JPS6323545Y2 - - Google Patents

Info

Publication number
JPS6323545Y2
JPS6323545Y2 JP11292281U JP11292281U JPS6323545Y2 JP S6323545 Y2 JPS6323545 Y2 JP S6323545Y2 JP 11292281 U JP11292281 U JP 11292281U JP 11292281 U JP11292281 U JP 11292281U JP S6323545 Y2 JPS6323545 Y2 JP S6323545Y2
Authority
JP
Japan
Prior art keywords
spiral
valve
wall surface
intake port
inlet passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11292281U
Other languages
Japanese (ja)
Other versions
JPS5827537U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11292281U priority Critical patent/JPS5827537U/en
Publication of JPS5827537U publication Critical patent/JPS5827537U/en
Application granted granted Critical
Publication of JPS6323545Y2 publication Critical patent/JPS6323545Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【考案の詳細な説明】 本考案はヘリカル型吸気ポートの流路制御装置
に関する。
[Detailed Description of the Invention] The present invention relates to a flow path control device for a helical intake port.

ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめるよう
とすると吸気ポート形状が流れ抵抗の大きな形状
になつてしまうので吸入空気量の多い機関高速高
負荷運転時に充填効率が低下するという問題があ
る。このような問題を解決するためにヘリカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連通する分岐路
をシリンダヘツド内に形成し、分岐路内にアクチ
ユエータによつて作動される常時閉鎖型開閉弁を
設けて機関吸入空気量が所定量よりも大きくなつ
たときにアクチユエータを作動させて開閉弁を開
弁するようにしたヘリカル型吸気ポート流路制御
装置が本出願人により既に提案されている。この
ヘリカル型吸気ポートでは機関吸入空気量の多い
機関高速高負荷運転時にヘリカル型吸気ポート入
口通路部内に送り込まれた吸入空気の一部が分岐
路を介してヘリカル型吸気ポート渦巻部内に送り
込まれるために吸入空気流に対する流れ抵抗が低
下し、斯くして高い充填効率を得ることができ
る。しかしながらこの流路制御装置は基本作動原
理を示しているにすぎず、従つてこの流路制御装
置を実用化するには組立工数、製造の容易さ、確
実な作動、製造コストの面で種々の問題が残され
ている。
A helical intake port typically consists of a spiral formed around the intake valve and an inlet passageway tangentially connected to the spiral and extending generally straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine when the engine is operating at low speed and low load with a small amount of intake air, the shape of the intake port will have a large flow resistance. There is a problem in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an actuator is installed in the branch path. The main helical intake port flow path control device is a helical intake port flow path control device that is equipped with a normally-closed on-off valve that is operated by the engine, and operates an actuator to open the on-off valve when the amount of engine intake air becomes larger than a predetermined amount. Already proposed by the applicant. With this helical type intake port, when the engine is operating at high speed and under high load with a large amount of engine intake air, part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port volute via the branch passage. The flow resistance to the intake air flow is reduced and thus a high filling efficiency can be obtained. However, this flow path control device only shows the basic operating principle, and therefore, in order to put this flow path control device into practical use, there are various issues in terms of assembly man-hours, ease of manufacturing, reliable operation, and manufacturing cost. Problems remain.

本考案は本願出願人により既に提案されている
上述の基本作動原理を実用化するのに適した構造
を有するヘリカル型吸気ポート流路制御装置を提
供することにある。
The object of the present invention is to provide a helical intake port flow path control device having a structure suitable for putting into practical use the above-mentioned basic operating principle that has already been proposed by the applicant.

以下、添附図面を参照して本考案を詳細に説明
する。
The present invention will now be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固定
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポートを夫々示す。なお、図
には示さないが燃焼室4内に点火栓が配置され
る。
Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within cylinder block 1, 3 is a cylinder head fixed on cylinder block 1, and 4 is a link between piston 2 and cylinder head 3. 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Exhaust ports formed therein are shown respectively. Although not shown in the figure, an ignition plug is disposed within the combustion chamber 4.

第3図から第5図に第2図のヘリカル型吸気ポ
ート6の形状を図解的に示す。このヘリカル型吸
気ポート6は第4図に示されるように流路軸線a
がわずかに彎曲した入口通路部Aと、吸気弁5の
弁軸回りに形成された渦巻部Bとにより構成さ
れ、入口通路部Aは渦巻部Bに接線状に接続され
る。第3図、第4図並びに第7図に示されるよう
に入口通路部Aの渦巻軸線bに近い側の側壁面9
の上方側壁面9aは下方を向いた傾斜面に形成さ
れ、この傾斜面9aの巾は渦巻部Bに近づくに従
つて広くなり、入口通路部Aと渦巻部Bとの接続
部においては第7図に示されるように側壁面9の
全体が下方に向いた傾斜面9aに形成される。側
壁面9の上半分は吸気弁ガイド10(第2図)周
りの吸気ポート上壁面上に形成された円筒状突起
11の周壁面に滑らかに接続され、一方側壁面9
の下半分は渦巻部Bの渦巻終端部Cにおいて渦巻
部Bの側壁面12に接続される。なお、渦巻部B
の上壁面13は渦巻終端部Cにおいて下向きの急
傾斜壁Dに接続される。
3 to 5 schematically show the shape of the helical intake port 6 of FIG. 2. This helical intake port 6 has a flow path axis a as shown in FIG.
It is composed of a slightly curved inlet passage part A and a spiral part B formed around the valve axis of the intake valve 5, and the inlet passage part A is tangentially connected to the spiral part B. As shown in FIGS. 3, 4, and 7, the side wall surface 9 of the inlet passage A near the spiral axis b
The upper side wall surface 9a is formed as an inclined surface facing downward, and the width of this inclined surface 9a becomes wider as it approaches the spiral portion B. As shown in the figure, the entire side wall surface 9 is formed into a downwardly oriented inclined surface 9a. The upper half of the side wall surface 9 is smoothly connected to the peripheral wall surface of a cylindrical projection 11 formed on the upper wall surface of the intake port around the intake valve guide 10 (FIG. 2).
The lower half of the spiral portion B is connected to the side wall surface 12 of the spiral portion B at the spiral end portion C of the spiral portion B. In addition, spiral part B
The upper wall surface 13 is connected to the downwardly inclined wall D at the spiral end C.

一方、第1図から第5図に示されるようにシリ
ンダヘツド3内には入口通路部Aから分岐された
ほぼ一様断面の分岐路14が形成され、この分岐
路14は渦巻終端部Cに接続される。分岐路14
の入口開口15は入口通路部Aの入口開口近傍に
おいて側壁面9上に形成され、分岐路14の出口
開口16は渦巻終端部Cにおいて、側壁面12の
上端部に形成される。この出口開口16の上端縁
は渦巻部Bの上壁面13に面一に連結され、更に
この出口開口16は渦巻部Bの上壁面13に沿つ
て渦巻方向に旋回する旋回流に対向するように形
成される。シリンダヘツド3内には分岐路14を
貫通して延びる開閉挿入孔17が穿設され、この
開閉弁挿入孔17内には夫々開閉弁を構成するロ
ータリ弁18が挿入される。第9図を参照する
と、開閉弁挿入孔17はシリンダヘツド3内に上
方からドリルにより穿設された一様直径の円筒孔
からなり、この開閉弁挿入孔17は分岐路14の
下壁面を越えたところまで延びる。従つて分岐路
14の下壁面上には開閉弁挿入孔17によつて削
成された凹溝19が形成される。また、開閉弁挿
入孔17の上端部には内ねじ山20が螺設され、
この内ねじ山20にロータリ弁ホルダ21が螺着
される。ロータリ弁ホルダ21はその外周壁面上
に外周フランジ22を有し、この外周フランジ2
2とシリンダヘツド3間にシール部材23が挿入
される。一方、ロータリ弁ホルダ21内には貫通
孔24が穿設され、この貫通孔24内にロータリ
弁18の弁軸25が回転可能に挿入される。弁軸
25の下端部には薄板状の弁体26が固着され、
弁軸25の上端部にはアーム27がワツシヤ28
を介してボルト29により固締される。ロータリ
弁ホルダ21の上端面とほぼ同じ高さ位置にある
弁軸25の外周壁面上にはリング溝30が形成さ
れ、このリング溝30内には第11図に示すよう
なC字形の位置決めリング31が嵌着される。こ
の位置決めリング31はロータリ弁ホルダ21の
上端面内縁に形成された円錐面32と係合して弁
体26を予め定められた位置に位置決めする。一
方、ロータリ弁ホルダ21の上端部には補強枠3
3により包囲されたシール部材34が嵌着され、
シール部材34のシール部34aはシール部材3
4の外周面上に挿入された弾性リング35によつ
て弁軸25の外周面上に圧接せしめられる。従つ
て分岐路14はシール部材23,34により外気
から完全に隔離される。
On the other hand, as shown in FIGS. 1 to 5, a branch passage 14 having a substantially uniform cross section is formed in the cylinder head 3, branching from the inlet passage part A, and this branch passage 14 is connected to the spiral terminal part C. Connected. Branch road 14
An inlet opening 15 is formed on the side wall surface 9 in the vicinity of the inlet opening of the inlet passage section A, and an outlet opening 16 of the branch passage 14 is formed at the upper end of the side wall surface 12 at the spiral end section C. The upper end edge of this outlet opening 16 is connected flush with the upper wall surface 13 of the spiral portion B, and furthermore, this exit opening 16 is arranged so as to face the swirling flow swirling in the spiral direction along the upper wall surface 13 of the spiral portion B. It is formed. An opening/closing insertion hole 17 is bored in the cylinder head 3 and extends through the branch passage 14, and a rotary valve 18 constituting an opening/closing valve is inserted into each opening/closing valve insertion hole 17. Referring to FIG. 9, the on-off valve insertion hole 17 is a cylindrical hole of uniform diameter drilled from above in the cylinder head 3, and the on-off valve insertion hole 17 extends beyond the lower wall surface of the branch passage 14. Extends to a certain extent. Therefore, a groove 19 is formed on the lower wall surface of the branch passage 14 by the opening/closing valve insertion hole 17. Further, an internal thread 20 is screwed into the upper end of the on-off valve insertion hole 17.
A rotary valve holder 21 is screwed onto this internal thread 20. The rotary valve holder 21 has an outer peripheral flange 22 on its outer peripheral wall surface, and this outer peripheral flange 2
A seal member 23 is inserted between the cylinder head 2 and the cylinder head 3. On the other hand, a through hole 24 is bored in the rotary valve holder 21, and a valve shaft 25 of the rotary valve 18 is rotatably inserted into the through hole 24. A thin plate-shaped valve body 26 is fixed to the lower end of the valve shaft 25.
An arm 27 is attached to a washer 28 at the upper end of the valve stem 25.
It is fixed with a bolt 29 via. A ring groove 30 is formed on the outer circumferential wall surface of the valve shaft 25 which is located at approximately the same height as the upper end surface of the rotary valve holder 21, and within this ring groove 30 is a C-shaped positioning ring as shown in FIG. 31 is fitted. This positioning ring 31 engages with a conical surface 32 formed on the inner edge of the upper end surface of the rotary valve holder 21 to position the valve body 26 at a predetermined position. On the other hand, a reinforcing frame 3 is provided at the upper end of the rotary valve holder 21.
A sealing member 34 surrounded by 3 is fitted,
The seal portion 34a of the seal member 34 is the seal member 3
The elastic ring 35 inserted onto the outer circumferential surface of the valve shaft 25 is brought into pressure contact with the outer circumferential surface of the valve shaft 25. Therefore, the branch passage 14 is completely isolated from the outside air by the seal members 23 and 34.

第12図に示すように各気筒のロータリ弁18
のアーム27の先端部は連結ロツド40によつて
互に連結され、この連結ロツド40は支軸41回
りを回動するアクセルペダル42に例えばワイヤ
43を介して連結される。アクセルペダル42が
踏込まれていないとき、即ち機関アイドリング運
転時にはロータリ弁18は分岐路14を全閉して
おり、アクセルペダル42が踏込まれるにつれて
ロータリ弁18は徐うに開弁し、アクセルペダル
42が踏込まれたときにロータリ弁18は分岐路
14を全開する。従つてロータリ弁18の開口面
積は機関負荷に比例することがわかる。
As shown in FIG. 12, the rotary valve 18 of each cylinder
The distal ends of the arms 27 are connected to each other by a connecting rod 40, and this connecting rod 40 is connected via, for example, a wire 43 to an accelerator pedal 42 that rotates around a support shaft 41. When the accelerator pedal 42 is not depressed, that is, when the engine is idling, the rotary valve 18 fully closes the branch passage 14, and as the accelerator pedal 42 is depressed, the rotary valve 18 gradually opens, and the accelerator pedal 42 When the rotary valve 18 is depressed, the rotary valve 18 fully opens the branch passage 14. Therefore, it can be seen that the opening area of the rotary valve 18 is proportional to the engine load.

上述したように機関アイドリング運転時にはロ
ータリ弁18が分岐路14を遮断している。この
とき入口通路部A内に送り込まれた混合気は渦巻
部Bの上壁面13に沿つて旋回しつつ渦巻部B内
を下降し、次いで旋回しつつ燃焼室4内に流入す
るので燃焼室4内には強力な旋回流が発生せしめ
られる。アクセルペダル42が踏込まれるとロー
タリ弁18が開弁するのでこのときには少量の混
合気が分岐路14を通つて渦巻部B内に流入する
ために旋回流は若干弱められる。一方、アクセル
ペダル42が最も踏込まれた高負荷運転時にはロ
ータリ弁18が全開するので入口通路部A内に送
り込まれた混合気の一部が流れ抵抗の小さな分岐
路14を介して渦巻部B内に送り込まれる。前述
したように分岐路14の出口開口16の上端縁は
渦巻部Bの上壁面13にほぼ面一に連結されてい
るので分岐路14から流出した混合気は渦巻部B
の上壁面13に沿つて旋回する全混合気流と正面
衝突して渦巻部Bの上壁面13に沿う全混合気流
を減速せしめる。即ち、渦巻部B内に発生する旋
回流のうちで渦巻部Bの上壁面13に沿う旋回流
が最も強力であり、この強力な旋回力をもつ全混
合気流が減速せしめられる。このように機関高速
高負荷運転時にはロータリ弁18が開弁すること
によつて全体の流路面積が増大するばかりでなく
強力な旋回力をもつ混合気流が減速せしめられる
ことにより旋回流が大巾に弱められるので高い充
填効率を確保することができる。また上述したよ
うに傾斜面9aを設けることによつて入口通路部
Aに送り込まれた混合気の一部は下向きの力を与
えられ、その結果この混合気は旋回することなく
入口通路部Aの下壁面に沿つて渦巻部B内に流入
するために流入抵抗は小さくなり、斯くして、高
負荷運転時における充填効率を更に高めることが
できる。
As described above, the rotary valve 18 shuts off the branch passage 14 during engine idling operation. At this time, the air-fuel mixture sent into the inlet passage part A descends inside the swirl part B while swirling along the upper wall surface 13 of the swirl part B, and then flows into the combustion chamber 4 while swirling. A strong swirling flow is generated inside. When the accelerator pedal 42 is depressed, the rotary valve 18 opens, and at this time, a small amount of air-fuel mixture flows into the swirl portion B through the branch path 14, so that the swirling flow is slightly weakened. On the other hand, during high-load operation when the accelerator pedal 42 is depressed the most, the rotary valve 18 is fully opened, so that part of the air-fuel mixture sent into the inlet passage A flows into the volute part B via the branch passage 14 with low flow resistance. sent to. As mentioned above, the upper end edge of the outlet opening 16 of the branch passage 14 is connected to the upper wall surface 13 of the spiral portion B in a substantially flush manner, so that the air-fuel mixture flowing out from the branch passage 14 flows into the spiral portion B.
It collides head-on with the entire air mixture flow swirling along the upper wall surface 13, and decelerates the entire air mixture flow along the upper wall surface 13 of the swirl portion B. That is, among the swirling flows generated in the swirling portion B, the swirling flow along the upper wall surface 13 of the swirling portion B is the strongest, and the entire air mixture flow having this strong swirling force is decelerated. In this manner, when the rotary valve 18 is opened during high-speed, high-load engine operation, not only does the overall flow path area increase, but also the air mixture flow, which has a strong swirling force, is decelerated, resulting in a wide swirling flow. Since it is weakened, high filling efficiency can be ensured. Further, as described above, by providing the inclined surface 9a, a portion of the air-fuel mixture fed into the inlet passage A is given a downward force, and as a result, this air-fuel mixture flows through the inlet passage A without swirling. Since the fluid flows into the spiral portion B along the lower wall surface, the inflow resistance becomes small, thus making it possible to further improve the filling efficiency during high-load operation.

以上述べたように本考案によれば分岐路の出口
開口の上端縁が渦巻部の上壁面にほぼ面一に連結
されているので開閉弁が開弁したときに分岐路か
ら流出する混合気により渦巻部の上壁面に沿つて
強力な旋回力をもつて旋回する全混合気流を減速
せしめることができ、斯くして旋回流を大巾に弱
めることができるので高い充填効率を得ることが
できる。更に、本考案によれば流路制御装置を実
用に適した極めて簡単な構造とすることができ、
斯くして流路制御装置を常時確実に作動せしめる
ことができると共に流路制御装置の信頼性を向上
することができる。
As described above, according to the present invention, the upper edge of the outlet opening of the branching passage is connected almost flush with the upper wall surface of the spiral part, so that when the on-off valve opens, the air-fuel mixture flowing out from the branching passage is It is possible to decelerate the total air mixture flow that swirls with a strong swirling force along the upper wall surface of the spiral portion, and thus the swirling flow can be greatly weakened, so that high filling efficiency can be obtained. Furthermore, according to the present invention, the flow path control device can be made into an extremely simple structure suitable for practical use.
In this way, the flow path control device can be operated reliably at all times, and the reliability of the flow path control device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る内燃機関の平面図、第2
図は第1図の−線に沿つてみた断面図、第3
図はヘリカル型吸気ポートの形状を示す斜視図、
第4図は第3図の平面図、第5図は第3図の分岐
路に沿つて切断した側面断面図、第6図は第4図
の−線に沿つてみた断面図、第7図は第4図
の−線に沿つてみた断面図、第8図は第4図
の−線に沿つてみた断面図、第9図はロータ
リ弁の側面断面図、第10図は第9図の側面図、
第11図は位置決めリングの平面図、第12図は
流路制御装置の全体図である。 5……吸気弁、6……ヘリカル型吸気ポート、
14……分岐路、18……ロータリ弁、42……
アクセルペダル。
Figure 1 is a plan view of the internal combustion engine according to the present invention, Figure 2 is a plan view of the internal combustion engine according to the present invention;
The figure is a cross-sectional view taken along the - line in Figure 1.
The figure is a perspective view showing the shape of a helical intake port.
Fig. 4 is a plan view of Fig. 3, Fig. 5 is a side sectional view taken along the branch road in Fig. 3, Fig. 6 is a sectional view taken along the - line in Fig. 4, and Fig. 7. is a sectional view taken along the - line in Fig. 4, Fig. 8 is a sectional view taken along the - line in Fig. 4, Fig. 9 is a side sectional view of the rotary valve, and Fig. 10 is a sectional view taken along the - line in Fig. 9. Side view,
FIG. 11 is a plan view of the positioning ring, and FIG. 12 is an overall view of the flow path control device. 5... Intake valve, 6... Helical intake port,
14... Branch road, 18... Rotary valve, 42...
Accelerator pedal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸気弁周りに形成された渦巻部と、該渦巻部に
接線状に接続されかつほぼまつすぐに延びる入口
通路部とにより構成されたヘリカル型吸気ポート
において、上記入口通路部から分岐された分岐路
の出口開口を該渦巻部の渦巻終端部に連通せし
め、該出口開口を渦巻部の上壁面に沿う旋回流に
対向するように渦巻部側壁面の上端部に形成する
と共に該出口開口の上端縁を渦巻部上壁面にほぼ
面一に連結せしめ、該分岐路内に開閉弁を挿入す
ると共に該開閉弁をアクセルペダルに直結して該
開閉弁の開口面積を機関負荷に比例させるように
したヘリカル型吸気ポートの流路制御装置。
In a helical intake port constituted by a spiral portion formed around the intake valve and an inlet passage portion connected tangentially to the spiral portion and extending almost straight, a branch path branched from the inlet passage portion. communicates with the spiral end of the spiral section, the exit opening is formed at the upper end of the side wall surface of the spiral section so as to oppose the swirling flow along the upper wall surface of the spiral section, and the upper edge of the exit opening is connected almost flush to the upper wall surface of the spiral part, and an on-off valve is inserted into the branch passage, and the on-off valve is directly connected to the accelerator pedal so that the opening area of the on-off valve is proportional to the engine load. Type intake port flow path control device.
JP11292281U 1981-07-31 1981-07-31 Flow path control device for helical intake port Granted JPS5827537U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11292281U JPS5827537U (en) 1981-07-31 1981-07-31 Flow path control device for helical intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11292281U JPS5827537U (en) 1981-07-31 1981-07-31 Flow path control device for helical intake port

Publications (2)

Publication Number Publication Date
JPS5827537U JPS5827537U (en) 1983-02-22
JPS6323545Y2 true JPS6323545Y2 (en) 1988-06-28

Family

ID=29907236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11292281U Granted JPS5827537U (en) 1981-07-31 1981-07-31 Flow path control device for helical intake port

Country Status (1)

Country Link
JP (1) JPS5827537U (en)

Also Published As

Publication number Publication date
JPS5827537U (en) 1983-02-22

Similar Documents

Publication Publication Date Title
JPS6014170B2 (en) Flow path control device for helical intake port
JPS6032009B2 (en) Helical intake port
JPS6023468Y2 (en) Flow path control device for helical intake port
JPS6238533B2 (en)
JPS6323545Y2 (en)
JPS6238537B2 (en)
JPS6226589Y2 (en)
JPS6338336Y2 (en)
JPS6323546Y2 (en)
JPS6021468Y2 (en) Flow path control device for helical intake port
JPS609378Y2 (en) Flow path control device for helical intake port
JPS609376Y2 (en) Flow path control device for helical intake port
JPS6236139B2 (en)
JPS6321777Y2 (en)
JPS6023467Y2 (en) Flow path control device for helical intake port
JPH0143472Y2 (en)
JPS6021470Y2 (en) Helical intake port
JPS6254965B2 (en)
JPS6335166Y2 (en)
JPS6035536B2 (en) Flow path control device for helical intake port
JPS6021469Y2 (en) Helical intake port
JPH0143473Y2 (en)
JPS6229624Y2 (en)
JPS6239672B2 (en)
JPS6229623Y2 (en)