2隔壁13は吸気ポート2の軸線方向に互にほぼ
平行をなして延びる。更に、第1隔壁12と第2
隔壁13は全長に亘つてほぼ一定の高さを有し、
第1隔壁12と第2隔壁13の下端部は下壁面8
の近傍まで延びる。第1隔壁12は吸気ポート2
の中間部から弁ステム9の側方を通つて弁ステム
9を越えたところまで第2側壁面6とほぼ平行に
延び、従つて第1隔壁12と第1側壁面5の間隔
は吸気弁3に近づくに従つて徐々に広くなる。一
方、第2隔壁13は第1隔壁12と第1側壁面6
とほほぼ中央部を第2側壁面6とほぼ平行に延び
る。この第2隔壁13の上流端は第1隔壁12の
上流端よりも下流端に位置し、第2隔壁13の下
流端は第1隔壁12の下流端よりも半円筒状側壁
面10に近い側に位置する。第2隔壁13の下流
側部分14は半円筒状側壁面10に沿つて延びて
おり、従つて第2隔壁下流側部分14は内方に向
けて屈曲する湾曲状をなす。吸気ポート6の内部
はこれら第1隔壁12および第2隔壁13によつ
て3分割され、第1隔壁12と第1側壁面5間に
は下流側に向けて拡開する第1吸気通路15が、
第1隔壁12と第2隔壁13間には全長に亘つて
ほぼ一様な巾を有する第2吸気通路16が、第2
隔壁13と第2側壁面6間には全長に亘つてほぼ
一様な巾を有する第3吸気通路17が形成され
る。第1吸気通路15の入口部の巾は第2吸気通
路16の巾とほぼ等しく、また第3吸気通路17
は第2吸気通路16よりも若干狭い巾を有する。
第1図に示すように弁ステム9は第1吸気通路1
5内に位置し、従つて第1隔壁12は弁ステム9
の第2側壁面6側に延びる。 第1図から第3図に示されるように第1吸気通
路15の入口部にはバラフライ弁の形をした第1
吸気制御弁18が配置され、第2吸気通路16の
入口部には同様にバラフライ弁の形をした第2吸
気制御弁19が配置される。これら第1吸気制御
弁18および第2吸気制御弁19は吸気ポート2
の上壁面7から下壁面8までほぼ垂直に延びる。
第1吸気制御弁18および第2吸気制御弁19は
夫々第1アクチユエータ20および第2アクチユ
エータ21に連結され、第1吸気制御弁18およ
び第2吸気制御弁19はこれら第1アクチユエー
タ20および第2アクチユエータ21によつて開
閉制御される。第1アクチユエータ20および第
2アクチユエータ21は機関回転数および吸気管
負圧によつて制御される負圧ダイアフラム装置、
電磁駆動装置等からなり、第1吸気制御弁18お
よび第2吸気制御弁19は不表に示すように開閉
制御される。
INDUSTRIAL APPLICATION FIELD The present invention relates to an intake vortex control device for an internal combustion engine. Prior Art It has been known for a long time that a swirling flow can be generated in a combustion chamber using a helical intake port. and a connected and generally straight-extending inlet passageway. However, if you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load operation of the engine with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of intake air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an on-off valve is installed in the branch path. The applicant has already proposed a helical intake port in which an on-off valve is opened during high-speed, high-load engine operation. In this helical type intake port, when the engine is operated at high speed and under high load, a part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through a branch path, so the intake air flow path is The cross-sectional area increases, thus making it possible to improve charging efficiency, and by closing the branch passage when the engine is operating at low to medium speeds and low to medium loads, the intake air flow flowing in from the branch passage is cut off, and the air flow inside the combustion chamber is reduced. can generate a strong swirling flow.
However, especially when attempting to improve the fuel consumption rate by further reducing the air-fuel ratio during idling, it is necessary to generate a more powerful swirling flow in order to obtain stable combustion. However, although the above-mentioned helical intake port can generate the swirling flow necessary to obtain stable combustion when the engine is operating at medium speed and under medium load, there is a problem in that the swirling flow is too weak during idling operation. Purpose of the invention This invention enables stable idling operation even when the air-fuel mixture is lean during idling by strengthening the swirling flow that occurs during low-speed, low-load engine operation than the swirling flow that occurs during engine speed and medium-load operation. An object of the present invention is to provide an intake air vortex control device that can secure the airflow. Configuration of the Invention The configuration of the present invention includes an intake port defined by an upper wall surface, a lower wall surface, a first side wall surface, and a second side wall surface, the intake port protruding downward from the upper wall surface and spaced apart from each other. A first partition wall and a second partition wall extending in the axial direction of the intake port are provided in the intake port, and a first intake passage is formed between the first side wall surface of the intake port facing the first partition wall and the first partition wall.
A second intake passage is formed between the partition wall and the second partition wall, and a second side wall surface of the intake port facing the second partition wall and a second intake passage are formed between the partition wall and the second partition wall.
A third intake passage is formed between the partition walls, and a first intake control valve that opens during engine high speed and high load operation is disposed within the first intake passage. The second intake control valve for valving is disposed within the second intake passage. Embodiment Referring to FIGS. 1 and 2, 1 is a cylinder head, 2 is an intake port formed in the cylinder head 1, 3 is an intake valve, and 4 is a combustion chamber. a side wall surface 5, a second side wall surface 6 disposed opposite to the first side wall surface 5, and an upper wall surface 7.
and a lower wall surface 8. Furthermore, the intake port 2 includes a semi-cylindrical side wall surface 10 formed around the valve stem 9 of the intake valve 3, and the first side wall surface 5 and the second side wall surface 6 are formed at corresponding ends of the semi-cylindrical side wall surface 10. The parts are smoothly connected to each other. The semi-cylindrical side wall surface 10 bulges outward from the outer peripheral edge of the bulk part of the intake valve 3 near the intersection of the second side wall surface 6 and the semi-cylindrical side wall surface 10. As it approaches the first side wall surface 5, it gradually approaches the outer peripheral edge of the bulk part of the intake valve 3. On the other hand, as shown in FIG.
Connects smoothly to the top end of 0. As shown in FIGS. 1 and 2, the upper wall surface 7
At the top, there are a first partition wall 12 and a second partition wall 1 that protrude downward.
3 are integrally formed, and the first partition wall 12 and the second partition wall 13 extend substantially parallel to each other in the axial direction of the intake port 2. Furthermore, the first partition wall 12 and the second partition wall 12
The partition wall 13 has a substantially constant height over its entire length,
The lower ends of the first partition wall 12 and the second partition wall 13 are the lower wall surface 8
extends to the vicinity of The first partition wall 12 is the intake port 2
The distance between the first partition wall 12 and the first side wall surface 5 is equal to the distance between the first partition wall 12 and the first side wall surface 5. It gradually becomes wider as it approaches. On the other hand, the second partition wall 13 is connected to the first partition wall 12 and the first side wall surface 6.
It extends substantially parallel to the second side wall surface 6 at substantially the center. The upstream end of the second partition wall 13 is located at a downstream end of the first partition wall 12, and the downstream end of the second partition wall 13 is located closer to the semi-cylindrical side wall surface 10 than the downstream end of the first partition wall 12. Located in The downstream portion 14 of the second partition 13 extends along the semi-cylindrical side wall surface 10, and thus the second partition downstream portion 14 has a curved shape that bends inward. The interior of the intake port 6 is divided into three parts by the first partition wall 12 and the second partition wall 13, and a first intake passage 15 that expands toward the downstream side is provided between the first partition wall 12 and the first side wall surface 5. ,
A second intake passage 16 having a substantially uniform width over the entire length is located between the first partition wall 12 and the second partition wall 13.
A third intake passage 17 is formed between the partition wall 13 and the second side wall surface 6 and has a substantially uniform width over its entire length. The width of the entrance of the first intake passage 15 is approximately equal to the width of the second intake passage 16, and the width of the third intake passage 17 is approximately equal to the width of the second intake passage 16.
has a width slightly narrower than that of the second intake passage 16.
As shown in FIG.
5 and thus the first septum 12 is located within the valve stem 9
It extends to the second side wall surface 6 side. As shown in FIGS. 1 to 3, at the entrance of the first intake passage 15 there is a first valve shaped like a butterfly valve.
An intake control valve 18 is disposed, and a second intake control valve 19 similarly in the form of a butterfly valve is disposed at the inlet of the second intake passage 16. These first intake control valve 18 and second intake control valve 19 are connected to the intake port 2.
It extends substantially perpendicularly from the upper wall surface 7 to the lower wall surface 8.
The first intake control valve 18 and the second intake control valve 19 are connected to a first actuator 20 and a second actuator 21, respectively. Opening/closing is controlled by an actuator 21. The first actuator 20 and the second actuator 21 are negative pressure diaphragm devices controlled by engine speed and intake pipe negative pressure;
The first intake control valve 18 and the second intake control valve 19 are controlled to open and close as shown in detail.

【表】 上記表からわかるように機関低速低負荷運転時
には第1図において破線で示すように第1吸気制
御弁18および第2吸気制御弁19が共に閉弁し
ており、従つてこのとき吸入空気は第3吸気通路
17を通つて第1側壁面6および半円筒状側壁面
10に沿つて流れる。このように機関低速低負荷
運転時には流路面積が狭められるために吸入空気
は第3吸気通路17内を高速度で流れ、しかもこ
の吸入空気は半円筒状側壁面10に沿つて流れる
ので強力な旋回流が発生せしめられる。 一方、機関中速中負荷運転時には第2吸気制御
弁19が開弁するのでこのときには第3吸気通路
17および第2吸気通路16を介して吸入空気が
流れる。従つて機関中速中負荷運転時には流路面
積が増大するために必要な量の吸入空気が燃焼室
4内に供給される。更にこのとき第3吸気通路1
7を通過した吸入空気は半円筒状側壁面10に沿
つて進み、第2吸気通路16から流出する吸入空
気は第2隔壁13の湾曲した下流側部分14によ
つて流路方向が半円筒状側壁面10に沿う方向に
偏向せしめられ、斯くしてこの場合にも安定した
燃焼を得るのに必要な強力な旋回流が発生せしめ
られる。 一方、機関高速高負荷運転時には第1吸気制御
弁18も開弁するので吸入空気は全吸気通路1
5,16,17を通つて流れ、斯くして高い充填
効率を得ることができる。 考案の効果 機関低速低負荷運転時、特にアイドリング運転
時に強力な旋回流を発生せしめることができるの
でアイドリング運転時における混合気を薄くして
も安定した燃焼を確保することができる。従つて
アイドリング回転数を低く設定し、しかも混合気
を薄くしても安定した燃焼が確保できるので安定
したアイドリング運転を確保しつつ燃料消費率を
向上することができる。一方、機関中速中負荷運
転時には流路面積が増大するので必要な量の吸入
空気を燃焼室内に供給することができ、更にこの
ときにも強力な旋回流が発生せしめられるので安
定した中速中負荷運転を確保することができる。
また、機関高速高負荷運転時には吸気ポートの全
断面を通つて吸入空気が流れるので高い充填効率
を得ることができ、斯くして高出力を得ることが
できる。
[Table] As can be seen from the above table, when the engine is operating at low speed and low load, both the first intake control valve 18 and the second intake control valve 19 are closed as shown by the broken line in FIG. Air flows through the third intake passage 17 along the first side wall surface 6 and the semi-cylindrical side wall surface 10. In this way, when the engine is operating at low speed and low load, the flow path area is narrowed, so the intake air flows at a high speed in the third intake passage 17, and since this intake air flows along the semi-cylindrical side wall surface 10, it is A swirling flow is generated. On the other hand, when the engine is operating at medium speed and under medium load, the second intake control valve 19 is opened, so that intake air flows through the third intake passage 17 and the second intake passage 16 at this time. Therefore, when the engine is operating at medium speed and under medium load, a necessary amount of intake air is supplied into the combustion chamber 4 to increase the flow passage area. Furthermore, at this time, the third intake passage 1
The intake air that has passed through 7 advances along the semi-cylindrical side wall surface 10, and the intake air flowing out from the second intake passage 16 has a semi-cylindrical flow path due to the curved downstream portion 14 of the second partition wall 13. It is deflected in the direction along the side wall surface 10, thus generating a strong swirling flow necessary to obtain stable combustion in this case as well. On the other hand, during engine high-speed, high-load operation, the first intake control valve 18 is also opened, so that the intake air is distributed throughout the intake passage 1.
5, 16, 17, thus high filling efficiency can be obtained. Effects of the invention A strong swirling flow can be generated when the engine is operated at low speed and under low load, especially when idling, so stable combustion can be ensured even if the air-fuel mixture is thinned during idling. Therefore, stable combustion can be ensured even if the idling speed is set low and the air-fuel mixture is made lean, so it is possible to improve the fuel consumption rate while ensuring stable idling operation. On the other hand, when the engine is operating at medium speeds and under medium load, the flow passage area increases, so the required amount of intake air can be supplied into the combustion chamber.Furthermore, a strong swirling flow is generated even at this time, resulting in stable medium speed operation. Medium load operation can be ensured.
Furthermore, during high-speed, high-load operation of the engine, the intake air flows through the entire cross section of the intake port, so high filling efficiency can be obtained, and thus high output can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はシリンダヘツドの平面断面図、第2図
は第1図の−線に沿つてみた側面断面図、第
3図は第1図の−線に沿つてみた断面図であ
る。 2……吸気ポート、5……第1側壁面、6……
第2側壁面、12……第1隔壁、13……第2隔
壁、15……第1吸気通路、16……第2吸気通
路、17……第3吸気通路、18……第1吸気制
御弁、19……第2吸気制御弁。
1 is a plan sectional view of the cylinder head, FIG. 2 is a side sectional view taken along the - line in FIG. 1, and FIG. 3 is a sectional view taken along the - line in FIG. 2... Intake port, 5... First side wall surface, 6...
Second side wall surface, 12...First partition, 13...Second partition, 15...First intake passage, 16...Second intake passage, 17...Third intake passage, 18...First intake control Valve, 19...second intake control valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 上壁面、下壁面、第1側壁面および第2側壁面
によつて画定された吸気ポートを具備し、吸気ポ
ート上壁面から下方に突出しかつ互に間隔を隔て
て吸気ポートの軸線方向に延びる第1隔壁および
第2隔壁を吸気ポート内に設け、該第1隔壁に対
面する吸気ポート第1側壁面と該第1隔壁間に第
1吸気通路を形成すると共に該第1隔壁と第2隔
壁間に第2吸気通路を形成し、更に第2隔壁に対
面する吸気ポート第2側壁面と該第2隔壁間に第
3吸気通路を形成し、機関高速高負荷運転時に開
弁する第1吸気制御弁を上記第1吸気通路内に配
置すると共に機関高速高負荷運転時および機関中
速中負荷運転時に開弁する第2吸気制御弁を上記
第2吸気通路内に配置した内燃機関の吸気渦流制
御装置。
The intake port has an intake port defined by an upper wall surface, a lower wall surface, a first side wall surface, and a second side wall surface, and has a second section that projects downward from the upper wall surface of the intake port and extends in the axial direction of the intake port at a distance from each other. A first partition wall and a second partition wall are provided in the intake port, and a first intake passage is formed between the first side wall surface of the intake port facing the first partition wall and the first partition wall, and a first intake passage is formed between the first partition wall and the second partition wall. a second intake passage is formed in the second partition wall, and a third intake passage is formed between the second side wall surface of the intake port facing the second partition wall and the second partition wall, and the first intake control valve is opened during high-speed and high-load operation of the engine. Intake vortex flow control for an internal combustion engine, in which a valve is disposed in the first intake passage, and a second intake control valve, which opens during engine high speed and high load operation and during engine speed and medium load operation, is disposed in the second intake passage. Device.
JP9871083U 1983-06-28 1983-06-28 Intake vortex control device for internal combustion engines Granted JPS606829U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9871083U JPS606829U (en) 1983-06-28 1983-06-28 Intake vortex control device for internal combustion engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9871083U JPS606829U (en) 1983-06-28 1983-06-28 Intake vortex control device for internal combustion engines

Publications (2)

Publication Number Publication Date
JPS606829U JPS606829U (en) 1985-01-18
JPH0245474Y2 true JPH0245474Y2 (en) 1990-12-03

Family

ID=30234239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9871083U Granted JPS606829U (en) 1983-06-28 1983-06-28 Intake vortex control device for internal combustion engines

Country Status (1)

Country Link
JP (1) JPS606829U (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57200623U (en) * 1981-06-16 1982-12-20

Also Published As

Publication number Publication date
JPS606829U (en) 1985-01-18

Similar Documents

Publication Publication Date Title
JP2639721B2 (en) Combustion chamber of internal combustion engine
JPS6032009B2 (en) Helical intake port
JPH048610B2 (en)
JPS58204924A (en) Helical intake port
JPH0245474Y2 (en)
JP2663723B2 (en) Intake device for double intake valve type internal combustion engine
JP2639720B2 (en) Intake control device for internal combustion engine
JPS6236139B2 (en)
JPS5830095Y2 (en) Internal combustion engine intake passage structure
JPS6131147Y2 (en)
JPS6231619Y2 (en)
JPS6335166Y2 (en)
JPH0133790Y2 (en)
JPS6229624Y2 (en)
JPS6229623Y2 (en)
JPS6321777Y2 (en)
JPS6021469Y2 (en) Helical intake port
JPS6239672B2 (en)
JPS6242101Y2 (en)
JPH0143472Y2 (en)
JPS6238541B2 (en)
JPH0415945Y2 (en)
JPS6323545Y2 (en)
JPS6021468Y2 (en) Flow path control device for helical intake port
JPH0629470Y2 (en) Helical intake port of internal combustion engine