JPH0244022Y2 - - Google Patents
Info
- Publication number
- JPH0244022Y2 JPH0244022Y2 JP1983065050U JP6505083U JPH0244022Y2 JP H0244022 Y2 JPH0244022 Y2 JP H0244022Y2 JP 1983065050 U JP1983065050 U JP 1983065050U JP 6505083 U JP6505083 U JP 6505083U JP H0244022 Y2 JPH0244022 Y2 JP H0244022Y2
- Authority
- JP
- Japan
- Prior art keywords
- diaphragm
- wall surface
- pressure chamber
- cylinder head
- bellows
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000010687 lubricating oil Substances 0.000 claims description 16
- 238000002485 combustion reaction Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 description 15
- 238000005192 partition Methods 0.000 description 12
- 239000000446 fuel Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Landscapes
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Actuator (AREA)
Description
【考案の詳細な説明】 産業上の利用分野 本考案は内燃機関の吸気制御装置に関する。[Detailed explanation of the idea] Industrial applications The present invention relates to an intake control device for an internal combustion engine.
従来技術
ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめように
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題を生ず
る。このような問題を解決するためにヘリカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連通する分岐路
をシリンダヘツド内に形成し、各分岐路内に夫々
ロータリ弁を配置し、ロータリ弁の弁軸をシリン
ダヘツドの頂面から上方に突出させて弁軸の突出
先端部にアームを取付け、各ロータリ弁のアーム
を共通の連結ロツドにより互に連結し、シリンダ
ヘツド頂面の外周縁から上方に突出するシリンダ
ヘツド外周壁上に負圧ダイアフラム装置を固定
し、ダイアフラムに連結された制御ロツドをダイ
アフラム装置ハウジングからシリンダヘツド頂面
上に突出させてこの制御ロツドに連結ロツドを連
結し、機関高負荷運転時に負圧ダイアフラム装置
によつて各ロータリ弁を開弁せしめるようにした
吸気制御装置が例えば実願昭56−163722号に記載
されているように既に本出願人により提案されて
いる。この吸気制御装置を具えた内燃機関では機
関高速高負荷運転時に吸気ポートの入口通路部内
に送り込まれた混合気の一部が分岐路を介して吸
気ポートの渦巻部内に送り込まれるために吸入空
気の流路断面積が増大し、斯くして高い充填効率
を得ることができる。BACKGROUND OF THE INVENTION A helical intake port typically consists of a spiral formed around an intake valve and an inlet passageway tangentially connected to the spiral and extending substantially straight. If such a helical intake port is used to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load operation of the engine with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches off from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and a rotary rotor is installed in each branch path. The valves are arranged, the valve stem of the rotary valve is made to protrude upward from the top surface of the cylinder head, an arm is attached to the protruding tip of the valve stem, and the arms of each rotary valve are connected to each other by a common connecting rod. A negative pressure diaphragm device is fixed on the outer peripheral wall of the cylinder head that protrudes upward from the outer peripheral edge of the top surface of the head, and a control rod connected to the diaphragm is connected to the control rod by protruding from the diaphragm device housing onto the top surface of the cylinder head. An intake control device in which connecting rods are connected and each rotary valve is opened by a negative pressure diaphragm device during high-load engine operation has already been disclosed in the present application, as described in Utility Application No. 163722/1983, for example. suggested by people. In an internal combustion engine equipped with this intake control device, when the engine is operated at high speed and under high load, a portion of the air-fuel mixture sent into the inlet passage of the intake port is sent into the volute of the intake port via a branch passage. The cross-sectional area of the flow path is increased, thus high filling efficiency can be obtained.
しかしながらこの内燃機関ではダイアフラムに
連結された制御弁ロツドがダイアフラム装置ハウ
ジングに形成された円筒孔を貫通してシリンダヘ
ツド頂面上に突出しており、従つてシリンダヘツ
ド頂面上に送り込まれた潤滑油の一部が制御ロツ
ドと円筒孔間の間隙を通つてダイアフラム装置内
に流入する。ところが制御ロツドと円筒孔間の間
隙は極めて小さなためにダイアフラム装置内に流
入した潤滑油は制御ロツドと円筒孔間の間隙を通
つてシリンダヘツド頂面上に戻ることができず、
斯くしてダイアフラム装置内に潤滑油が蓄積して
ダイアフラム装置の正常な作動が妨げられるとい
う問題を生ずる。 However, in this internal combustion engine, the control valve rod connected to the diaphragm passes through a cylindrical hole formed in the diaphragm device housing and protrudes above the top surface of the cylinder head, so that the lubricating oil is pumped onto the top surface of the cylinder head. A portion of the fluid flows into the diaphragm device through the gap between the control rod and the cylindrical bore. However, since the gap between the control rod and the cylindrical hole is extremely small, the lubricating oil that has flowed into the diaphragm device cannot return to the top surface of the cylinder head through the gap between the control rod and the cylindrical hole.
This creates a problem in that lubricating oil accumulates within the diaphragm device, interfering with normal operation of the diaphragm device.
考案の目的
本考案はダイアフラム装置を常時正常に作動せ
しめることによつて常時安定した吸入空気制御を
行なえるようにした吸気制御装置を提供すること
にある。OBJECT OF THE INVENTION The object of the present invention is to provide an intake air control device that can perform stable intake air control at all times by operating a diaphragm device normally at all times.
考案の構成
本考案の構成は、ダイアフラムによつて分離さ
れた大気圧室と負圧室を有する吸入空気流制御用
ダイアフラム装置を大気圧室がシリンダヘツド側
に位置するようにしてシリンダヘツドの外周壁面
上に固定し、大気圧室を画定するダイアフラム装
置ハウジングに大気圧室とシリンダヘツド内部と
を連通する円筒孔を形成し、ダイアフラムに連結
された円筒状のロツドを円筒孔内に密着摺動可能
に挿入すると共に円筒孔を貫通してシリンダヘツ
ド内部まで延設し、大気圧室内にロツドと共軸的
に筒状のベローズを配置してベローズの一端部を
ダイアフラムに密封的に固着すると共にベローズ
の他端部をダイアフラムに対面したダイアフラム
装置ハウジングに密封的に固着し、円筒孔の底壁
面上に円筒孔の全長に亘つて延びる潤滑油流通溝
を形成して潤滑油流通溝によりベローズの内部空
間とシリンダヘツド内部とを連通せしめるように
したことにある。Structure of the invention The structure of the invention is such that a diaphragm device for controlling intake air flow, which has an atmospheric pressure chamber and a negative pressure chamber separated by a diaphragm, is mounted on the outer periphery of the cylinder head so that the atmospheric pressure chamber is located on the cylinder head side. A cylindrical hole that communicates the atmospheric pressure chamber with the inside of the cylinder head is formed in the diaphragm device housing that is fixed on a wall surface and defines an atmospheric pressure chamber, and a cylindrical rod connected to the diaphragm is tightly slid into the cylindrical hole. A cylindrical bellows is disposed coaxially with the rod in the atmospheric pressure chamber, and one end of the bellows is hermetically fixed to the diaphragm. The other end of the bellows is hermetically fixed to the diaphragm device housing facing the diaphragm, and a lubricating oil distribution groove extending over the entire length of the cylindrical hole is formed on the bottom wall surface of the cylindrical hole. The reason is that the internal space and the inside of the cylinder head are communicated with each other.
実施例
第1図および第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固締
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5aを
案内するステムガイドを夫々示す。第1図並びに
第2図に示されるように吸気ポート6の上壁面1
1上には下方に突出する隔壁12が一体成形さ
れ、この隔壁12によつて渦巻部Bと、この渦巻
部Bに接線状に接続された入口通路部Aからなる
ヘリカル型吸気ポート6が形成される。この隔壁
12は入口通路部A内から吸気弁5のステムガイ
ド10の周囲まで延びており、第2図からわかる
ようにこの隔壁12の根元部の巾Lは入口通路部
Aからステムガイド10に近づくにつれて徐々に
広くなる。隔壁12は吸気ポート6の入口開口6
aに最も近い側に位置する先端部13を有し、更
に隔壁12は第2図においてこの先端部13から
反時計回りにステムガイド10まで延びる第1側
壁面14aと、先端部13から時計回りにステム
ガイド10まで延びる第2側壁面14bとを有す
る。第1側壁面14aは先端部13からステムガ
イド10の側方を通つて渦巻部Bの側壁面15の
近傍まで延びて渦巻部側壁面15との間に狭窄部
16を形成する。次いで第1側壁面14aは渦巻
部側壁面15から徐々に間隔を隔てるように弯曲
しつつステムガイド10まで延びる。一方、第2
側壁面14bは先端部13からステムガイド10
までほぼまつすぐに延びる。Embodiment Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston reciprocating within the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a piston 2 and a cylinder. A combustion chamber formed between the heads 3, 5 an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Reference numeral 9 indicates an ignition plug disposed within the combustion chamber 4, and reference numeral 10 indicates a stem guide for guiding the stem 5a of the intake valve 5. As shown in FIGS. 1 and 2, the upper wall surface 1 of the intake port 6
A partition wall 12 projecting downward is integrally molded on the top of the helical intake port 6, which consists of a spiral portion B and an inlet passage portion A tangentially connected to the spiral portion B. be done. This partition wall 12 extends from inside the inlet passage part A to around the stem guide 10 of the intake valve 5, and as can be seen from FIG. It gradually becomes wider as you approach. The partition wall 12 is the inlet opening 6 of the intake port 6.
The partition wall 12 further includes a first side wall surface 14a extending counterclockwise from the tip 13 to the stem guide 10 in FIG. 2, and a first side wall surface 14a extending clockwise from the tip 13 in FIG. and a second side wall surface 14b extending to the stem guide 10. The first side wall surface 14a extends from the distal end portion 13 through the side of the stem guide 10 to the vicinity of the side wall surface 15 of the spiral portion B, and forms a narrow portion 16 between the first side wall surface 14a and the spiral portion side wall surface 15. Next, the first side wall surface 14a extends to the stem guide 10 while being curved so as to be gradually spaced apart from the spiral portion side wall surface 15. On the other hand, the second
The side wall surface 14b extends from the tip 13 to the stem guide 10.
It extends almost immediately.
第1図から第9図を参照すると、入口通路部A
の側壁面17,18はほぼ垂直配置され、一方、
入口通路部Aの上壁面19は渦巻部Bに向けて
徐々に下降する。入口通路部Aの側壁面17は渦
巻部Bの側壁面15に滑らかに接続され、入口通
路部Aの上壁面19は渦巻部Bの上壁面20に滑
らかに接続される。渦巻部Bの上壁面20は渦巻
部Bと入口通路部Aの接続部から狭窄部16に向
けて下降しつつ徐々に巾を狭め、次いで狭窄部1
6を通過すると徐々に巾を広げる。一方、入口通
路部Aの下壁面21は第5図に示すように入口開
口6aの近傍においてはその全体がほぼ水平をな
しており、側壁面17に隣接する底壁面部分21
aは第8図に示すように渦巻部Bに近づくに従つ
て隆起して傾斜面を形成する。この傾斜底壁面部
分21aの傾斜角は渦巻部Bに近づくにつれて
徐々に大きくなる。 Referring to FIGS. 1 to 9, the inlet passage section A
The side wall surfaces 17, 18 of are arranged substantially vertically, while
The upper wall surface 19 of the inlet passage section A gradually descends toward the spiral section B. The side wall surface 17 of the inlet passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the upper wall surface 19 of the entrance passage section A is smoothly connected to the upper wall surface 20 of the spiral section B. The upper wall surface 20 of the spiral part B gradually narrows in width while descending from the connection part between the spiral part B and the inlet passage part A toward the narrowing part 16, and then gradually narrows in width.
After passing 6, the width gradually increases. On the other hand, as shown in FIG.
As shown in FIG. 8, as it approaches the spiral portion B, it rises to form an inclined surface. The angle of inclination of this inclined bottom wall surface portion 21a gradually increases as it approaches the spiral portion B.
一方、隔壁12の第1側壁面14aはわずかば
かり傾斜した下向きに傾斜面からなり、第2側壁
面14bはほぼ垂直をなす。隔壁12の底壁面2
2は先端部13からステムガイド10に向かうに
従つて入口通路部Aの上壁面11との間隔が次第
に大きくなるように入口通路部Aから渦巻部Bに
向けてわずかばかり弯曲しつつ下降する。隔壁1
2の底壁面22上には第4図のハツチングで示す
領域に底壁面22から下方に突出するリブ23が
形成され、このリブ23の底面および底壁面22
はわずかばかり弯曲した傾斜面を形成する。 On the other hand, the first side wall surface 14a of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. Bottom wall surface 2 of partition wall 12
2 descends from the inlet passage A toward the spiral part B while being slightly curved so that the distance from the upper wall surface 11 of the inlet passage A gradually increases as it goes from the tip 13 to the stem guide 10. Bulkhead 1
A rib 23 protruding downward from the bottom wall surface 22 is formed on the bottom wall surface 22 of No. 2 in the area indicated by hatching in FIG.
forms a slightly curved slope.
一方、シリンダヘツド3内には渦巻部Bの渦巻
終端部Cと入口通路部Aとを連通する分岐路24
が形成され、この分岐路24の入口部にロータリ
弁25が配置される。この分岐路24は隔壁12
によつて入口通路部Aから分離されており、分岐
路24の下側空間全体が入口通路部Aに連通して
いる。分岐路24の上壁面26はほぼ一様な巾を
有し、渦巻終端部Cに向けて徐々に下降して渦巻
部Bの上壁面20に滑らかに接続される。隔壁1
2の第2側壁面14bに対面する分岐路24の側
壁面27はほぼ垂直をなし、更にこの側壁面27
はほぼ入口通路部Aの側壁面18の延長上に位置
する。なお、第1図からわかるように隔壁12上
に形成されたリブ23はロータリ弁25の近傍か
ら吸気弁5に向けて延びている。 On the other hand, a branch passage 24 is provided in the cylinder head 3 that communicates the spiral end C of the spiral portion B with the inlet passage A.
is formed, and a rotary valve 25 is disposed at the inlet of this branch path 24. This branch path 24 is connected to the partition wall 12
The branch passageway 24 is separated from the inlet passageway A by , and the entire lower space of the branch passage 24 communicates with the inlet passageway A. The upper wall surface 26 of the branch passage 24 has a substantially uniform width, gradually descends toward the spiral terminal end C, and is smoothly connected to the upper wall surface 20 of the spiral section B. Bulkhead 1
The side wall surface 27 of the branch path 24 facing the second side wall surface 14b of No. 2 is substantially perpendicular, and furthermore, this side wall surface 27
is located approximately on an extension of the side wall surface 18 of the inlet passage section A. As can be seen from FIG. 1, the rib 23 formed on the partition wall 12 extends from the vicinity of the rotary valve 25 toward the intake valve 5.
第10図に示されるようにロータリ弁25はロ
ータリ弁ホルダ28と、ロータリ弁ホルダ28内
において回転可能に支持された弁軸29とにより
構成され、このロータリ弁ホルダ28はシリンダ
ヘツド3に穿設されたねじ孔30内に螺着され
る。弁軸29の下端部には薄板状の弁体31が一
体形成され、第1図に示されるようにこの弁体3
1は分岐路24の上壁面26から底壁面21まで
延びる。一方、弁軸29の上端部にはアーム32
が固定される。また、弁軸29の外周面上にはリ
ング溝33が形成され、このリング溝33内には
E字型位置決めリング34が嵌込まれる。更にロ
ータリ弁ホルダ28の上端部にはシール部材35
が嵌着され、このシール部材35によつて弁軸2
9のシール作用が行われる。 As shown in FIG. 10, the rotary valve 25 is composed of a rotary valve holder 28 and a valve shaft 29 rotatably supported within the rotary valve holder 28. The screw hole 30 is screwed into the screw hole 30. A thin plate-shaped valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG.
1 extends from the top wall surface 26 of the branch path 24 to the bottom wall surface 21. On the other hand, an arm 32 is attached to the upper end of the valve shaft 29.
is fixed. Further, a ring groove 33 is formed on the outer peripheral surface of the valve shaft 29, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Furthermore, a sealing member 35 is provided at the upper end of the rotary valve holder 28.
is fitted, and the valve shaft 2 is fitted by this seal member 35.
9 sealing action is performed.
第11図を参照すると各ロータリ弁25のアー
ム32は連結ロツド40によつて互に連結され、
連結ロツド40の端部はリンク41を介して負圧
ダイアフラム装置42の制御ロツド43に連結さ
れる。ダイアフラム装置42のハウジング44に
は制御ロツド43の周りで外方に突出する突出円
筒部45を有する。一方、第11図および第12
図に示すようにシリンダヘツド3の頂面の外周縁
部には上方に突出するシリンダヘツド外周壁46
が形成され、シリンダヘツド外周壁46には孔4
7が穿設される。ダイアフラム装置42の円筒部
45は孔47内に嵌着され、円筒部45と孔47
間にはOリング48が挿入される。ダイアフラム
装置ハウジング44内にはダイアフラム49が配
置され、このダイアフラム49によつてハウジン
グ44の内部が負圧室50と大気圧室51に分離
される。負圧室50内にはダイアフラム押圧用圧
縮ばね52が挿入され、更にこの負圧室50は絞
り53および負圧導管54を介して吸気マニホル
ド枝管55に連結される。一方、大気圧室51内
にはゴム材料からなる筒状のベローズ56が配置
される。このベローズ56の一端部はダイアフラ
ム49に密封的に固着され、ベローズ56の他端
部はハウジング44の内壁面上に密封的に固着さ
れる。ベローズ56の内部ではストツプリング5
7が制御ロツド43に固定され、このストツプリ
ング57によつて制御ロツド43の軸方向移動が
規制される。第11図から第13図に示すように
ハウジング44の円筒部45内には内筒孔58が
形成される。この内筒孔58内には円筒状の制御
ロツド43が密着摺動可能に挿入され、この制御
ロツド43は内筒孔58内を貫通する。更に内筒
孔58の内壁面の上部および下部には内筒孔58
の全長に亘つてのびる潤滑油流通溝59,60が
形成され、ベローズ56の内部はこれら溝59,
60を介してシリンダヘツド3の頂面上に連通す
る。機関低負荷運転時には負圧室50内に大きな
負圧が加わるためにダイアフラム49は圧縮ばね
52に抗して負圧室50側に移動する。その結果
ロータリ弁25が反時計回りに回動せしめられて
ロータリ弁25が分岐路24を閉鎖する。一方、
機関高負荷運転時には負圧室50内の負圧が小さ
くなるためにダイアフラム49は圧縮ばね52の
ばね力によつて大気圧室51側に移動する。その
結果ロータリ弁25が時計回りに回動せしめられ
てロータリ弁25が分岐路24を全開する。上述
したように機関負荷が小さくなるとダイアフラム
49が負圧室50側に移動するのでこのときシリ
ンダヘツド3の頂面に送り込まれた潤滑油の一部
がハウジング44の円筒部45に形成された一対
の溝59,60を介してベローズ56内に流入す
る。ところがこの潤滑油は機関負荷が大きくなつ
てダイアフラム49が大気圧室51側に移動する
ときに再び溝59,60を介してシリンダヘツド
3の頂面上に返戻される。即ち、一対の溝59,
60を形成することによつて潤滑油の流路面積が
増大し、しかも制御ロツド43の下側に一方の溝
60を形成することによつてベローズ56の下方
に蓄積した潤滑油が排出しやすくなるのでベロー
ズ56内に蓄積した潤滑油を良好に排出できるこ
とになる。 Referring to FIG. 11, the arms 32 of each rotary valve 25 are connected to each other by a connecting rod 40.
The end of the connecting rod 40 is connected via a link 41 to a control rod 43 of a negative pressure diaphragm device 42. The housing 44 of the diaphragm device 42 has a projecting cylindrical portion 45 that projects outwardly about the control rod 43. On the other hand, Figures 11 and 12
As shown in the figure, a cylinder head outer peripheral wall 46 that protrudes upward is provided at the outer peripheral edge of the top surface of the cylinder head 3.
is formed, and a hole 4 is formed in the cylinder head outer peripheral wall 46.
7 is drilled. The cylindrical portion 45 of the diaphragm device 42 is fitted into the hole 47, and the cylindrical portion 45 and the hole 47
An O-ring 48 is inserted between them. A diaphragm 49 is disposed within the diaphragm device housing 44, and the diaphragm 49 separates the interior of the housing 44 into a negative pressure chamber 50 and an atmospheric pressure chamber 51. A compression spring 52 for pressing the diaphragm is inserted into the negative pressure chamber 50, and the negative pressure chamber 50 is further connected to an intake manifold branch pipe 55 via a throttle 53 and a negative pressure conduit 54. On the other hand, inside the atmospheric pressure chamber 51, a cylindrical bellows 56 made of a rubber material is arranged. One end of the bellows 56 is hermetically secured to the diaphragm 49, and the other end of the bellows 56 is hermetically secured to the inner wall surface of the housing 44. Inside the bellows 56, the stop spring 5
7 is fixed to the control rod 43, and the axial movement of the control rod 43 is restricted by this stop ring 57. As shown in FIGS. 11 to 13, an inner cylindrical hole 58 is formed in the cylindrical portion 45 of the housing 44. As shown in FIGS. A cylindrical control rod 43 is slidably inserted into the inner cylindrical hole 58, and the control rod 43 passes through the inner cylindrical hole 58. Furthermore, the inner cylindrical hole 58 is provided at the upper and lower parts of the inner wall surface of the inner cylindrical hole 58.
Lubricating oil distribution grooves 59, 60 extending over the entire length of the bellows 56 are formed, and the inside of the bellows 56 is formed with these grooves 59, 60.
It communicates with the top surface of the cylinder head 3 via 60. During low engine load operation, a large negative pressure is applied to the negative pressure chamber 50, so the diaphragm 49 moves toward the negative pressure chamber 50 against the compression spring 52. As a result, the rotary valve 25 is rotated counterclockwise and the rotary valve 25 closes the branch passage 24. on the other hand,
When the engine is operated under high load, the negative pressure in the negative pressure chamber 50 becomes small, so the diaphragm 49 moves toward the atmospheric pressure chamber 51 by the spring force of the compression spring 52. As a result, the rotary valve 25 is rotated clockwise and the rotary valve 25 fully opens the branch passage 24. As mentioned above, when the engine load decreases, the diaphragm 49 moves toward the negative pressure chamber 50, so that part of the lubricating oil sent to the top surface of the cylinder head 3 is transferred to the pair formed in the cylindrical portion 45 of the housing 44. It flows into the bellows 56 through the grooves 59 and 60. However, when the engine load increases and the diaphragm 49 moves toward the atmospheric pressure chamber 51, this lubricating oil is returned to the top surface of the cylinder head 3 via the grooves 59 and 60. That is, a pair of grooves 59,
By forming the groove 60, the flow area of the lubricating oil is increased, and by forming one of the grooves 60 on the lower side of the control rod 43, the lubricating oil accumulated below the bellows 56 can be easily discharged. Therefore, the lubricating oil accumulated in the bellows 56 can be efficiently discharged.
上述したように吸入空気量が少ない機関低負荷
運転時にはロータリ弁25が分岐路24を閉鎖し
ている。このとき、入口通路部A内に送り込まれ
た混合気の一部は上壁面19,20に沿つて進
み、残りの混合気のうちの一部の混合気はロータ
リ弁25に衝突して入口通路部Aの側壁面17の
方へ向きを変えた後に渦巻部Bの側壁面15に沿
つて進む。前述したように上壁面19,20の巾
は狭窄部16に近づくに従つて次第に狭くなるた
めに上壁面19,20に沿つて流れる混合気の流
路は次第に狭まり、斯くして上壁面19,20に
沿う混合気流は次第に増速される。更に、前述し
たように隔壁12の第1側壁面14aは渦巻部B
の側壁面15の近傍まで延びているので上壁面1
9,20に沿つて進む混合気流は渦巻部Bの側壁
面15上に押しやられ、次いで側壁面15に沿つ
て進むために渦巻部B内には強力な旋回流が発生
せしめられる。次いで混合気は旋回しつつ吸気弁
5とその弁座間に形成される間隙を通つて燃焼室
4内に流入して燃焼室4内に強力な旋回流を発生
せしめる。 As mentioned above, the rotary valve 25 closes the branch passage 24 when the engine is operating at low load with a small amount of intake air. At this time, part of the air-fuel mixture sent into the inlet passage A advances along the upper wall surfaces 19 and 20, and part of the remaining air-fuel mixture collides with the rotary valve 25 and flows into the inlet passage. After changing its direction toward the side wall surface 17 of section A, it proceeds along the side wall surface 15 of spiral section B. As described above, the widths of the upper wall surfaces 19 and 20 gradually become narrower as they approach the narrowed portion 16, so that the flow path for the air-fuel mixture flowing along the upper wall surfaces 19 and 20 gradually narrows. The air mixture flow along 20 is gradually accelerated. Further, as described above, the first side wall surface 14a of the partition wall 12 has a spiral portion B.
Since it extends to the vicinity of the side wall surface 15, the upper wall surface 1
The air mixture flowing along the spiral portions 9 and 20 is forced onto the side wall surface 15 of the spiral portion B, and then proceeds along the side wall surface 15, so that a strong swirling flow is generated within the spiral portion B. Next, the air-fuel mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat, generating a strong swirling flow within the combustion chamber 4.
一方、吸入空気量が多い機関高速高負荷運転時
にはロータリ弁25が開弁するので入口通路部A
内に送り込まれた混合気は大別すると3つの流れ
に分流される。即ち、第1の流れは隔壁12の第
1側壁面14aと入口通路部Aの側壁面17間に
流入し、次いで渦巻部Bの上壁面20に沿つて旋
回しつつ流れる混合気流であり、第2の流れは分
岐路24を介して渦巻部B内に流入する混合気流
であり、第3の流れは入口通路部Aの底壁面21
に沿つて渦巻部B内に流入する混合気流である。
分岐路24の流れ抵抗は第1側壁面14aと側壁
面17間の流れ抵抗に比べて小さく、従つて第2
の混合気流の方が第1の混合気流よりも多くな
る。更に、渦巻部B内を旋回しつつ流れる第1混
合気流の流れ方向は第2混合気流によつて下向き
に偏向され、斯くして第1混合気流の旋回力が弱
められることになる。このように流れ抵抗の小さ
な分岐路24からの混合気流が増大し、更に第1
混合気流の流れ方向が下向きに偏向されるので高
い充填効率が得られることになる。また、前述し
たように隔壁12の底壁面は下向きに傾斜面から
形成されているので第3の混合気流はこの傾斜面
に案内されて流れ方向が下向きに偏向され、斯く
して更に高い充填効率が得られることになる。 On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 25 opens, so the inlet passage A
The air-fuel mixture sent into the tank is divided into three main streams. That is, the first flow is a mixed gas flow that flows between the first side wall surface 14a of the partition wall 12 and the side wall surface 17 of the inlet passage section A, and then flows while swirling along the upper wall surface 20 of the spiral section B. The second flow is a mixed air flow that flows into the swirl part B via the branch passage 24, and the third flow is a mixture flow that flows into the bottom wall surface 21 of the inlet passage part A.
This is a mixed air flow that flows into the spiral part B along .
The flow resistance of the branch path 24 is smaller than the flow resistance between the first side wall surface 14a and the side wall surface 17, and therefore
The number of mixed air flows is larger than that of the first mixed air flow. Further, the flow direction of the first air mixture flowing while swirling in the swirl portion B is deflected downward by the second air mixture, thus weakening the swirling force of the first air mixture. In this way, the air mixture flow from the branch passage 24 with low flow resistance increases, and furthermore the first
Since the flow direction of the air mixture flow is deflected downward, high filling efficiency can be obtained. Further, as mentioned above, since the bottom wall surface of the partition wall 12 is formed as a downwardly inclined surface, the third air mixture flow is guided by this inclined surface and the flow direction is deflected downward, thus achieving even higher filling efficiency. will be obtained.
考案の効果
負圧ダイアフラム装置の大気圧室内にベローズ
を配置することによつてシリンダヘツド内から潤
滑油流通溝を介して負圧ダイアフラム装置に向か
う潤滑油はベローズ内に捕獲される。その結果、
多量の潤滑油が負圧ダイアフラム装置の大気圧室
内に蓄積するのを阻止することができるので蓄積
した潤滑油がダイアフラムの作動に影響を与える
のを阻止することができる。また、ベローズの内
部および外部間に圧力差が生じないためにベロー
ズに大きな応力が加わらず、斯くしてベローズの
良好な耐久性を確保することができる。更に円筒
状制御ロツドが円筒孔内に密着摺動可能に挿入さ
れているので制御ロツドが円筒孔に対して傾むく
ことがない。その結果、制御ロツドのストローク
を常時予め定められたストロークに正確に維持す
ることができるので吸入空気流を高精度でもつて
制御することができる。Effects of the Invention By arranging the bellows within the atmospheric pressure chamber of the negative pressure diaphragm device, lubricating oil flowing from the cylinder head to the negative pressure diaphragm device via the lubricating oil flow groove is captured within the bellows. the result,
Since it is possible to prevent a large amount of lubricating oil from accumulating in the atmospheric pressure chamber of the negative pressure diaphragm device, it is possible to prevent the accumulated lubricating oil from affecting the operation of the diaphragm. Furthermore, since no pressure difference occurs between the inside and outside of the bellows, no large stress is applied to the bellows, thus ensuring good durability of the bellows. Furthermore, since the cylindrical control rod is slidably inserted into the cylindrical bore, the control rod is not tilted relative to the cylindrical bore. As a result, the stroke of the control rod can be accurately maintained at a predetermined stroke at all times, so that the intake air flow can be controlled with high precision.
第1図は第2図の−線に沿つてみた本考案
に係る内燃機関の側面断面図、第2図は第1図の
−線に沿つてみた平面断面図、第3図は本考
案によるヘリカル型吸気ポートの形状を図解的に
示す側面図、第4図はヘリカル型吸気ポートの形
状を図解的に示す平面図、第5図は第3図および
第4図の−線に沿つてみた断面図、第6図は
第3図および第4図の−線に沿つてみた断面
図、第7図は第3図および第4図の−線に沿
つてみた断面図、第8図は第3図および第4図の
−線に沿つてみた断面図、第9図は第3図お
よび第4図の−線に沿つてみた断面図、第1
0図はロータリ弁の側面断面図、第11図は内燃
機関の平面図、第12図は第11図のXII−XII線に
沿つてみた断面図、第13図は負圧ダイアフラム
装置の斜視図である。
4……燃焼室、6……ヘリカル型吸気ポート、
12……隔壁、24……分岐路、25……ロータ
リ弁、42……負圧ダイアフラム装置、43……
制御ロツド、44……ハウジング、58……内筒
孔、59,60……溝。
Fig. 1 is a side sectional view of the internal combustion engine according to the present invention taken along the - line in Fig. 2, Fig. 2 is a plan sectional view taken along the - line in Fig. 1, and Fig. 3 is a sectional view according to the present invention taken along the - line in Fig. 2. FIG. 4 is a side view schematically showing the shape of the helical intake port, FIG. 4 is a plan view schematically showing the shape of the helical intake port, and FIG. 5 is a view taken along the - line in FIGS. 3 and 4. 6 is a sectional view taken along the - line in FIGS. 3 and 4, FIG. 7 is a sectional view taken along the - line in FIGS. 3 and 4, and FIG. 8 is a sectional view taken along the - line in FIGS. 3 and 4, FIG. 9 is a sectional view taken along the line - in FIGS. 3 and 4, and FIG.
Figure 0 is a side sectional view of the rotary valve, Figure 11 is a plan view of the internal combustion engine, Figure 12 is a sectional view taken along line XII-XII in Figure 11, and Figure 13 is a perspective view of the negative pressure diaphragm device. It is. 4... Combustion chamber, 6... Helical intake port,
12... Partition wall, 24... Branch path, 25... Rotary valve, 42... Negative pressure diaphragm device, 43...
Control rod, 44...Housing, 58...Inner cylinder hole, 59, 60...Groove.
Claims (1)
圧室を有する吸入空気流制御用ダイアフラム装置
を該大気圧室がシリンダヘツド側に位置するよう
にしてシリンダヘツドの外周壁面上に固定し、上
記大気圧室を画定するダイアフラム装置ハウジン
グに該大気圧室とシリンダヘツド内部とを連通す
る円筒孔を形成し、ダイアフラムに連結された円
筒状のロツドを該円筒孔内に密着摺動可能に挿入
すると共に該円筒孔を貫通してシリンダヘツド内
部まで延設し、上記大気圧室内に該ロツドと共軸
的に筒状のベローズを配置して該ベローズの一端
部をダイアフラムに密封的に固着すると共に該ベ
ローズの他端部をダイアフラムに対面したダイア
フラム装置ハウジングに密封的に固着し、上記円
筒孔の底壁面上に円筒孔の全長に亘つて延びる潤
滑油流通溝を形成して該潤滑油流通溝によりベロ
ーズの内部空間とシリンダヘツド内部とを連通せ
しめるようにした内燃機関の吸気制御装置。 A diaphragm device for controlling intake air flow having an atmospheric pressure chamber and a negative pressure chamber separated by a diaphragm is fixed on the outer circumferential wall surface of the cylinder head with the atmospheric pressure chamber located on the cylinder head side. A cylindrical hole communicating between the atmospheric pressure chamber and the inside of the cylinder head is formed in a diaphragm device housing that defines a pressure chamber, and a cylindrical rod connected to the diaphragm is inserted into the cylindrical hole so as to be tightly slidable therein. A cylindrical bellows is provided extending through the cylindrical hole to the inside of the cylinder head, disposed coaxially with the rod in the atmospheric pressure chamber, and sealingly fixes one end of the bellows to the diaphragm. The other end of the bellows is hermetically fixed to the diaphragm device housing facing the diaphragm, and a lubricating oil distribution groove is formed on the bottom wall surface of the cylindrical hole extending the entire length of the cylindrical hole, and the lubricating oil distribution groove An intake air control device for an internal combustion engine that communicates the interior space of a bellows with the interior of a cylinder head.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6505083U JPS59170635U (en) | 1983-05-02 | 1983-05-02 | Internal combustion engine intake control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6505083U JPS59170635U (en) | 1983-05-02 | 1983-05-02 | Internal combustion engine intake control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59170635U JPS59170635U (en) | 1984-11-15 |
JPH0244022Y2 true JPH0244022Y2 (en) | 1990-11-22 |
Family
ID=30195242
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6505083U Granted JPS59170635U (en) | 1983-05-02 | 1983-05-02 | Internal combustion engine intake control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59170635U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0730966Y2 (en) * | 1988-08-19 | 1995-07-19 | エヌオーケー株式会社 | Diaphragm actuator |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5353838U (en) * | 1976-10-12 | 1978-05-09 | ||
JPS5824425B2 (en) * | 1974-06-04 | 1983-05-20 | 東レ株式会社 | Polyester material |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51107595U (en) * | 1975-02-26 | 1976-08-27 | ||
JPS5824425U (en) * | 1981-08-10 | 1983-02-16 | 株式会社日立製作所 | Actuator of turbocharger with exhaust bypass device |
-
1983
- 1983-05-02 JP JP6505083U patent/JPS59170635U/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5824425B2 (en) * | 1974-06-04 | 1983-05-20 | 東レ株式会社 | Polyester material |
JPS5353838U (en) * | 1976-10-12 | 1978-05-09 |
Also Published As
Publication number | Publication date |
---|---|
JPS59170635U (en) | 1984-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4466395A (en) | Flow control device of a helically-shaped intake port | |
US4499868A (en) | Intake device of an internal combustion engine | |
JPS6023468Y2 (en) | Flow path control device for helical intake port | |
JPS6238533B2 (en) | ||
JPH0244022Y2 (en) | ||
JPS6238537B2 (en) | ||
US4467750A (en) | Flow control device of a helically-shaped intake port | |
US4481915A (en) | Helically-shaped intake port of an internal combustion engine | |
JPS6226589Y2 (en) | ||
US4466397A (en) | Flow control device of a helically-shaped intake port | |
JPS6238535B2 (en) | ||
JPS6239672B2 (en) | ||
US4466396A (en) | Flow control device of a helically-shaped intake port | |
JPH0143472Y2 (en) | ||
JPH0133791Y2 (en) | ||
JPS6238539B2 (en) | ||
JPS6238534B2 (en) | ||
JPS6229623Y2 (en) | ||
JPS6321777Y2 (en) | ||
JPH0143473Y2 (en) | ||
JPS6236138B2 (en) | ||
JPS6238530B2 (en) | ||
JPS6238528B2 (en) | ||
JPS6238529B2 (en) | ||
JPS6236136B2 (en) |