JPS6226589Y2 - - Google Patents

Info

Publication number
JPS6226589Y2
JPS6226589Y2 JP1981096028U JP9602881U JPS6226589Y2 JP S6226589 Y2 JPS6226589 Y2 JP S6226589Y2 JP 1981096028 U JP1981096028 U JP 1981096028U JP 9602881 U JP9602881 U JP 9602881U JP S6226589 Y2 JPS6226589 Y2 JP S6226589Y2
Authority
JP
Japan
Prior art keywords
valve
negative pressure
cylinder head
spiral
rotary valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981096028U
Other languages
Japanese (ja)
Other versions
JPS582329U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9602881U priority Critical patent/JPS582329U/en
Publication of JPS582329U publication Critical patent/JPS582329U/en
Application granted granted Critical
Publication of JPS6226589Y2 publication Critical patent/JPS6226589Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Lift Valve (AREA)

Description

【考案の詳細な説明】 本考案はヘリカル型吸気ポートの流路制御装置
に関する。
[Detailed Description of the Invention] The present invention relates to a flow path control device for a helical intake port.

ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速負荷
運転時に充填効率が低下するという問題がある。
このような問題を解決するためにヘリカル型吸気
ポート入口通路部から分岐されてヘリカル型吸気
ポート渦巻部の渦巻終端部に連通する分岐路をシ
リンダヘツド内に形成し、分岐路内にアクチユエ
ータによつて作動される常時閉鎖型開閉弁を設け
て機関吸入空気量が所定量よりも大きくなつたと
きにアクチユエータを作動させて開閉弁を開弁す
るようにしたヘリカル型吸気ポート流路制御装置
が本出願人により既に提案されている。このヘリ
カル型吸気ポートでは機関吸入空気量の多い機関
高速高負荷運転時にヘリカル型吸気ポート入口通
路部内に送り込まれた吸入空気の一部が分岐路を
介してヘリカル型吸気ポート渦巻部内に送り込ま
れるために吸入空気流に対する流れ抵抗が低下
し、斯くして高い充填効率を得ることができる。
しかしながらこの流路制御装置は基本作動原理を
示しているにすぎず、従つてこの流路制御装置を
実用化するには組立工数、製造の容易さ、確実な
作動、製造コストの面で種々の問題が残されてい
る。
A helical intake port typically consists of a spiral formed around the intake valve and an inlet passageway tangentially connected to the spiral and extending generally straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load engine operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. There is a problem in that the filling efficiency decreases when the engine is operated under high-speed load with a large amount of air.
In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an actuator is installed in the branch path. The main helical intake port flow path control device is a helical intake port flow path control device that is equipped with a normally-closed on-off valve that is operated by the engine, and operates an actuator to open the on-off valve when the amount of engine intake air becomes larger than a predetermined amount. Already proposed by the applicant. In this helical type intake port, when the engine is operated at high speed and under high load with a large amount of engine intake air, part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through the branch passage. The flow resistance to the intake air flow is reduced and thus a high filling efficiency can be obtained.
However, this flow path control device only shows the basic operating principle, and therefore, in order to put this flow path control device into practical use, there are various issues in terms of assembly man-hours, ease of manufacturing, reliable operation, and manufacturing cost. Problems remain.

本考案は本願出願人により既に提案されている
上述の基本作動原理を実用化するのに適した構造
を有するヘリカル型吸気ポート流路制御装置を提
供することにある。
The object of the present invention is to provide a helical intake port flow path control device having a structure suitable for putting into practical use the above-mentioned basic operating principle that has already been proposed by the applicant.

以下、添附図面を参照して本考案を詳細に説明
する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固定
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポートを夫々示す。なお、図
には示さないが燃焼室4内に点火栓が配置され
る。
Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within cylinder block 1, 3 is a cylinder head fixed on cylinder block 1, and 4 is a link between piston 2 and cylinder head 3. 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Exhaust ports formed therein are shown respectively. Although not shown in the figure, an ignition plug is disposed within the combustion chamber 4.

第3図から第5図に第2図のヘリカル型吸気ポ
ート6の形状を図解的に示す。このヘリカル型吸
気ポート6は第4図に示されるように流路軸線a
がわずかに湾曲した入口通路部Aと、吸気弁5の
弁軸周りに形成された渦巻部Bとにより構成さ
れ、入口通路部Aは渦巻部Bに接線状に接続され
る。第3図、第4図並びに第7図に示されるよう
に入口通路部Aの渦巻軸線bに近い側の側壁面9
の上方側壁面9aは下方を向いた傾斜面に形成さ
れ、この傾斜面9aの巾は渦巻部Bに近づくに従
つて広くなり、入口通路部Aと渦巻部Bとの接続
部においては第7図に示されるように側壁面9の
全体が下方に向いた傾斜面9aに形成される。側
壁面9の上半分は吸気弁ガイド10(第2図)周
りの吸気ポート上壁面上に形成された円筒状突起
11の周壁面に滑らかに接続され、一方側壁面9
の下半分は渦巻部Bの渦巻終端部Cにおいて渦巻
部Bの側壁面12に接続される。なお、渦巻部B
の上壁面13は渦巻終端部Cにおいて下向きの急
傾斜壁Dに接続される。
3 to 5 schematically show the shape of the helical intake port 6 of FIG. 2. This helical intake port 6 has a flow path axis a as shown in FIG.
It is composed of a slightly curved inlet passage part A and a spiral part B formed around the valve axis of the intake valve 5, and the inlet passage part A is tangentially connected to the spiral part B. As shown in FIGS. 3, 4, and 7, the side wall surface 9 of the inlet passage A near the spiral axis b
The upper side wall surface 9a is formed as an inclined surface facing downward, and the width of this inclined surface 9a becomes wider as it approaches the spiral portion B. As shown in the figure, the entire side wall surface 9 is formed into a downwardly oriented inclined surface 9a. The upper half of the side wall surface 9 is smoothly connected to the peripheral wall surface of a cylindrical projection 11 formed on the upper wall surface of the intake port around the intake valve guide 10 (FIG. 2).
The lower half of the spiral portion B is connected to the side wall surface 12 of the spiral portion B at the spiral end portion C of the spiral portion B. In addition, spiral part B
The upper wall surface 13 is connected to the downwardly inclined wall D at the spiral end C.

一方、第1図から第5図に示されるようにシリ
ンダヘツド3内には入口通路部Aから分岐された
ほぼ一様断面の分岐路14が形成され、この分岐
路14は渦巻終端部Cに接続される。分岐路14
の入口開口15は入口通路部Aの入口開口近傍に
おいて側壁面9上に形成され、分岐路14の出口
開口16は渦巻終端部Cにおいて側壁面12の上
端部に形成される。この出口開口16の上端縁は
渦巻部Bの上壁面13に面一に連結され、更にこ
の出口開口16は渦巻部Bの上壁面13に沿つて
渦巻方向に旋回する旋回流に対向するように形成
される。シリンダヘツド3内には分岐路14を貫
通して延びる開閉弁挿入孔17が穿設され、この
開閉弁挿入孔17内には夫々開口弁を構成するロ
ータリ弁18が挿入される。第9図を参照する
と、開閉弁挿入孔17はシリンダヘツド3内に上
方からドリルにより穿設された一様直径の円筒孔
からなり、この開閉弁挿入孔17は分岐路14の
下壁面を越えたところまで延びる。開閉弁挿入孔
17内にはロータリ弁ホルダ21が嵌着され、こ
のロータリ弁ホルダ21の外周面と開閉弁挿入孔
17内には例えばOリングからなるシール部材1
9が挿入される。第13図に示されるように各ロ
ータリ弁ホルダ21は取付け基板20に形成され
た開孔20a内に嵌着固定され、この取付け基板
20はシリンダヘツド3に固定されたシリンダヘ
ツドボルト22の頭部にボルト23によつて固定
される。しかしながらこの取付け基板20を直接
シリンダヘツド3に固定することもできる。一
方、ロータリ弁ホルダ21内には貫通孔24が穿
設され、この貫通孔24内にロータリ弁18の弁
軸25が回転可能に挿入される。弁軸25の下端
部には薄板状の弁体26が固着され、弁軸25の
上端部にはアーム27がワツシヤ28を介してボ
ルト29により固締される。ロータリ弁ホルダ2
1の上端面とほぼ同じ高さ位置にある弁軸25の
外周壁面上にはリング溝30が形成され、このリ
ング溝30内には第11図に示すようなE字形の
位置決めリング31が嵌着される。この位置決め
リング31はロータリ弁ホルダ21の頂面と係合
して弁体26を予め定められた位置に位置決めす
る。一方、ロータリ弁ホルダ21の上端部には補
強枠33により包囲されたシール部材34が嵌着
され、シール部材34のシール部34aはシール
部材34の外周面上に挿入された弾性リング35
によつて弁軸25の外周面上に圧接せしめられ
る。従つて分岐路14はシール部材19,34に
より外気から完全に隔離される。第13図に示さ
れるように各アーム27の先端部には夫々ピン3
6が取付けられる。これらの各ピン36はそれら
の下端部をかしめることによつてアーム27の先
端部に固定される。ピン36の上端部には小径部
37が形成され、この小径部内に各アーム27の
先端部を互に連結する連結ロツド38が回動可能
に取付けられる。なお、連結ロツド38上方のピ
ン36上には第11図に示すようなE字型リング
39が取付けられ、このE字型リング39によつ
て連結ロツド38の脱落が阻止される。なお、E
字型リング39を用いる代りに第14図に示すよ
うに連結ロツド38上方のピン36上にワツシヤ
39′を嵌着し、ピン36の上端部をかしめるこ
とによりワツシヤ39′をピン36に固定するこ
ともできる。
On the other hand, as shown in FIGS. 1 to 5, a branch passage 14 having a substantially uniform cross section is formed in the cylinder head 3, branching from the inlet passage part A, and this branch passage 14 is connected to the spiral terminal part C. Connected. Branch road 14
An inlet opening 15 is formed on the side wall surface 9 in the vicinity of the inlet opening of the inlet passage section A, and an outlet opening 16 of the branch passage 14 is formed at the upper end of the side wall surface 12 at the spiral end C. The upper end edge of this outlet opening 16 is connected flush with the upper wall surface 13 of the spiral portion B, and furthermore, this exit opening 16 is arranged so as to face the swirling flow swirling in the spiral direction along the upper wall surface 13 of the spiral portion B. It is formed. An on-off valve insertion hole 17 is formed in the cylinder head 3 and extends through the branch passage 14, and a rotary valve 18 constituting an opening valve is inserted into each of the on-off valve insertion holes 17. Referring to FIG. 9, the on-off valve insertion hole 17 is a cylindrical hole of uniform diameter drilled from above in the cylinder head 3, and the on-off valve insertion hole 17 extends beyond the lower wall surface of the branch passage 14. Extends to a certain extent. A rotary valve holder 21 is fitted into the on-off valve insertion hole 17, and a sealing member 1 made of, for example, an O-ring is provided on the outer peripheral surface of the rotary valve holder 21 and inside the on-off valve insertion hole 17.
9 is inserted. As shown in FIG. 13, each rotary valve holder 21 is fitted and fixed into an opening 20a formed in a mounting board 20, and this mounting board 20 is connected to the head of a cylinder head bolt 22 fixed to the cylinder head 3. It is fixed by a bolt 23. However, it is also possible to fix this mounting board 20 directly to the cylinder head 3. On the other hand, a through hole 24 is bored in the rotary valve holder 21, and a valve shaft 25 of the rotary valve 18 is rotatably inserted into the through hole 24. A thin plate-like valve body 26 is fixed to the lower end of the valve shaft 25, and an arm 27 is fixed to the upper end of the valve shaft 25 with a bolt 29 via a washer 28. Rotary valve holder 2
A ring groove 30 is formed on the outer circumferential wall surface of the valve shaft 25 at approximately the same height as the upper end surface of the valve shaft 1, and an E-shaped positioning ring 31 as shown in FIG. 11 is fitted into the ring groove 30. It will be worn. This positioning ring 31 engages with the top surface of the rotary valve holder 21 to position the valve body 26 at a predetermined position. On the other hand, a sealing member 34 surrounded by a reinforcing frame 33 is fitted to the upper end of the rotary valve holder 21, and a sealing portion 34a of the sealing member 34 has an elastic ring 35 inserted on the outer peripheral surface of the sealing member 34.
is brought into pressure contact with the outer circumferential surface of the valve shaft 25. Therefore, the branch passage 14 is completely isolated from the outside air by the seal members 19, 34. As shown in FIG. 13, each arm 27 has a pin 3 at its tip.
6 is installed. Each of these pins 36 is fixed to the tip of the arm 27 by caulking their lower ends. A small diameter portion 37 is formed at the upper end of the pin 36, and a connecting rod 38 for connecting the tips of the arms 27 to each other is rotatably mounted within this small diameter portion. An E-shaped ring 39 as shown in FIG. 11 is attached to the pin 36 above the connecting rod 38, and this E-shaped ring 39 prevents the connecting rod 38 from falling off. In addition, E
Instead of using the shaped ring 39, a washer 39' is fitted onto the pin 36 above the connecting rod 38 as shown in FIG. 14, and the washer 39' is fixed to the pin 36 by caulking the upper end of the pin 36. You can also.

第12図を参照すると、各ロータリ弁18のア
ーム27を互に連結する連結ロツド38の端部は
負圧ダイアフラム装置40のダイアフラム41に
固着された制御ロツド42の先端部に連結され
る。負圧ダイアフラム装置40はダイアフラム4
1によつて大気から隔離された負圧室44を有
し、この負圧室44内にダイアフラム押圧用圧縮
ばね45が挿入される。シリンダヘツド3には1
次側気化器46aと2次側気化器46bからなる
コンパウンド型気化器46を具えた吸気マニホル
ド47が取付けられ、負圧室44は負圧導管48
を介して吸気マニホルド47内に連結される。こ
の負圧導管48内には負圧室44から吸気マニホ
ルド47内に向けてのみ流通可能な逆止弁49が
挿入される。更に、負圧室44は大気導管50並
びに大気開放制御弁51を介して大気に連通す
る。この大気開放制御弁51はダイアフラム52
によつて隔成された負圧室53と大気圧室54と
を有し、更に大気圧室54に隣接して弁室55を
有する。この弁室55は一方では大気導管50を
介して負圧室44内に連通し、他方では弁ポート
56並びにエアフイルタ57を介して大気に連通
する。弁室55内には弁ポート56の開閉制御を
する弁体58が設けられ、この弁体58は弁ロツ
ド59を介してダイアフラム52に連結される。
負圧室53内にはダイアフラム押圧用圧縮ばね6
0が挿入され、更に負圧室53は負圧導管61を
介して1次側気化器46aのベンチユリ部62に
連結される。
Referring to FIG. 12, the end of a connecting rod 38 interconnecting the arms 27 of each rotary valve 18 is connected to the tip of a control rod 42 secured to a diaphragm 41 of a negative pressure diaphragm device 40. Negative pressure diaphragm device 40 is diaphragm 4
1, which has a negative pressure chamber 44 isolated from the atmosphere, and a compression spring 45 for pressing the diaphragm is inserted into this negative pressure chamber 44. 1 for cylinder head 3
An intake manifold 47 equipped with a compound type carburetor 46 consisting of a next side carburetor 46a and a secondary side carburetor 46b is attached, and the negative pressure chamber 44 is connected to a negative pressure conduit 48.
The intake manifold 47 is connected through the intake manifold 47 . A check valve 49 is inserted into the negative pressure conduit 48 and allows flow only from the negative pressure chamber 44 into the intake manifold 47 . Further, the negative pressure chamber 44 communicates with the atmosphere via an atmosphere conduit 50 and an atmosphere release control valve 51. This atmospheric release control valve 51 has a diaphragm 52
It has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a spacer, and further has a valve chamber 55 adjacent to the atmospheric pressure chamber 54. This valve chamber 55 communicates on the one hand with the negative pressure chamber 44 via an atmospheric conduit 50 and on the other hand with the atmosphere via a valve port 56 and an air filter 57. A valve body 58 for controlling the opening and closing of the valve port 56 is provided within the valve chamber 55, and the valve body 58 is connected to the diaphragm 52 via a valve rod 59.
A compression spring 6 for pressing the diaphragm is provided in the negative pressure chamber 53.
Further, the negative pressure chamber 53 is connected to the bench lily portion 62 of the primary side carburetor 46a via a negative pressure conduit 61.

気化器46は通常用いられる気化器であつて、
1次側スロツトル弁63が所定開度以上開弁した
ときに2次側スロツトル弁64が開弁し、1次側
スロツトル弁63が全開すれば2次側スロツトル
弁64も全開する。1次側気化器46aのベンチ
ユリ部62に発生する負圧は機関シリンダ内に供
給される吸入空気量が増大するほど大きくなり、
従つてベンチユリ部62に発生する負圧が所定負
圧よりも大きくなつたときに、即ち機関高速高負
荷運転時に大気開放制御弁51のダイアフラム5
2が圧縮ばね60に抗して右方に移動し、その結
果弁体58が弁ポート56を開弁して負圧ダイア
フラム装置40の負圧室44を大気に開放する。
このときダイアフラム41は圧縮ばね45のばね
力により下方に移動し、その結果ロータリ弁18
が回転せしめられて分岐路14を全開する。一
方、1次側スロツトル弁63の開度が小さいとき
にはベンチユリ部62に発生する負圧が小さなた
めに大気開放制御弁51のダイアフラム52は圧
縮ばね60のばね力により左方に移動し、弁体5
8が弁ポート56を閉鎖する。更にこのように1
次側スロツトル弁63の開度が小さいときには吸
気マニホルド47内には大きな負圧が発生してい
る。逆止弁49は吸気マニホルド47内の負圧が
負圧ダイアフラム装置40の負圧室44内の負圧
よりも大きくなると開弁し、吸気マニホルド47
内の負圧が負圧室44内の負圧よりも小さくなる
と閉弁するので大気開放制御弁51が閉弁してい
る限り負圧室44内の負圧は吸気マニホルド47
内に発生した最大負圧に維持される。負圧室44
内に負圧が加わるとダイアフラム41は圧縮ばね
45に抗して上昇し、その結果ロータリ弁18が
回動せしめられて分岐路14が閉鎖される。従つ
て機関低速低負荷運転時にはロータリ弁18によ
つて分岐路14が閉鎖されることになる。なお、
高負荷運転時であつても機関回転数が低い場合、
並びに機関回転数が高くても低負荷運転が行なわ
れている場合にはベンチユリ部62に発生する負
圧が小さなために大気開放制御弁51は閉鎖され
続けている。従つてこのような低速高負荷運転時
並びに高速低負荷運転時には負圧室44内の負圧
が前述の最大負圧に維持されているのでロータリ
弁18によつて分岐路14が閉鎖されている。
The vaporizer 46 is a commonly used vaporizer,
When the primary throttle valve 63 opens a predetermined opening degree or more, the secondary throttle valve 64 opens, and when the primary throttle valve 63 fully opens, the secondary throttle valve 64 also fully opens. The negative pressure generated in the bench lily portion 62 of the primary carburetor 46a increases as the amount of intake air supplied into the engine cylinder increases.
Therefore, when the negative pressure generated in the bench lily portion 62 becomes larger than a predetermined negative pressure, that is, when the engine is operated at high speed and under high load, the diaphragm 5 of the atmospheric release control valve 51
2 moves to the right against the compression spring 60, and as a result, the valve body 58 opens the valve port 56 and opens the negative pressure chamber 44 of the negative pressure diaphragm device 40 to the atmosphere.
At this time, the diaphragm 41 moves downward due to the spring force of the compression spring 45, and as a result, the rotary valve 18
is rotated to fully open the branch path 14. On the other hand, when the opening degree of the primary throttle valve 63 is small, the negative pressure generated in the bench lily part 62 is small, so the diaphragm 52 of the atmospheric release control valve 51 moves to the left by the spring force of the compression spring 60, and the valve body 5
8 closes valve port 56. Furthermore like this 1
When the opening degree of the next throttle valve 63 is small, a large negative pressure is generated within the intake manifold 47. The check valve 49 opens when the negative pressure in the intake manifold 47 becomes larger than the negative pressure in the negative pressure chamber 44 of the negative pressure diaphragm device 40, and
The valve closes when the negative pressure in the negative pressure chamber 44 becomes smaller than the negative pressure in the negative pressure chamber 44. Therefore, as long as the atmospheric release control valve 51 is closed, the negative pressure in the negative pressure chamber 44 is transferred to the intake manifold 47.
maintained at the maximum negative pressure generated within. Negative pressure chamber 44
When negative pressure is applied inside, the diaphragm 41 rises against the compression spring 45, and as a result, the rotary valve 18 is rotated and the branch passage 14 is closed. Therefore, when the engine is operating at low speed and low load, the branch passage 14 is closed by the rotary valve 18. In addition,
If the engine speed is low even during high load operation,
Furthermore, even if the engine speed is high, when the engine is operated under low load, the atmospheric release control valve 51 remains closed because the negative pressure generated in the bench lily portion 62 is small. Therefore, during such low-speed, high-load operation and high-speed, low-load operation, the negative pressure in the negative pressure chamber 44 is maintained at the aforementioned maximum negative pressure, so the branch passage 14 is closed by the rotary valve 18. .

上述したように吸気空気量が少ない機関低速低
負荷運転時にはロータリ弁18が分岐路14を遮
断している。このとき入口通路部A内に送り込ま
れた混合気は渦巻部Bの上壁面13に沿つて旋回
しつつ渦巻部B内を下降し、次いで旋回しつつ燃
焼室4内に流入するので燃焼室4内には強力な旋
回流が発生せしめられる。一方、吸入空気量が多
い機関高速高負荷運転時にはロータリ弁18が開
弁するので入口通路部A内に送り込まれた混合気
の一部が流れ抵抗の小さな分岐路14を介して渦
巻部B内に送り込まれる。前述したように分岐路
14の出口開口16の上端縁は渦巻部Bの上壁面
13に面一に連結されているので分岐路14から
流出した混合気は渦巻部Bの上壁面13に沿つて
旋回する全混合気流と正面衝突して渦巻部Bの上
端面13に沿う全混合気流を減速せしめる。即
ち、渦巻部B内に発生する旋回流のうちで渦巻部
Bの上壁面13に沿う旋回流が最も強力であり、
この強力な旋回力をもつ全混合気流が減速せしめ
られる。このように機関高速高負荷運転時にはロ
ータリ弁18が開弁することによつて全体の流路
面積が増大するばかりでなく強力な旋回力をもつ
全混合気流が減速せしめられることにより旋回流
が大巾に弱められるので高い充填効率を確保する
ことができる。また上述したように傾斜面9aを
設けることによつて入口通路部Aに送り込まれた
混合気の一部は下向きの力を与えられ、その結果
この混合気は旋回することなく入口通路部Aの下
壁面に沿つて渦巻部B内に流入するために流入抵
抗は小さくなり、斯くして高速高負荷運転時にお
ける充填効率を更に高めることができる。
As mentioned above, the rotary valve 18 shuts off the branch passage 14 when the engine is operating at low speed and low load with a small amount of intake air. At this time, the air-fuel mixture sent into the inlet passage part A descends inside the swirl part B while swirling along the upper wall surface 13 of the swirl part B, and then flows into the combustion chamber 4 while swirling. A strong swirling flow is generated inside. On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 18 opens, so that part of the air-fuel mixture sent into the inlet passage A flows into the volute part B via the branch passage 14 with low flow resistance. sent to. As mentioned above, the upper edge of the outlet opening 16 of the branch passage 14 is connected flush with the upper wall surface 13 of the spiral part B, so that the air-fuel mixture flowing out from the branch passage 14 flows along the upper wall surface 13 of the spiral part B. It collides head-on with the swirling total air mixture flow and decelerates the total air mixture flow along the upper end surface 13 of the swirl portion B. That is, among the swirling flows generated in the swirling part B, the swirling flow along the upper wall surface 13 of the swirling part B is the strongest,
The entire air mixture flow with this strong swirling force is decelerated. In this way, when the rotary valve 18 opens during engine high-speed, high-load operation, not only does the overall flow path area increase, but the entire air mixture flow, which has a strong swirling force, is decelerated, thereby increasing the swirling flow. Since it is weakened in width, high filling efficiency can be ensured. Further, as described above, by providing the inclined surface 9a, a portion of the air-fuel mixture fed into the inlet passage A is given a downward force, and as a result, this air-fuel mixture flows through the inlet passage A without swirling. Since the fluid flows into the spiral portion B along the lower wall surface, the inflow resistance becomes small, thus making it possible to further improve the filling efficiency during high-speed, high-load operation.

各ロータリ弁18をシリンダヘツド3に組込む
にはまず始めに各ロータリ弁ホルダ21を取付け
基板20に固定し、次いで連結ロツド38を各ア
ーム27の先端部に取付けられたピン36に嵌着
してロータリ弁ホルダ21と連結ロツド38とを
取付け基板20上に一体的に取付け、次いで各ロ
ータリ弁ホルダ21を対応する開閉弁挿入孔17
内に嵌込んでこれらロータリ弁ホルダ21を取付
け基板20と共に押下げ、次いで各ロータリ弁ホ
ルダ21が対応する開閉弁挿入孔17内に完全に
挿入された後に取付け基板20をボルト23によ
つてシリンダヘツド3に固締する。
To assemble each rotary valve 18 into the cylinder head 3, first fix each rotary valve holder 21 to the mounting board 20, then fit the connecting rod 38 onto the pin 36 attached to the tip of each arm 27. The rotary valve holder 21 and the connecting rod 38 are integrally mounted on the mounting board 20, and then each rotary valve holder 21 is inserted into the corresponding opening/closing valve insertion hole 17.
These rotary valve holders 21 are pushed down together with the mounting board 20, and then, after each rotary valve holder 21 is completely inserted into the corresponding opening/closing valve insertion hole 17, the mounting board 20 is inserted into the cylinder with the bolt 23. Fasten to head 3.

このように本考案によればロータリ弁ホルダを
取付け基板上に一体的に取付けることによつてロ
ータリ弁ホルダをシリンダヘツドに取付ける前に
各ロータリ弁弁体の全閉位置並びに全開位置が互
に同期するように容易に調節できるためにロータ
リ弁弁体の全閉位置並びに全開位置を正確に位置
決めでき、更にロータリ弁ホルダをシリンダヘツ
ドに組付ける作業が極めて容易となる。
According to the present invention, by integrally mounting the rotary valve holder on the mounting board, the fully closed and fully open positions of each rotary valve body can be synchronized with each other before the rotary valve holder is mounted on the cylinder head. Since the rotary valve body can be easily adjusted, the fully closed position and the fully open position of the rotary valve body can be accurately positioned, and furthermore, the work of assembling the rotary valve holder to the cylinder head is extremely easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案に係る内燃機関の平面図、第2
図は第1図の−線に沿つてみた断面図、第3
図はヘリカル型吸気ポートの形状を示す斜視図、
第4図は第3図の平面図、第5図は第3図の分岐
路に沿つて切断した側面断面図、第6図は第4図
の−線に沿つてみた断面図、第7図は第4図
の−線に沿つてみた断面図、第8図は第4図
の−線に沿つてみた断面図、第9図はロータ
リ弁の側面断面図、第10図は第9図の側面図、
第11図は位置決めリングの平面図、第12図は
流路制御装置の全体図、第13図は第12図のXII
−XII線に沿つてみた側面断面図、第14図は第1
3図の一部の別の実施例を示す側面断面図であ
る。 5……吸気弁、6……ヘリカル型吸気ポート、
14……分岐路、18……ロータリ弁、20……
取付け基板、21……ロータリ弁ホルダ、25…
…弁軸、26……弁体。
Fig. 1 is a plan view of an internal combustion engine according to the present invention, Fig. 2 is a plan view of an internal combustion engine according to the present invention;
The figure is a cross-sectional view taken along the - line in Figure 1.
The figure is a perspective view showing the shape of a helical intake port.
Fig. 4 is a plan view of Fig. 3, Fig. 5 is a side sectional view taken along the branch road in Fig. 3, Fig. 6 is a sectional view taken along the - line in Fig. 4, and Fig. 7. is a sectional view taken along the - line in Fig. 4, Fig. 8 is a sectional view taken along the - line in Fig. 4, Fig. 9 is a side sectional view of the rotary valve, and Fig. 10 is a sectional view taken along the - line in Fig. 9. Side view,
Figure 11 is a plan view of the positioning ring, Figure 12 is an overall view of the flow path control device, and Figure 13 is XII of Figure 12.
Figure 14 is a side sectional view taken along line -XII.
FIG. 3 is a side sectional view showing another embodiment of a part of FIG. 3; 5... Intake valve, 6... Helical intake port,
14... Branch road, 18... Rotary valve, 20...
Mounting board, 21... Rotary valve holder, 25...
... Valve stem, 26... Valve body.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 吸気弁周りに形成された渦巻部と、該渦巻部に
接線状に接続されかつほぼまつすぐに延びる入口
通路部とにより構成されたヘリカル型吸気ポート
において、上記入口通路部から分岐されて上記渦
巻部の渦巻終端部に連通する分岐路をシリンダヘ
ツド内に形成すると共に該分岐路を横切つて延び
る開閉弁挿入孔をシリンダヘツド内に形成し、各
開閉弁挿入孔に挿入すべき複数個のロータリ弁ホ
ルダを共通の取付け基板に固着し、該取付け基板
をシリンダヘツドに固締して対応する開閉弁挿入
孔内に挿入された各ロータリ弁ホルダを取付け基
盤により保持するようにしたヘリカル型吸気ポー
トの流路制御装置。
In a helical intake port configured with a spiral portion formed around the intake valve and an inlet passage portion that is tangentially connected to the spiral portion and extends almost straight, the spiral portion is branched from the inlet passage portion and is connected to the spiral portion. A branch passage communicating with the spiral terminal end of the valve is formed in the cylinder head, and an on-off valve insertion hole extending across the branch passage is formed in the cylinder head, and a plurality of on-off valve insertion holes to be inserted into each on-off valve insertion hole are formed in the cylinder head. A helical intake type in which the rotary valve holders are fixed to a common mounting board, the mounting board is fixed to the cylinder head, and each rotary valve holder inserted into the corresponding opening/closing valve insertion hole is held by the mounting board. Port flow control device.
JP9602881U 1981-06-30 1981-06-30 Flow path control device for helical intake port Granted JPS582329U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9602881U JPS582329U (en) 1981-06-30 1981-06-30 Flow path control device for helical intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9602881U JPS582329U (en) 1981-06-30 1981-06-30 Flow path control device for helical intake port

Publications (2)

Publication Number Publication Date
JPS582329U JPS582329U (en) 1983-01-08
JPS6226589Y2 true JPS6226589Y2 (en) 1987-07-08

Family

ID=29890910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9602881U Granted JPS582329U (en) 1981-06-30 1981-06-30 Flow path control device for helical intake port

Country Status (1)

Country Link
JP (1) JPS582329U (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59170634U (en) * 1983-05-02 1984-11-15 トヨタ自動車株式会社 Internal combustion engine intake control device
JPH0643467Y2 (en) * 1985-04-22 1994-11-14 マツダ株式会社 Multi-cylinder engine intake system
DE3817052A1 (en) * 1988-05-19 1989-11-30 Draegerwerk Ag METHOD FOR MONITORING PATIENT DATA AND CIRCUIT ARRANGEMENT THEREFOR

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5175828A (en) * 1974-12-25 1976-06-30 Tk Carburettor NIRENSHIKIKIKAKI
JPS538408B2 (en) * 1972-11-13 1978-03-28

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538408U (en) * 1976-07-07 1978-01-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS538408B2 (en) * 1972-11-13 1978-03-28
JPS5175828A (en) * 1974-12-25 1976-06-30 Tk Carburettor NIRENSHIKIKIKAKI

Also Published As

Publication number Publication date
JPS582329U (en) 1983-01-08

Similar Documents

Publication Publication Date Title
US4466395A (en) Flow control device of a helically-shaped intake port
JPS6032009B2 (en) Helical intake port
JPS6023468Y2 (en) Flow path control device for helical intake port
JPS6226589Y2 (en)
JPS6238533B2 (en)
JPS6321777Y2 (en)
US4467750A (en) Flow control device of a helically-shaped intake port
JPS609378Y2 (en) Flow path control device for helical intake port
JPS609376Y2 (en) Flow path control device for helical intake port
JPS6338336Y2 (en)
JPS6323545Y2 (en)
JPS6023467Y2 (en) Flow path control device for helical intake port
JPS6224765Y2 (en)
JPS6021468Y2 (en) Flow path control device for helical intake port
JPS6242163Y2 (en)
JPS6021469Y2 (en) Helical intake port
JPS6254965B2 (en)
JPS6021470Y2 (en) Helical intake port
JPS6231619Y2 (en)
JPH0143472Y2 (en)
JPH0244022Y2 (en)
JPH0143473Y2 (en)
JPS6323547Y2 (en)
JPH029070Y2 (en)
JPS5928090Y2 (en) Reed valve device