JPS58204930A - Helical intake port - Google Patents

Helical intake port

Info

Publication number
JPS58204930A
JPS58204930A JP57087206A JP8720682A JPS58204930A JP S58204930 A JPS58204930 A JP S58204930A JP 57087206 A JP57087206 A JP 57087206A JP 8720682 A JP8720682 A JP 8720682A JP S58204930 A JPS58204930 A JP S58204930A
Authority
JP
Japan
Prior art keywords
side wall
wall surface
valve
passage
inlet passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57087206A
Other languages
Japanese (ja)
Other versions
JPS6238536B2 (en
Inventor
Takeshi Okumura
猛 奥村
Kiyoshi Nakanishi
清 中西
Mikio Nakajima
三樹夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57087206A priority Critical patent/JPS58204930A/en
Priority to US06/494,387 priority patent/US4516544A/en
Publication of JPS58204930A publication Critical patent/JPS58204930A/en
Publication of JPS6238536B2 publication Critical patent/JPS6238536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To generate a strong swirl flow when an engine is operated at a low speed with a small load, by expansibly forming the side wall face of a volute part toward an intake valve stem in the connection part between the side wall face of the volute part and the side wall face of a branch path. CONSTITUTION:At low speed and low load operation of an engine with a small amount of intake air, a rotary valve 25 closes a branch path 24. Since the first side wall face 14a of a partition 12 is extended to a part in the vicinity of a side wall face 15 of a volute part B, a mixture flowing to advance along an upper wall face is forcibly moved onto the side wall face 15 of the volute part B, then the mixture advances along the face 15 and its flow path is curved to the direction of an intake valve stem 5a by a side wall face part 15a. Accordingly, a strong swirl flow is generated in the volute part B. Then the mixture performs a turning motion while flows in through a gap formed between an intake valve 5 and its valve seat, and a strong swirl flow can be generated in a combustion chamber 4.

Description

【発明の詳細な説明】 本発明はヘリカル核吸気ポートに関する。[Detailed description of the invention] The present invention relates to a helical core intake port.

ヘリカル型吸気ポートは通常吸気弁層シに形成された渦
巻部と、との渦巻部に接線状に接続されかつほぼまっす
ぐに延びる入口通路部とにより構成される。このようが
ヘリカル型吸気ポートを用いて吸入空気量の少ない機関
低速負荷運転時に機関燃焼室内に強力な旋回流を発生せ
しめようとすると吸気ポート形状が流れ抵抗の大きな形
状になってしまうので吸入空気量の多い機関高速高負荷
運転時に充填効率が低下するという問題を生ずる。
A helical intake port is usually composed of a spiral portion formed in the intake valve layer and an inlet passage portion that is tangentially connected to the spiral portion and extends substantially straight. If you try to use a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed engine load operation with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that charging efficiency decreases during high-speed, high-load operation of the engine with a large amount of fuel.

このような問題を解決するためにヘリカル型吸気ポート
入口通路部から分岐されてヘリカル屋吸気ポート渦巻部
の渦巻終端部に連通ずる分岐路をシリンダヘッド内に形
成し、分岐路内に開閉弁を設けて機関高速高負荷運転時
に開閉弁を開弁するようにしたヘリカル型吸気ポートが
本出願人により既に提案されている。このヘリカル型吸
気ポートでは機関高速高負荷運転時にヘリカル型吸気ポ
ート入口通路部内に送り込まれた吸入空気の一部が分岐
路を介してヘリカル型吸気ポート渦巻部内に送り込まれ
るために吸入空気の流路断面積が増大し、斯くして充填
効率を向上することができる。
In order to solve this problem, a branch path is formed in the cylinder head that branches off from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an on-off valve is installed in the branch path. The applicant has already proposed a helical intake port in which an on-off valve is opened during high-speed, high-load engine operation. In this helical type intake port, when the engine is operated at high speed and under high load, a part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port spiral part through a branch path, so the intake air flow path is The cross-sectional area can be increased, thus improving the filling efficiency.

しかしながらこのヘリカル型吸気ポートでは分岐路が入
口通路部から完全に独立した筒状の通路として形成され
ているので分岐路の流れ抵抗が比較的大きく、しかも分
岐路を入口通路部に隣接して形成しなければならないた
めに入口通路部の断面積が制限を受けるので十分に満足
のいく高い充填効率を得るのが困難となっている。更に
、ヘリカル型吸気ポートはそれ自体の形状が複雑であり
、しかも入口通路部から完全に独立した分岐路を併設し
た場合には吸気ポートの全体構造が極めて複雑となるの
でこのような分岐路を具えたヘリカル型吸気ポートをシ
リンダヘッド内に形成するのはかなり困難である。  
    ・□″本発明は機関高速高負荷運転−に高い充
填効率を得ることができると共に製造の容易な新規形状
を有するヘリカル型吸気ポートを提供することにある。
However, in this helical intake port, the branch passage is formed as a cylindrical passage completely independent from the inlet passage, so the flow resistance of the branch passage is relatively large, and the branch passage is formed adjacent to the inlet passage. This limits the cross-sectional area of the inlet passage, making it difficult to obtain a sufficiently high filling efficiency. Furthermore, the helical intake port itself has a complicated shape, and if a branch passage that is completely independent from the inlet passage is added, the overall structure of the intake port will become extremely complicated. It is quite difficult to form a helical intake port in a cylinder head.
・□″The object of the present invention is to provide a helical intake port that can obtain high filling efficiency during engine high-speed, high-load operation and has a new shape that is easy to manufacture.

以下、添付図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図並びに第2図を参照すると、1はシリンダブロッ
ク、2はシリンダブロック1内で往復動するピストン、
3はシリンダブロック1上に固締されたシリンダヘッド
、4はぎストン2とシリンダヘッド3間に形成された燃
焼室、5は吸気弁、6はシリンダヘッド3内に形成され
たヘリカル型吸気ポート、7は排気弁、8はシリンダへ
ラド3内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5aを案内す
るステムガイドを夫々示す。第1図並びに第2図に示さ
れるように吸気ポート6の上壁面11上には下方に突出
する隔壁12が一体成形され、この隔壁12によって渦
巻部Bと、この渦巻部Bに接線状に接続された入口通路
部Aからなるヘリカル型吸気ポート6が形成される。こ
の隔壁1211: は入口通路部A内から吸気弁5のステムガイド10の周
囲まで延びており、第2図かられかるようにこの隔壁1
2の根本部の巾りは入口通路部Aに近い側が最も狭く、
この最狭部からステムガイド10の近傍まではほぼ一様
であり、ステムガイド10の周シで最も広くなる。隔壁
12は吸気ポート6の入口開口6aに最も近い側に位置
する先端部13を有し、更に隔壁12は第2図において
この先端部13から反時計回りに延びる第1側壁面1.
4 aと、先端部13から時計回りに延びる第2側壁面
14bとを有する。第1側壁面14aは先端部13から
ステムガイド10の側方を通って渦巻部Bの側壁面15
の近傍まで延びて渦巻部側壁面15との間に狭窄部16
を形成する。一方、第2側壁拘14bは先端部13から
ステムガイド10に向けて始めは第1側壁面14aとの
間隔が増大するように、次いで第1側壁面141との間
隔がほぼ一様となるように延びる。次いでこの第2側壁
面14bはステムガイド10の外周に沿って延びて最狭
部16に達する。
Referring to FIG. 1 and FIG. 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1,
3 is a cylinder head fixed on the cylinder block 1; 4 is a combustion chamber formed between the piston 2 and the cylinder head 3; 5 is an intake valve; 6 is a helical intake port formed within the cylinder head 3; 7 is an exhaust valve, 8 is an exhaust port formed in the cylinder head 3, 9 is an ignition plug arranged in the combustion chamber 4, and 10 is a stem guide for guiding the stem 5a of the intake valve 5, respectively. As shown in FIGS. 1 and 2, a partition wall 12 projecting downward is integrally formed on the upper wall surface 11 of the intake port 6, and this partition wall 12 connects a spiral portion B and a tangential line to this spiral portion B. A helical intake port 6 consisting of connected inlet passage portions A is formed. This partition wall 1211: extends from inside the inlet passage A to around the stem guide 10 of the intake valve 5, and as shown in FIG.
The width of the root part of 2 is narrowest on the side closest to the entrance passage part A.
It is almost uniform from this narrowest part to the vicinity of the stem guide 10, and becomes widest around the circumference of the stem guide 10. The bulkhead 12 has a distal end 13 located on the side closest to the inlet opening 6a of the intake port 6, and the septum 12 further has a first side wall surface 1. extending counterclockwise from the distal end 13 in FIG.
4a, and a second side wall surface 14b extending clockwise from the tip portion 13. The first side wall surface 14a passes from the distal end portion 13 to the side of the stem guide 10 to the side wall surface 15 of the spiral portion B.
A narrow portion 16 extends to the vicinity of the spiral portion side wall surface 15.
form. On the other hand, the second side wall restraint 14b is arranged so that the distance from the first side wall surface 14a increases from the tip end 13 toward the stem guide 10, and then the distance from the first side wall surface 141 becomes almost uniform. Extends to. Next, this second side wall surface 14b extends along the outer periphery of the stem guide 10 and reaches the narrowest portion 16.

第1図から第9図を参照すると、入口通路部Aの一方の
側壁面17Fiはぼ垂直配置され、他方の側壁面18は
わずかばかり傾斜した下向きの傾斜面から形成される。
Referring to FIGS. 1 to 9, one side wall surface 17Fi of the inlet passage A is arranged substantially vertically, and the other side wall surface 18 is formed as a slightly downwardly inclined surface.

一方、入口通路部Aの上壁面19は渦巻部Bに向けて下
降し、渦巻部Bの上壁面20に滑らかに接続される。渦
巻部Bの上壁面20は渦巻部Bと入口通路部Aの接続部
から狭窄部16に向けて下降しつつ徐々に巾を狭め、次
い  。
On the other hand, the upper wall surface 19 of the inlet passage section A descends toward the spiral section B and is smoothly connected to the upper wall surface 20 of the spiral section B. The upper wall surface 20 of the spiral portion B gradually narrows in width while descending from the connecting portion between the spiral portion B and the inlet passage portion A toward the narrowing portion 16, and then gradually narrows in width.

で狭窄部16を通過すると徐々に巾を広げる。一方、入
口通路部Aの側壁面17は渦巻部Bの側壁面15に滑ら
かに接続され、入口通路部Aの底壁面21は渦巻部Bに
向けて下降する。
After passing through the narrowing part 16, the width gradually increases. On the other hand, the side wall surface 17 of the inlet passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the bottom wall surface 21 of the entrance passage section A descends toward the spiral section B.

一方、隔壁12の第一側壁面14mはわずかばかり傾斜
した下向きの傾斜面からなり、第2側壁面14bはほぼ
垂直をなす。隔壁12の底壁面22は、隔壁12の先端
部13からステムガイド10の近傍まで延びる第1底壁
面部分22&と、ステムガイド10の周りに位置する第
2底壁面部分22bからなる。第1底壁面部分22mは
上壁面19とほぼ平行をなして底壁面21の近くまで延
びる。一方、上壁面19から測った第2底壁面部分22
bの高さは第1底壁面部分22aの高さよりも低く、更
に第2底壁面部分22bと上壁面19との間隔は狭窄部
16に向かって徐々に小さくなる。また、第2底壁面部
分22b上には第4図のハツチングで示す領域に下方に
突出するリプ23が形成され、このリプ23は第1底壁
面部分22aから狭窄部16まで延びる。第8図に示さ
れるように第2底壁面部分22bはリプ23に向けて下
降する。
On the other hand, the first side wall surface 14m of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. The bottom wall surface 22 of the partition wall 12 consists of a first bottom wall surface portion 22 & extending from the tip 13 of the partition wall 12 to the vicinity of the stem guide 10, and a second bottom wall surface portion 22b located around the stem guide 10. The first bottom wall surface portion 22m is substantially parallel to the top wall surface 19 and extends close to the bottom wall surface 21. On the other hand, the second bottom wall surface portion 22 measured from the top wall surface 19
The height b is lower than the height of the first bottom wall surface portion 22a, and furthermore, the distance between the second bottom wall surface portion 22b and the upper wall surface 19 gradually decreases toward the narrowed portion 16. Further, a lip 23 projecting downward is formed on the second bottom wall surface portion 22b in a region indicated by hatching in FIG. 4, and this lip 23 extends from the first bottom wall surface portion 22a to the narrowed portion 16. As shown in FIG. 8, the second bottom wall surface portion 22b descends toward the lip 23.

一方、シリンダヘッド3内には渦巻部Bの渦巻終端部C
と入口通路部Aとを連通する分岐路24が形成され、こ
の分岐路24の入口部にロータリ弁25が配置される。
On the other hand, inside the cylinder head 3, there is a spiral end portion C of the spiral portion B.
A branch passage 24 is formed that communicates the inlet passage section A with the inlet passage A, and a rotary valve 25 is disposed at the entrance of this branch passage 24.

この分岐路24は隔壁12によって入口通路部Aから分
離されており、分岐路24の下側空間全体が入口通路部
Aに連通している。分岐路24の土壁面26はほぼ一様
な巾を有し、渦巻終端部Cに向けて下降して渦巻部Bの
上壁面20に滑らかに接続さ訃る。なお、第7図に示さ
れるように底壁面21から測った分岐路24の上壁面2
6の高さHlは入口通路部Aの上壁面19の高さH2よ
りも高くなっている。隔壁12の第2側壁面14bに対
面する分岐路24の側壁面27はほぼ垂直をなし、捷た
分岐路24下方の底壁面部分21aは隆起せしめられて
傾斜面を形成する。この傾斜底壁面部分211は第1図
に示すように吸気ポート60入口開口6aの近傍から渦
巻部Bまで延びる。一方、第1図、第4図および第8図
かられかるように分岐路24の出口近傍の渦巻部Bの側
壁面部分15mはわずかに傾斜した下向きの傾斜面に形
成さ五、更にこの側壁面部分15&は他の渦巻部側壁面
15に比べて吸気弁ステム5aに向けて膨出している。
This branch passage 24 is separated from the inlet passage part A by the partition wall 12, and the entire lower space of the branch passage 24 communicates with the inlet passage part A. The earthen wall surface 26 of the branching path 24 has a substantially uniform width, descends toward the spiral terminal end C, and smoothly connects to the upper wall surface 20 of the spiral section B. In addition, as shown in FIG. 7, the upper wall surface 2 of the branch road 24 measured from the bottom wall surface 21
6 is higher than the height H2 of the upper wall surface 19 of the entrance passage section A. A side wall surface 27 of the branch path 24 facing the second side wall surface 14b of the partition wall 12 is substantially vertical, and a bottom wall surface portion 21a below the branch path 24 is raised to form an inclined surface. This inclined bottom wall surface portion 211 extends from the vicinity of the inlet opening 6a of the intake port 60 to the spiral portion B, as shown in FIG. On the other hand, as can be seen from FIGS. 1, 4, and 8, the side wall surface portion 15m of the spiral portion B near the outlet of the branching path 24 is formed into a slightly inclined downward slope. The wall surface portion 15& is bulged toward the intake valve stem 5a compared to the other spiral portion side wall surfaces 15.

また、この側壁面部分15aは渦巻部側壁面15に滑ら
かに接続されており、更にこの側壁面部分15aは第2
図に示されるように半径Rの円弧状をなす。一方、隔壁
12の第2側壁面14bはこの傾斜側壁面部分15aに
向けて張り出している。従って第2側壁面14bと傾斜
側壁面部分15a間には第2の狭窄部16mが!成され
る。
Further, this side wall surface portion 15a is smoothly connected to the spiral portion side wall surface 15, and furthermore, this side wall surface portion 15a is connected to the second spiral portion side wall surface 15.
As shown in the figure, it forms an arc with a radius R. On the other hand, the second side wall surface 14b of the partition wall 12 projects toward this inclined side wall surface portion 15a. Therefore, a second narrowed portion 16m is formed between the second side wall surface 14b and the inclined side wall surface portion 15a! will be accomplished.

第9図に示さi厄ようにロータリ弁25はロータリ弁ホ
ルダ28と、ロータリ弁ホルダ28内において回転可能
に支持された弁軸29とにより構成され、このロータリ
弁ホルダ28はシリンダヘッド3に穿設されたねじ孔3
0内に螺着される。
As shown in FIG. 9, the rotary valve 25 is composed of a rotary valve holder 28 and a valve shaft 29 rotatably supported within the rotary valve holder 28. The rotary valve holder 28 is bored into the cylinder head 3. Installed screw hole 3
It is screwed into the 0.

弁軸29の下端部には薄板状の弁体31が一体形成され
、第1図に示されるようにこの弁体31は分岐路24の
上壁面26から底壁面21まで延びる。一方、弁軸29
の上端部にはアーム32が固定される。また、弁軸29
の外周面上にはリング溝33が形成され、このリング溝
33内にFiE字型位置決めリング34が嵌込まれる。
A thin plate-like valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG. 1, this valve body 31 extends from the top wall surface 26 of the branch passage 24 to the bottom wall surface 21. On the other hand, the valve stem 29
An arm 32 is fixed to the upper end of. In addition, the valve shaft 29
A ring groove 33 is formed on the outer peripheral surface of the ring groove 33, and an FiE-shaped positioning ring 34 is fitted into the ring groove 33.

更にロータリ弁ホルダ28の上端部にはシール部材35
が嵌着され、このシール部材35によって弁軸29のシ
ール作用が行なわれる。
Furthermore, a sealing member 35 is provided at the upper end of the rotary valve holder 28.
is fitted, and this sealing member 35 performs a sealing action on the valve shaft 29.

第10図を参照すると、ロータリ弁25の上端部に固着
されたアーム32の先端部は負圧ダイアフラム装置40
のダイアフラム41に固着された制御ロッド42に連結
ロッド43を介して連結される。負圧ダイアフラム装置
40はダイアフラム41によって大気から隔離された負
圧室44を有し、この負圧室44内にダイアフラム押圧
用圧縮ばね45が挿入される。シリンダヘッド3には1
次側気化器46&と2次側気化器46bからなるコンノ
Qウンド型気化器46を具えた吸気マニホルド47が取
付けられ、負圧室44は負圧導管48を介して吸気マニ
ホルド47内に連結される。この負圧導管48内には負
圧室44から吸気マニホルド47内に向けてのみ流通可
能な逆止弁49が挿入される。更に、負圧室44i1を
大気導管50並びに大気開放制御弁51を介して大気に
連通ずる。
Referring to FIG. 10, the tip of the arm 32 fixed to the upper end of the rotary valve 25 is connected to a negative pressure diaphragm device 40.
It is connected via a connecting rod 43 to a control rod 42 fixed to a diaphragm 41 of. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. 1 for cylinder head 3
An intake manifold 47 equipped with a conno-Q round type carburetor 46 consisting of a next side carburetor 46& and a second side carburetor 46b is attached, and the negative pressure chamber 44 is connected to the inside of the intake manifold 47 via a negative pressure conduit 48. Ru. A check valve 49 is inserted into the negative pressure conduit 48 and allows flow only from the negative pressure chamber 44 into the intake manifold 47 . Furthermore, the negative pressure chamber 44i1 is communicated with the atmosphere via an atmosphere conduit 50 and an atmosphere release control valve 51.

この大気開放制御弁51はダイアフラム52によって隔
成された負圧室53と大気圧室54とを有し、更に大気
圧室54に隣接して弁室55を有する。この弁室55は
一方では大気導管50を介して負圧室44内に連通し、
他方では弁ポート56並びにエアフィルタ57を介して
大気に連通ずる。
This atmospheric release control valve 51 has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a diaphragm 52, and further has a valve chamber 55 adjacent to the atmospheric pressure chamber 54. This valve chamber 55 communicates with the negative pressure chamber 44 via an atmospheric conduit 50 on the one hand;
On the other hand, it communicates with the atmosphere via a valve port 56 and an air filter 57.

弁室55内には弁J−)56の開閉制御をする弁体58
が設けられ、この弁体58は弁ロッド59を介してダイ
アフラム52に連結される。負圧室53内にはダイアフ
ラム押圧用圧縮ばね60が挿入され、更に負圧室53は
負圧導管61を介して1次側気化器46aのベンチュリ
部62に連結される。
Inside the valve chamber 55 is a valve body 58 that controls the opening and closing of the valve J-) 56.
The valve body 58 is connected to the diaphragm 52 via a valve rod 59. A compression spring 60 for pressing the diaphragm is inserted into the negative pressure chamber 53, and the negative pressure chamber 53 is further connected to a venturi portion 62 of the primary side carburetor 46a via a negative pressure conduit 61.

気化器46は通常用いられる気化器であって、1次側ス
ロットル弁63が所定開度以上開弁したときに2次側ス
ロットル弁64が開弁じ、1次側スロットル弁63が全
開すれば2次側スロットル弁64も全開する。1次側気
化器4’6aのベンチュリ部62に発生する負圧は機関
シリンダ内に供給される吸入空気量が増大するほど大き
くなり、従ってベンチュリ部62に発生する負圧が所定
負圧よりも大きくなったときに、即ち機関高速高負荷運
転時に大気開放制御弁51のダイアフラム52が圧縮ば
ね60に抗して右方に移動し、その結果弁体58が弁ポ
ート56を開弁して負圧ダイアフラム装置40の負圧室
44を大気に開放する。このときダイアフラム41は圧
縮ばね45のばね力により下方に移動し、その結果−−
タリ弁25が回転せしめられて分岐路24を蚕開する。
The carburetor 46 is a commonly used carburetor, and when the primary throttle valve 63 opens a predetermined opening degree or more, the secondary throttle valve 64 opens, and when the primary throttle valve 63 fully opens, the The next throttle valve 64 is also fully opened. The negative pressure generated in the venturi section 62 of the primary side carburetor 4'6a increases as the amount of intake air supplied into the engine cylinder increases. When the pressure increases, that is, when the engine is operating at high speed and high load, the diaphragm 52 of the atmospheric release control valve 51 moves to the right against the compression spring 60, and as a result, the valve body 58 opens the valve port 56 and the negative The negative pressure chamber 44 of the pressure diaphragm device 40 is opened to the atmosphere. At this time, the diaphragm 41 moves downward due to the spring force of the compression spring 45, and as a result -
The tarry valve 25 is rotated to open the branch path 24.

一方1・1:・・: 次側スロットル弁63の開度が小さいときにはベンチュ
リ部62に発生する負圧が小さなために大気開放制御弁
51のダイアフラム52は圧縮ばね60のばね力により
左方に移動し、弁体58が弁ポート56を閉鎖する。更
にこのように1次側スロットル弁63の開度が小さいと
きには吸気マニホルド47内には大きな負圧が発生して
いる。逆止弁49は吸気マニホルド47内の負圧が負圧
ダイアフラム装置40の負圧室44内の負圧よすも大き
くなると開弁し、吸気マニホルド47内の負圧が負圧室
44内の負圧よりも小さくなると閉弁するので大気開放
制御弁51が閉弁している限ジ負圧室44内の負圧は吸
気マニホルド47内に発生した最大負圧に維持される。
On the other hand, 1.1:...: When the opening degree of the next throttle valve 63 is small, the negative pressure generated in the venturi section 62 is small, so the diaphragm 52 of the atmospheric release control valve 51 is moved to the left by the spring force of the compression spring 60. The valve body 58 closes the valve port 56. Furthermore, when the opening degree of the primary throttle valve 63 is small as described above, a large negative pressure is generated within the intake manifold 47. The check valve 49 opens when the negative pressure inside the intake manifold 47 increases as well as the negative pressure inside the negative pressure chamber 44 of the negative pressure diaphragm device 40, and the negative pressure inside the intake manifold 47 increases when the negative pressure inside the negative pressure chamber 44 increases. Since the valve closes when the pressure becomes smaller than the negative pressure, the negative pressure in the limited negative pressure chamber 44 where the atmospheric release control valve 51 is closed is maintained at the maximum negative pressure generated in the intake manifold 47.

負圧室44内に負圧が加わるとダイアフラム41は圧縮
ばね45に抗して上昇し、その結果ロータリ弁25が回
動せしめられて分岐路24が閉鎖される。従って機関低
速低負荷運転時にはロータリ弁25によって分岐路24
が閉鎖されることになる。なお、高負荷運転時であって
も機関回転数が低い場合、並びに’、’、’l、’、’
、l、l’l’1機関回転数が高くても低負荷運転が行
なわれている場合にはベンチュリ部62に発生する負圧
が小さなために大気開放遮断弁51は閉鎖され続けてい
る。従ってこのような低速高負荷運転時並びに高速低負
荷運転時には負圧室44内の負圧が前述の最大負圧に維
持されているのでロータリ弁25によって分岐路24が
閉鎖されている。
When negative pressure is applied within the negative pressure chamber 44, the diaphragm 41 rises against the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is closed. Therefore, when the engine is operating at low speed and low load, the rotary valve 25 closes the branch path 24.
will be closed. In addition, even during high load operation, if the engine speed is low, ', ', 'l, ', '
, l, l'l'1 Even if the engine speed is high, when low load operation is performed, the atmospheric release cutoff valve 51 remains closed because the negative pressure generated in the venturi portion 62 is small. Therefore, during such low-speed, high-load operation and high-speed, low-load operation, the negative pressure in the negative pressure chamber 44 is maintained at the aforementioned maximum negative pressure, so the branch passage 24 is closed by the rotary valve 25.

上述したように吸入空気量が少ない機関低速低負荷運転
時にはロータリ弁25が分岐路24を閉鎖している。こ
のとき、入口通路部A内に送り込まれた混合気の一部は
上壁面19.20に沿って進み、残りの混合気のうちの
一部の混合気はロータリ弁25に衝突して入口通路部A
の側壁面17の方へ向きを変えた後に渦巻部Bの側壁面
15に沿って進む。前述したように上壁面19.20の
巾は狭窄部16に近づくに従って次第に狭くなるために
上壁面19.20に沿って流れる混合気の流路は次第に
狭ばまり、斯くして上壁面19.20に沿う混合気流は
次第に増速される。更に、前述したように隔壁12の第
1側壁面14aは渦巻部Bの側壁面15の近傍まで延び
ているので土壁面19.20に沿って進む混合気流は渦
巻部Bの側壁面15上に押しやられ、次いで側壁面15
に沿って進んで側壁面部分15aによジ吸気弁ステム5
aの方に流路が更に屈曲せしめられる。従って渦巻部B
内には強力な旋回流が発生せしめられることに々る。次
いで混合気は旋回しつつ吸気弁5とその弁座間に形成さ
れる間隙を通って燃焼室4内に流入して燃焼室4内に強
力な旋回流を発生せしめる。このように側壁面部分15
aを形成することによって渦巻部側壁面15に沿って流
れる混合気流に更に旋回力を与えることができると共に
この混合気流が分岐路24内に流入して旋回力が減衰す
るのを阻止できるので強力な旋回流を発生させることが
できる。
As described above, the rotary valve 25 closes the branch passage 24 when the engine is operated at low speed and under low load with a small amount of intake air. At this time, part of the air-fuel mixture sent into the inlet passage section A advances along the upper wall surface 19,20, and part of the remaining air-fuel mixture collides with the rotary valve 25 and passes through the inlet passage. Part A
After changing its direction toward the side wall surface 17 of the spiral portion B, it proceeds along the side wall surface 15 of the spiral portion B. As described above, the width of the upper wall surface 19.20 gradually becomes narrower as it approaches the narrowed portion 16, so that the flow path for the air-fuel mixture flowing along the upper wall surface 19.20 gradually narrows. The air mixture flow along 20 is gradually accelerated. Furthermore, as described above, the first side wall surface 14a of the partition wall 12 extends to the vicinity of the side wall surface 15 of the spiral portion B, so that the air mixture flowing along the earth wall surface 19.20 flows onto the side wall surface 15 of the spiral portion B. pushed away, then side wall surface 15
The intake valve stem 5 is then moved along the side wall surface portion 15a.
The flow path is further bent toward point a. Therefore, the spiral part B
A strong swirling flow is often generated within the tank. Next, the air-fuel mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat, generating a strong swirling flow within the combustion chamber 4. In this way, the side wall surface portion 15
By forming a, it is possible to give further swirling force to the air mixture flowing along the side wall surface 15 of the spiral part, and it is also possible to prevent this air mixture from flowing into the branch passage 24 and attenuating the swirling force. A swirling flow can be generated.

一方、吸入空気量が多い機関高速高負荷運転時にはロー
タリ弁25が開弁するので入口通路部A内に送り込まれ
た混合気は大別すると3つの流れに分流される。即ち、
第1の流れは隔壁12の第1側壁面14aと入口通路部
Aの側壁面17間に流入し、次いで渦巻部Aの上壁面2
0に沿って旋回しつつ流れる混合気流であり、第2の流
れは分岐路24を介して渦巻部B内に流入する混合気流
であり、第3の流肛は入口通路部Aの底壁面21に沿っ
て渦巻部B内に流入する混合気流である。
On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air, the rotary valve 25 is opened, so that the air-fuel mixture sent into the inlet passage A is roughly divided into three streams. That is,
The first flow flows between the first side wall surface 14a of the partition wall 12 and the side wall surface 17 of the inlet passage section A, and then flows into the upper wall surface 2 of the spiral section A.
0, the second flow is a mixture flow that flows into the swirl part B via the branch passage 24, and the third flow is a mixture flow that flows into the swirl part B through the branch passage 24. This is a mixed air flow that flows into the swirl portion B along the .

分岐路24の流れ抵抗は第1側壁面14aと側壁面17
間の流れ抵抗に比べて小さく、従って第2の混合気流の
方が第1の混合気流よジも多くなる。
The flow resistance of the branch path 24 is caused by the first side wall surface 14a and the side wall surface 17.
Therefore, the flow resistance of the second air mixture flow is smaller than that of the first air mixture flow.

更に分岐路24の出口には第2狭窄部16aが形成され
ているために分岐路24から流入した混合気流は第2狭
窄部16aを通過する際に流速を速められ、次いでこの
混合気は旋回する第1混合気流の上側に斜めに衝突して
第1混合気流を下向きに偏向せしめる。このように流れ
抵抗の小さな分岐路24から多量の混合気が供給され、
更に第1混合気流の流れ方向が下向きに偏向されるので
高い充填効率が得られることになる。
Further, since a second constriction part 16a is formed at the outlet of the branch passage 24, the air-fuel mixture flowing in from the branch passage 24 has a flow velocity increased when passing through the second constriction part 16a, and then this mixture is swirled. The first mixed gas flow obliquely collides with the upper side of the first mixed gas flow, causing the first mixed gas flow to be deflected downward. In this way, a large amount of air-fuel mixture is supplied from the branch passage 24 with low flow resistance,
Furthermore, since the flow direction of the first mixed gas flow is deflected downward, high filling efficiency can be obtained.

また、本発明によるヘリカル型吸気ポートは吸気ポート
6の上壁面上に隔壁12を一体成形すればよいのでヘリ
カル型吸気ポートを容易に製造することができる。
Further, in the helical type intake port according to the present invention, the partition wall 12 may be integrally formed on the upper wall surface of the intake port 6, so that the helical type intake port can be easily manufactured.

以上述べたように本発明によれば機関低速低負荷運転時
には分岐路を遮断して多量の混合気を渦巻部の土壁面に
沿って流し、次いで渦巻部側壁面に沿って流れる混合気
流の流れ方向を内方に膨出した側壁面部分によって更に
内方に偏向することによって強力な旋回流を燃焼室内に
発生せしめることができる。一方、機関高速高負荷運転
時には分岐路を開口することにより多量の混合気が流れ
抵抗の小さな分岐路を介して渦巻部内に送り込まれ、更
に旋回する混合気の流れ方向が分岐路から流入する混合
気流によって下向きに偏向せしめられるので高い充填効
率を得ることができる。
As described above, according to the present invention, when the engine is operating at low speed and low load, the branch passage is shut off to allow a large amount of air-fuel mixture to flow along the soil wall surface of the volute, and then the mixture flow flows along the side wall surface of the volute. By further deflecting the direction inward by the inwardly bulging side wall portion, a strong swirling flow can be generated within the combustion chamber. On the other hand, during engine high-speed, high-load operation, by opening the branch passage, a large amount of air-fuel mixture flows into the volute through the branch passage with low resistance, and the flow direction of the swirling mixture flows into the swirling part from the branch passage. Since it is deflected downward by the airflow, high filling efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2図のI−I線に沿ってみた本発明に係る内
燃機関の側面断面図、第2図は第1図の■−■線に沿っ
てみた平面断面図、第3図は本発明によるヘリカル型吸
気ポートの形状を図解的に示す側面図、第4図はヘリカ
ル型吸気ポートの形状を図解的に示す平面図、第5図は
第3図のV−□ ■線に沿ってみた断面図、第6図は第3図のM−■線に
沿ってみた断面図、第7図は第3図の■−■線に沿って
みた断面図、第8図は第3図の■−■線に沿ってみた断
面図、第9図はロータリ弁の側面断面図、第10図はロ
ータリ弁の駆動制御装置を示す図である。 4・・・燃焼室、6・・・ヘリカル型吸気ポート、12
・・・隔壁、15・・・側壁、15a・・・側壁面部分
、24・・・分岐路、25・・・ロータリ弁。 特許出願人 トヨタ自動車工業株式会社 特許出願代理人 弁理士 青 木    朗 弁理士西舘和之 弁理士 中 山 恭 介 弁理士 山 口  昭 之 第4図 第7図     第8図
1 is a side sectional view of an internal combustion engine according to the present invention taken along the line II in FIG. 2, FIG. 2 is a sectional plan view taken along the line ■-■ in FIG. 1, and FIG. is a side view schematically showing the shape of the helical intake port according to the present invention, FIG. 4 is a plan view schematically showing the shape of the helical intake port, and FIG. 6 is a sectional view taken along line M--■ in FIG. 3, FIG. 7 is a sectional view taken along line 3--■ in FIG. FIG. 9 is a side sectional view of the rotary valve, and FIG. 10 is a diagram showing a drive control device for the rotary valve. 4... Combustion chamber, 6... Helical intake port, 12
... Partition wall, 15 ... Side wall, 15a ... Side wall surface portion, 24 ... Branch passage, 25 ... Rotary valve. Patent applicant Toyota Motor Corporation Patent agent Akira Aoki Patent attorney Kazuyuki Nishidate Patent attorney Kyo Nakayama Patent attorney Akira Yamaguchi Figure 4 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] 吸気弁部りに形成された渦巻部と該渦巻部に接線状に接
続されかつほぼまっすぐに延びる入口通路部とにより構
成されたヘリカル型吸気ポートにおいて、上記入口通路
部から分岐されて上記渦巻部の渦巻終端部に連通ずる分
岐路を上記入口通路部に併設し、吸気ポート上壁面から
下方に突出しかつ入口通路部から吸気弁ステム周りまで
延びる隔壁によって該分岐路が入口通路部から分離され
、該分岐路の下側空間全体が横断面内において上記入口
通路部に連通ずると共に該入口通路部と分岐路との通路
壁を一体的に連結形成し、該分岐路内に開閉弁を設けて
該開閉弁により分岐路内を流れる吸入空気流を制御し、
更に渦巻部側壁面と分岐路側壁面との接続部において該
渦巻部側壁面を吸気弁ステムに向けて膨出させたヘリカ
ル型吸気ポート。
In a helical intake port configured with a spiral part formed in the intake valve part and an inlet passage part connected tangentially to the spiral part and extending almost straight, the spiral part is branched from the inlet passage part. A branch passage communicating with the spiral terminal end of the inlet passage is provided alongside the inlet passage, and the branch passage is separated from the inlet passage by a partition wall that projects downward from the upper wall surface of the intake port and extends from the inlet passage to around the intake valve stem; The entire lower space of the branch passage communicates with the inlet passage part in a cross section, and the passage wall of the inlet passage part and the branch passage are integrally connected, and an on-off valve is provided in the branch passage. Controlling the intake air flow flowing in the branch path by the on-off valve,
Furthermore, the helical type intake port has the spiral portion side wall surface bulged toward the intake valve stem at the connection portion between the spiral portion side wall surface and the branch road side wall surface.
JP57087206A 1982-05-25 1982-05-25 Helical intake port Granted JPS58204930A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57087206A JPS58204930A (en) 1982-05-25 1982-05-25 Helical intake port
US06/494,387 US4516544A (en) 1982-05-25 1983-05-13 Helically-shaped intake port of an internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57087206A JPS58204930A (en) 1982-05-25 1982-05-25 Helical intake port

Publications (2)

Publication Number Publication Date
JPS58204930A true JPS58204930A (en) 1983-11-29
JPS6238536B2 JPS6238536B2 (en) 1987-08-18

Family

ID=13908480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57087206A Granted JPS58204930A (en) 1982-05-25 1982-05-25 Helical intake port

Country Status (1)

Country Link
JP (1) JPS58204930A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182915A (en) * 2007-01-29 2008-08-14 Daiwa Seiko Inc Reel for fishing

Also Published As

Publication number Publication date
JPS6238536B2 (en) 1987-08-18

Similar Documents

Publication Publication Date Title
JPS6238533B2 (en)
JPS6238537B2 (en)
JPS6236139B2 (en)
JPS58204930A (en) Helical intake port
JPS6229623Y2 (en)
JPS58204927A (en) Helical intake port
JPS5939928A (en) Helical type suction port
JPS6229624Y2 (en)
JPS6335166Y2 (en)
JPS6239670B2 (en)
JPS6231619Y2 (en)
JPS58204933A (en) Helical intake port
JPS6236136B2 (en)
JPS58204925A (en) Helical intake port
JPS58204934A (en) Helical intake port
JPH0133791Y2 (en)
JPS6238529B2 (en)
JPS6236138B2 (en)
JPS6238530B2 (en)
JPS6239669B2 (en)
JPS6238531B2 (en)
JPS6232327B2 (en)
JPS58204931A (en) Helical intake port
JPS58222917A (en) Intake port of helical type
JPS6238528B2 (en)