JPS6321777Y2 - - Google Patents
Info
- Publication number
- JPS6321777Y2 JPS6321777Y2 JP16372481U JP16372481U JPS6321777Y2 JP S6321777 Y2 JPS6321777 Y2 JP S6321777Y2 JP 16372481 U JP16372481 U JP 16372481U JP 16372481 U JP16372481 U JP 16372481U JP S6321777 Y2 JPS6321777 Y2 JP S6321777Y2
- Authority
- JP
- Japan
- Prior art keywords
- negative pressure
- valve
- clip
- wall surface
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000446 fuel Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 241000234435 Lilium Species 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000006200 vaporizer Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
Landscapes
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Pivots And Pivotal Connections (AREA)
Description
【考案の詳細な説明】
本考案は嵌着式連結機構に関し、特に内燃機関
の各ヘリカル型吸気ポートに対して夫々設けられ
たロータリ弁を同時に開弁するために各ロータリ
弁と負圧ダイアフラム装置間に設けられた嵌着式
連結機構に関する。[Detailed Description of the Invention] The present invention relates to a fitting type connection mechanism, and in particular to a negative pressure diaphragm device that connects each rotary valve to simultaneously open the rotary valves provided for each helical intake port of an internal combustion engine. This invention relates to a fitting type connection mechanism provided between the two.
ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷運転時に充填効率が低下するという問題があ
る。このような問題を解決するためにヘリカル型
吸気ポート入口通路部から分岐されてヘリカル型
吸気ポート渦巻部の渦巻終端部に連結する分岐路
をシリンダヘツド内に形成し、分岐路内にアクチ
ユエータによつて作動される常時閉鎖型開閉弁を
設けて機関吸入空気量が所定量よりも大きくなつ
たときにアクチユエータを作動させて開閉弁を開
弁するようにしたヘリカル型吸気ポート流路制御
装置が本出願人により既に提案されている。この
ヘリカル型吸気ポートでは機関吸入空気量の多い
機関高速高負荷運転時にヘリカル型吸気ポート入
口通路部内に送り込まれた吸入空気の一部が分岐
路を介してヘリカル型吸気ポート渦巻部内に送り
込まれるために吸入空気流に対する流れ抵抗が低
下し、斯くして高い充填効率を得ることができ
る。上述したようにこのヘリカル型吸気ポートで
は開閉弁がアクチユエータによつて作動せしめら
れ、この開閉弁は各気筒のヘリカル型吸気ポート
毎に設けられてアクチユエータによつて同時に制
御される構造となつている。しかしながらこのヘ
リカル型吸気ポートにおけるアクチユエータと各
開閉弁との連結機構は基本作動原理を示している
にすぎず、従つてこの連結機構を実用化するには
組立工数、製造の容易さ、確実な作動、製造コス
トの面で種々の問題が残されている。 A helical intake port typically consists of a spiral formed around the intake valve and an inlet passageway tangentially connected to the spiral and extending generally straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load engine operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. There is a problem in that the filling efficiency decreases when the engine is operated at high speed and under high load with a large amount of air. In order to solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and connects to the spiral end of the helical intake port spiral section, and an actuator is installed in the branch path. The main helical intake port flow path control device is a helical intake port flow path control device that is equipped with a normally-closed on-off valve that is operated by the engine, and operates an actuator to open the on-off valve when the amount of engine intake air becomes larger than a predetermined amount. Already proposed by the applicant. In this helical type intake port, when the engine is operated at high speed and under high load with a large amount of engine intake air, part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through the branch passage. The flow resistance to the intake air flow is reduced and thus a high filling efficiency can be obtained. As mentioned above, in this helical intake port, an on-off valve is operated by an actuator, and this on-off valve is provided for each helical intake port of each cylinder and is controlled simultaneously by the actuator. . However, the connection mechanism between the actuator and each on-off valve in this helical intake port only shows the basic operating principle, and therefore, in order to put this connection mechanism into practical use, it is necessary to reduce assembly man-hours, ease of manufacturing, and ensure reliable operation. However, various problems remain in terms of manufacturing costs.
本考案は実用化するのに適した新規な構造の嵌
着式連結機構を提供することにある。 The object of the present invention is to provide a snap-on connection mechanism with a novel structure suitable for practical use.
以下。添付図面を参照して本考案を詳細に説明
する。 below. The present invention will be described in detail with reference to the accompanying drawings.
第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固定
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポートを夫々示す。なお、図
には示さないが燃焼室4内に点火栓が配置され
る。 Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within cylinder block 1, 3 is a cylinder head fixed on cylinder block 1, and 4 is a link between piston 2 and cylinder head 3. 5 is an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Exhaust ports formed therein are shown respectively. Although not shown in the figure, an ignition plug is disposed within the combustion chamber 4.
第3図から第5図に第2図のヘリカル型吸気ポ
ート6の形状を図解的に示す。このヘリカル型吸
気ポート6は第4図に示されるように流路軸線a
がわずかに彎曲した入口通路部Aと、吸気弁5の
弁軸周りに形成された渦巻部Bとにより構成さ
れ、入口通路部Aは渦巻部Bに接線状に接続され
る。第3図、第4図並びに第7図に示されるよう
に入口通路部Aの渦巻軸線bに近い側の側壁面9
の上方側壁面9aは下方を向いた傾斜面に形成さ
れ、この傾斜面9aの巾は渦巻部Bに近づくに従
つて広くなり、入口通路部Aと渦巻部Bとの接続
部においては第7図に示されるように側壁面9の
全体が下方に向いた傾斜面9aに形成される。側
壁面9の上半分は吸気弁ガイド10(第2図)周
りの吸気ポート上壁面上に形成された円筒状突起
11の周壁面に滑らかに接続され、一方側壁面9
の下半分は渦巻部Bの渦巻終端部Cにおいて渦巻
部Bの側壁面12に接続される。 3 to 5 schematically show the shape of the helical intake port 6 of FIG. 2. This helical intake port 6 has a flow path axis a as shown in FIG.
It is composed of a slightly curved inlet passage part A and a spiral part B formed around the valve axis of the intake valve 5, and the inlet passage part A is tangentially connected to the spiral part B. As shown in FIGS. 3, 4, and 7, the side wall surface 9 of the inlet passage A near the spiral axis b
The upper side wall surface 9a is formed as an inclined surface facing downward, and the width of this inclined surface 9a becomes wider as it approaches the spiral portion B. As shown in the figure, the entire side wall surface 9 is formed into a downwardly oriented inclined surface 9a. The upper half of the side wall surface 9 is smoothly connected to the peripheral wall surface of a cylindrical projection 11 formed on the upper wall surface of the intake port around the intake valve guide 10 (FIG. 2).
The lower half of the spiral portion B is connected to the side wall surface 12 of the spiral portion B at the spiral end portion C of the spiral portion B.
一方、第1図から第5図に示されるようにシリ
ンダヘツド3内には入口通路部Aから分岐された
ほぼ一様断面の分岐路14が形成され、この分岐
路14は渦巻終端部Cに接続される。分岐路14
の入口開口15は入口通路部Aの入口開口近傍に
おいて側壁面9上に形成され、分岐路14の出口
開口16は渦巻終端部Cにおいて側壁面12の上
端部に形成される。更に、シリンダヘツド3内に
は分岐路14を貫通して延びる開閉弁挿入孔17
が穿設され、この開閉弁挿入孔17内には夫々開
閉弁を構成するロータリ弁18が挿入される。こ
のロータリ弁18は分岐路14内に配置されかつ
第9図に示すように薄板状をなす弁体19と、弁
体19と一体形成された弁軸20とを具備し、こ
の弁軸20は開閉弁挿入孔17内に嵌着された案
内スリーブ21により回転可能に支承される。弁
軸20は案内スリーブ21の頂面から上方に突出
し、この突出端部にアーム22が固着される。 On the other hand, as shown in FIGS. 1 to 5, a branch passage 14 having a substantially uniform cross section is formed in the cylinder head 3, branching from the inlet passage part A, and this branch passage 14 is connected to the spiral terminal part C. Connected. Branch road 14
An inlet opening 15 is formed on the side wall surface 9 in the vicinity of the inlet opening of the inlet passage section A, and an outlet opening 16 of the branch passage 14 is formed at the upper end of the side wall surface 12 at the spiral end C. Furthermore, an on-off valve insertion hole 17 is provided in the cylinder head 3 and extends through the branch passage 14.
are drilled, and rotary valves 18 constituting the on-off valves are inserted into the on-off valve insertion holes 17, respectively. The rotary valve 18 is disposed within the branch passage 14 and includes a thin plate-shaped valve body 19 as shown in FIG. 9, and a valve stem 20 integrally formed with the valve body 19. It is rotatably supported by a guide sleeve 21 fitted into the on-off valve insertion hole 17. The valve stem 20 projects upward from the top surface of the guide sleeve 21, and an arm 22 is fixed to the projecting end.
第10図を参照すると、各ロータリ弁18の上
端部に固着されたアーム22の先端部は負圧ダイ
アフラム装置40のダイアフラム41に固着され
た制御ロツド42に連結ロツド43を介して連結
される。負圧ダイアフラム装置40はダイアフラ
ム41によつて大気から隔離された負圧室44を
有し、この負圧室44内にダイアフラム押圧用圧
縮ばね45が挿入される。シリンダヘツド3には
1次側気化器46aと2次側気化器46bからな
るコンパウンド型気化器46を具えた吸気マニホ
ルド47が取付けられる。負圧室44は一方では
負圧導管48、負圧制御装置70の負圧ポート4
9、逆止弁50並びに負圧導管51を介して吸気
マニホルド47に接続され、他方では大気ポート
52、大気開放弁53の大気圧室54、大気通路
55並びにエアフイルタ56を介して大気に連結
される。大気開放弁53はダイアフラム57と、
ダイアフラム57によつて大気圧室54から隔離
された負圧室58と、ダイアフラム57に固定さ
れて大気ポート52の開閉制御をする弁体59
と、ダイアフラム押圧用圧縮ばね60とを有し、
負圧室58は1次側気化器46aのベンチユリ部
に開口する負圧ポート61並びに2次側気化器4
6bのベンチユリ部に開口する負圧ポート62に
負圧導管63を介して接続される。 Referring to FIG. 10, the tip of the arm 22 fixed to the upper end of each rotary valve 18 is connected via a connecting rod 43 to a control rod 42 fixed to a diaphragm 41 of a negative pressure diaphragm device 40. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. An intake manifold 47 is attached to the cylinder head 3 and includes a compound type carburetor 46 consisting of a primary carburetor 46a and a secondary carburetor 46b. The negative pressure chamber 44 is connected on the one hand to a negative pressure conduit 48 and to the negative pressure port 4 of the negative pressure control device 70.
9, connected to the intake manifold 47 via a check valve 50 and a negative pressure conduit 51, and on the other hand connected to the atmosphere via an atmospheric port 52, an atmospheric pressure chamber 54 of an atmospheric release valve 53, an atmospheric passage 55 and an air filter 56; Ru. The atmosphere release valve 53 includes a diaphragm 57,
A negative pressure chamber 58 isolated from the atmospheric pressure chamber 54 by a diaphragm 57, and a valve body 59 fixed to the diaphragm 57 to control opening and closing of the atmospheric port 52.
and a compression spring 60 for pressing the diaphragm,
The negative pressure chamber 58 is connected to a negative pressure port 61 that opens to the bench lily portion of the primary side carburetor 46a and the secondary side carburetor 4.
It is connected via a negative pressure conduit 63 to a negative pressure port 62 that opens to the bench lily portion of 6b.
気化器46は通常用いられる気化器であつて1
次側スロツトル弁64が所定開度以上開弁したと
きに2次側スロツトル弁65が開弁し、1次側スロ
ツトル弁64が全開すれば2次側スロツトル弁6
5も全開する。両負圧ポート61,62に接続さ
れた負圧導管63内に加わる負圧は機関シリンダ
内に供給される吸入空気量が増大するほど大きく
なり、従つて負圧導管63内に加わる負圧が予め
定められた一定圧よりも大きくなつたときに、即
ち機関高速高負荷運転時に大気開放弁53のダイ
アフラム57が圧縮ばね60に抗して下方に移動
し、その結果弁体59が大気ポート52を開弁し
て負圧ダイアフラム装置40の負圧室44を大気
に開放する。このときダイアフラム41は圧縮ば
ね45のばね力により負圧室44から離れる方向
に移動し、その結果ロータリ弁18が回転せしめ
られて分岐路14が全開する。一方、1次側スロ
ツトル弁64の開度が小さいときには負圧導管6
3内に加わる負圧が小さなために大気開放弁53
のダイアフラム57は圧縮ばね60のばね力によ
り上方に移動し、弁体59が大気ポート52を閉
鎖する。更にこのように1次側スロツトル弁64
の開度が小さいときには吸気マニホルド47内に
は大きな負圧が発生している。逆止弁50は吸気
マニホルド47内の負圧が負圧ダイアフラム装置
40の負圧室44内の負圧よりも大きくなると開
弁し、吸気マニホルド47内の負圧が負圧室44
内の負圧よりも小さくなると閉弁するので大気開
閉弁53が閉弁している限り負圧室44内の負圧
は吸気マニホルド47内に発生する最大負圧に維
持される。負圧室44内に負圧が加わるとダイア
フラム41は圧緒ばね45に抗して負圧室44側
に移動し、その結果ロータリ弁18が回動せしめ
られて分岐路14が閉鎖される。従つて機関低速
低負荷運転時にはロータリ弁18によつて分岐路
14が閉鎖されることになる。 The vaporizer 46 is a commonly used vaporizer.
When the downstream throttle valve 64 opens a predetermined opening degree or more, the secondary throttle valve 65 opens, and if the primary throttle valve 64 fully opens, the secondary throttle valve 65 opens.
5 is also fully opened. The negative pressure applied within the negative pressure conduit 63 connected to both negative pressure ports 61 and 62 increases as the amount of intake air supplied into the engine cylinder increases. When the pressure becomes higher than a predetermined constant pressure, that is, when the engine is operated at high speed and high load, the diaphragm 57 of the atmosphere release valve 53 moves downward against the compression spring 60, and as a result, the valve body 59 closes to the atmosphere port 52. The valve is opened to expose the negative pressure chamber 44 of the negative pressure diaphragm device 40 to the atmosphere. At this time, the diaphragm 41 is moved away from the negative pressure chamber 44 by the spring force of the compression spring 45, and as a result, the rotary valve 18 is rotated and the branch passage 14 is fully opened. On the other hand, when the opening degree of the primary throttle valve 64 is small, the negative pressure conduit 6
Because the negative pressure applied inside 3 is small, the atmosphere release valve 53
The diaphragm 57 is moved upward by the spring force of the compression spring 60, and the valve body 59 closes the atmospheric port 52. Furthermore, in this way, the primary side throttle valve 64
When the opening degree of the intake manifold 47 is small, a large negative pressure is generated within the intake manifold 47. The check valve 50 opens when the negative pressure in the intake manifold 47 becomes greater than the negative pressure in the negative pressure chamber 44 of the negative pressure diaphragm device 40 , and the negative pressure in the intake manifold 47 becomes larger than the negative pressure in the negative pressure chamber 44 .
The negative pressure in the negative pressure chamber 44 is maintained at the maximum negative pressure generated in the intake manifold 47 as long as the atmospheric opening/closing valve 53 is closed. When negative pressure is applied in the negative pressure chamber 44, the diaphragm 41 moves toward the negative pressure chamber 44 against the pressure spring 45, and as a result, the rotary valve 18 is rotated and the branch passage 14 is closed. Therefore, when the engine is operating at low speed and low load, the branch passage 14 is closed by the rotary valve 18.
上述したように吸入空気量が少ない機関低速低
負荷運転時にはロータリ弁18が分岐路14を遮
断している。このとき入口通路部A内に送り込ま
れた混合気は渦巻部Bの上壁面13に沿つて旋回
しつつ渦巻部B内を下降し、次いで旋回しつつ燃
焼室4内に流入するので燃焼室4内には強力な旋
回流が発生せしめられる。一方、吸入空気量が多
い機関高速高負荷運転時にはロータリ弁18が開
弁するので入口通路部A内に送り込まれた混合気
の一部が流れ抵抗の小さな分岐路14を介して渦
巻部B内に送り込まれる。この混合気は入口通路
部Aから渦巻部B内に流入して渦巻部Bの上壁面
13に沿つて流れる混合気流に正面から衝突し、
その結果この渦巻部上壁面13に沿つて流れる混
合気流は減速せしめられて旋回流が弱められる。
このように機関高速高負荷運転時にはロータリ弁
18が開弁することによつて全体の流路面積が増
大するばかりでなく旋回流が弱められるので高い
充填効率を確保することができる。 As mentioned above, the rotary valve 18 shuts off the branch passage 14 when the engine is operating at low speed and low load with a small amount of intake air. At this time, the air-fuel mixture sent into the inlet passage part A descends inside the swirl part B while swirling along the upper wall surface 13 of the swirl part B, and then flows into the combustion chamber 4 while swirling. A strong swirling flow is generated inside. On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 18 opens, so that part of the air-fuel mixture sent into the inlet passage A flows into the volute part B via the branch passage 14 with low flow resistance. sent to. This air-fuel mixture flows into the swirl part B from the inlet passage part A and collides head-on with the air-mixture flow flowing along the upper wall surface 13 of the swirl part B.
As a result, the air mixture flowing along the upper wall surface 13 of the swirl portion is decelerated and the swirling flow is weakened.
In this manner, when the engine is operated at high speed and under high load, the rotary valve 18 opens, which not only increases the overall flow path area but also weakens the swirling flow, thereby ensuring high filling efficiency.
第10図に示されるように各気筒のロータリ弁
18のアーム22は連結ロツド43を介して負圧
ダイアフラム40の制御ロツド42に連結され
る。連結ロツド43は一体的に形成された一本の
ロツドからなり、第11図に示すように連結ロツ
ド43上には各アーム22に対応して複数個のア
ーム連結部66が設けられる。これらのアーム連
結部は同様な構造を有しており、従つてこれらの
アーム連結部66の一つについて第12図から第
17図を参照して説明する。 As shown in FIG. 10, the arm 22 of the rotary valve 18 of each cylinder is connected to a control rod 42 of a negative pressure diaphragm 40 via a connecting rod 43. The connecting rod 43 consists of a single rod integrally formed, and as shown in FIG. 11, a plurality of arm connecting portions 66 are provided on the connecting rod 43 corresponding to each arm 22. As shown in FIG. These arm connections have a similar structure and therefore one of these arm connections 66 will be described with reference to FIGS. 12-17.
第12図を参照すると、連結ロツド43は膨大
部80を有し、この膨大部80上に円筒状のクリ
ツプ81が嵌着される。一方、アーム22の先端
部には連結部材82が固着され、この連結部材8
2はほぼ球形状の頭部83と、頭部83の下側か
ら下方に延びる逆円錐部84とを有する。第13
図から第15図に示すようにクリツプ81はその
頭部中央部に内方に突出する突起84を有し、更
にクリツプ81の下端部には連結ロツド43の長
手方向に延びる分割スリツト85が形成される。
分割スリツト85はその中央部にほぼ円形状をな
す拡大円形開口86を有し、この拡大円形開口8
6周りのクリツプ81外壁面上には下方に延びか
つ互に対面した一対のガイド壁87,88が形成
される。これらの各ガイド壁87,88は円筒状
をなし、更に各ガイド壁87,88の下端部には
外方に拡開するスカート部89,90が形成され
る。第14図並びに第15図からわかるようにこ
れらのスカート部89,90は分割スリツト85
の両側において分割スリツト85のほぼ全長に亘
つて延びる。更に、第14図並びに第16図に示
すように各ガイド壁87,88とスカート部8
9,90との境界部には夫々円形開孔91,92
が形成される。 Referring to FIG. 12, the connecting rod 43 has an enlarged portion 80 onto which a cylindrical clip 81 is fitted. On the other hand, a connecting member 82 is fixed to the tip of the arm 22.
2 has a substantially spherical head 83 and an inverted conical portion 84 extending downward from the bottom of the head 83. 13th
As shown in FIGS. 15 to 15, the clip 81 has a protrusion 84 projecting inward at the center of its head, and a dividing slit 85 extending in the longitudinal direction of the connecting rod 43 is formed at the lower end of the clip 81. be done.
The divided slit 85 has an enlarged circular opening 86 having a substantially circular shape in its center, and this enlarged circular opening 8
A pair of guide walls 87 and 88 extending downward and facing each other are formed on the outer wall surface of the clip 81 around the clip 81 . Each of these guide walls 87, 88 has a cylindrical shape, and skirt portions 89, 90 that expand outward are formed at the lower ends of each guide wall 87, 88. As can be seen from FIGS. 14 and 15, these skirt portions 89 and 90 have dividing slits 85.
The dividing slit 85 extends over almost the entire length on both sides of the dividing slit 85. Furthermore, as shown in FIGS. 14 and 16, each guide wall 87, 88 and the skirt portion 8
Circular holes 91 and 92 are provided at the boundaries with 9 and 90, respectively.
is formed.
第16図はクリツプ81を用いてアーム22の
連結部82の頭部83を連結ロツド43の膨大部
80に嵌着固定したときを示している。第16図
からわかるように連結ロツド43の膨大部80に
はほぼ球形をなす凹溝93が形成され、この凹溝
93内にアーム連結部82の頭部83が嵌着され
る。また、連結ロツド膨大部80内には凹溝93
の頂部から上方に延びる貫通孔94が形成され、
クリツプ81の突起84がこの貫通孔94と係合
する。 FIG. 16 shows the state in which the head 83 of the connecting portion 82 of the arm 22 is fitted and fixed onto the enlarged portion 80 of the connecting rod 43 using the clip 81. As can be seen from FIG. 16, a substantially spherical groove 93 is formed in the enlarged portion 80 of the connecting rod 43, and the head 83 of the arm connecting portion 82 is fitted into this groove 93. Further, a concave groove 93 is provided in the connecting rod enlarged portion 80.
A through hole 94 is formed extending upward from the top of the
The protrusion 84 of the clip 81 engages with this through hole 94.
連結ロツド43を各アーム22の連結部82に
取付けるにはまず始めに第12図に示すように連
結ロツド43の膨大部80にクリツプ81を嵌着
して第16図に示すように膨大部80の貫通孔9
4にクリツプ81の突起84を係合せしめる。次
いで第17図に示すようにクリツプ81の開孔9
1,92に治具95の先端部を挿入し、治具95
を矢印A方向に広げてガイド壁87,88を外方
へ広げつつアーム連結部82の頭部83をガイド
壁87,88間に挿入し、次いでこの頭部83を
第16図に示すように連結ロツド膨大部80の凹
溝93内に嵌着する。頭部83を凹溝93内に嵌
着すると第16図に示すようにガイド壁87,8
8が元の位置に戻り、それによつてアーム連結部
82と連結ロツド43とが連結されることにな
る。 To attach the connecting rod 43 to the connecting part 82 of each arm 22, first fit the clip 81 into the enlarged part 80 of the connecting rod 43 as shown in FIG. through hole 9
4 with the protrusion 84 of the clip 81. Next, as shown in FIG. 17, the opening 9 of the clip 81 is
Insert the tip of the jig 95 into 1 and 92, and
While expanding the guide walls 87 and 88 outward in the direction of arrow A, insert the head 83 of the arm connecting portion 82 between the guide walls 87 and 88, and then insert the head 83 between the guide walls 87 and 88 as shown in FIG. The connecting rod fits into the concave groove 93 of the enlarged portion 80. When the head 83 is fitted into the groove 93, the guide walls 87, 8 are inserted as shown in FIG.
8 returns to its original position, thereby connecting the arm connecting portion 82 and the connecting rod 43.
以上の説明から明らかなように本考案によれば
治具を用いることによつて連結ロツドを各アーム
連結部に簡単に取付けることができる。従つて連
結ロツドの組付け工数を低減できるという利点が
ある。 As is clear from the above description, according to the present invention, the connecting rod can be easily attached to each arm connecting portion by using a jig. Therefore, there is an advantage that the number of man-hours required for assembling the connecting rod can be reduced.
第1図は本考案に係る内燃機関の平面図、第2
図は第1図の−線に沿つてみた断面図、第3
図はヘリカル型吸気ポートの形状を示す斜視図、
第4図は第3図の平面図、第5図は第3図の分岐
路に沿つて切断した側面断面図、第6図は第4図
の−線に沿つてみた断面図、第7図は第4図
の−線に沿つてみた断面図、第8図は第4図
の−線に沿つてみた断面図、第9図はロータ
リ弁の斜視図、第10図は流路制御装置の全体
図、第11図は楼結ロツドの平面図、第12図は
クリツプを嵌着した連結ロツドとアーム連結部の
斜視図、第13図はクリツプの側面図、第14図
は第13図の側面図、第15図は第14図の底面
図、第16図はアーム連結部を連結ロツドに連結
したところを示す断面図、第17図は治具の使用
方法を説明するための断面図である。
6……ヘリカル型吸気ポート、14……分岐
路、18……ロータリ弁、22……アーム、40
……負圧ダイアフラム装置、43……連結ロツ
ド、81……クリツプ、83……頭部、85……
分割スリツト、86……拡大円形開口、87,8
8……ガイド壁、91,92……開孔。
Fig. 1 is a plan view of an internal combustion engine according to the present invention, Fig. 2 is a plan view of an internal combustion engine according to the present invention;
The figure is a cross-sectional view taken along the - line in Figure 1.
The figure is a perspective view showing the shape of a helical intake port.
Fig. 4 is a plan view of Fig. 3, Fig. 5 is a side sectional view taken along the branch road in Fig. 3, Fig. 6 is a sectional view taken along the - line in Fig. 4, and Fig. 7. is a sectional view taken along the - line in Fig. 4, Fig. 8 is a sectional view taken along the - line in Fig. 4, Fig. 9 is a perspective view of the rotary valve, and Fig. 10 is a sectional view of the flow path control device. Overall view, Figure 11 is a plan view of the connecting rod, Figure 12 is a perspective view of the connecting rod with the clip fitted and the arm connecting part, Figure 13 is a side view of the clip, and Figure 14 is the same as Figure 13. 15 is a bottom view of FIG. 14, FIG. 16 is a cross-sectional view showing the arm connecting portion connected to the connecting rod, and FIG. 17 is a cross-sectional view for explaining how to use the jig. be. 6... Helical intake port, 14... Branch path, 18... Rotary valve, 22... Arm, 40
... Negative pressure diaphragm device, 43 ... Connection rod, 81 ... Clip, 83 ... Head, 85 ...
Divided slit, 86...Enlarged circular opening, 87,8
8... Guide wall, 91, 92... Opening.
Claims (1)
を形成すると共に該凹溝を覆うように該シヤフト
上に円筒状のクリツプを嵌着し、該クリツプの外
周壁面上にシヤフトの長手方向に延びる分割スリ
ツトを形成すると共に該分割スリツト中央部に上
記凹溝と整列する拡大円形開口を形成し、更に該
拡大円形開口周りのクリツプ外壁面上に外方に突
出しかつ互に対面した一対のガイド壁を形成して
上記駆動シヤフトに連結すべき被駆動部材のほぼ
球形状をなす頭部を該ガイド壁を左右に押広げつ
つ上記拡大円形開口を通して上記凹溝内に嵌着
し、各ガイド壁上に夫々ガイド壁をひき離すため
の治具を挿入可能な孔を穿設した嵌着式連結機
構。 A substantially spherical groove is formed on the outer wall surface of the drive shaft, a cylindrical clip is fitted onto the shaft so as to cover the groove, and the clip extends in the longitudinal direction of the shaft on the outer peripheral wall surface of the clip. A dividing slit is formed, and an enlarged circular opening aligned with the groove is formed in the center of the dividing slit, and a pair of guide walls protrudes outward on the outer wall surface of the clip around the enlarged circular opening and faces each other. The substantially spherical head of the driven member to be connected to the drive shaft is fitted into the groove through the enlarged circular opening while pushing the guide wall to the left and right. A fitting type connection mechanism with holes drilled into each of the holes into which a jig can be inserted to separate the guide walls.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16372481U JPS5884419U (en) | 1981-11-04 | 1981-11-04 | Snap-on connection mechanism |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16372481U JPS5884419U (en) | 1981-11-04 | 1981-11-04 | Snap-on connection mechanism |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5884419U JPS5884419U (en) | 1983-06-08 |
JPS6321777Y2 true JPS6321777Y2 (en) | 1988-06-15 |
Family
ID=29956009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16372481U Granted JPS5884419U (en) | 1981-11-04 | 1981-11-04 | Snap-on connection mechanism |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5884419U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4985578B2 (en) * | 2008-07-29 | 2012-07-25 | トヨタ自動車株式会社 | Article mounting structure |
-
1981
- 1981-11-04 JP JP16372481U patent/JPS5884419U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5884419U (en) | 1983-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS582426A (en) | Flow-passage control system in helical type suction port | |
JPS6032009B2 (en) | Helical intake port | |
JPS6023468Y2 (en) | Flow path control device for helical intake port | |
JPS6238533B2 (en) | ||
JPS6321777Y2 (en) | ||
JPS6226589Y2 (en) | ||
JPS609378Y2 (en) | Flow path control device for helical intake port | |
JPS6323546Y2 (en) | ||
JPS609376Y2 (en) | Flow path control device for helical intake port | |
JPS6021469Y2 (en) | Helical intake port | |
JPS6338336Y2 (en) | ||
JPS6242163Y2 (en) | ||
JPS6224765Y2 (en) | ||
JPS6021470Y2 (en) | Helical intake port | |
JPS6023467Y2 (en) | Flow path control device for helical intake port | |
JPS6323545Y2 (en) | ||
JPS6254965B2 (en) | ||
JPS6231619Y2 (en) | ||
JPH0143472Y2 (en) | ||
JPS6021468Y2 (en) | Flow path control device for helical intake port | |
JPH0133791Y2 (en) | ||
JPH0143473Y2 (en) | ||
JPS6239672B2 (en) | ||
JPH0244022Y2 (en) | ||
JPS6229624Y2 (en) |