JPS58204933A - Helical intake port - Google Patents

Helical intake port

Info

Publication number
JPS58204933A
JPS58204933A JP57087209A JP8720982A JPS58204933A JP S58204933 A JPS58204933 A JP S58204933A JP 57087209 A JP57087209 A JP 57087209A JP 8720982 A JP8720982 A JP 8720982A JP S58204933 A JPS58204933 A JP S58204933A
Authority
JP
Japan
Prior art keywords
side wall
wall surface
valve
passage
wall face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57087209A
Other languages
Japanese (ja)
Other versions
JPS6238538B2 (en
Inventor
Mikio Nakajima
三樹夫 中島
Takeshi Okumura
猛 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP57087209A priority Critical patent/JPS58204933A/en
Publication of JPS58204933A publication Critical patent/JPS58204933A/en
Publication of JPS6238538B2 publication Critical patent/JPS6238538B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4228Helically-shaped channels 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/042Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors induction channel having a helical shape around the intake valve axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To generate a strong swirl flow when an engine is operated at a low speed with a small load, by forming the inside of a volute part side wall neighboring to the outlet of a branch path from a downward facing sloped surface. CONSTITUTION:When an engine is operated at a low speed and low load with a small amount of intake air, a rotary valve 25 closes a branch path 24. As the first side wall face 14a of a partition 12 is extended to a part in the vicinity of a side wall face 15 of a volute part B, a mixture flowing to advance along an upper wall face 20 is forcibly moved onto the side wall face 15 of the volute part B, and said mixture flows along the side wall face. Then if said mixture reaches the side wall face part 15a, the mixture is turned while its flow direction is deflected facing downward because said side wall face part 15a is formed by a downward facing sloped surface. If the flow direction is deflected downward, this mixture flows not to collide with the partition 12 and is supplied while turning into a combustion chamber 4.

Description

【発明の詳細な説明】 本発明はヘリカル型吸気ポートに関する。[Detailed description of the invention] The present invention relates to a helical intake port.

ヘリカル型吸気ポートは通常吸気弁側りに形成された渦
巻部と、との渦巻部に接線状に接続されかつほぼまっす
ぐに延びる入口通路部とによ多構成される。このような
ヘリカル型吸気、s−yトe用いて吸入空気量の少ない
機関低速低負荷運転時に機関燃焼室内に強力な旋回流を
発生せしめようとすると吸気ポート形状が流れ抵抗の大
きな形状になってしまうので吸入空気量の多い機関高速
高負荷運転時に充填効率が低下するという問題を生ずる
。このような問題を解決するためにヘリカル型吸気ポー
ト入口通路部から分岐されてヘリカル型吸気ポート渦巻
部の渦巻終端部に連通する分岐路をシリンダヘッド内に
形成し、分岐路内に開閉弁を設けて機関高速高負荷運転
時に開閉弁を開弁するようにしたヘリカル型吸気ポート
が本出願人によ)既に提案されている。このヘリカル型
吸気ポートでは機関高速高負荷運転時にヘリカル型吸気
ポート入口通路部内に送シ込まれた吸入空気の−部が分
岐路を介してヘリカル型吸気ポート渦巻部内に送シ込ま
れるために吸入空気の流路断面積が増大し、斯くして充
填効率を向上することができる。しかしながらこのヘリ
カル型吸気ポートでは分岐路が入口通路部から完全に独
立した筒状の通路として形成されているので分岐路の流
れ抵抗が比較的大きく、しかも分岐路を入口通路部に隣
接して形成しなけれはならないために入口通路部の断面
積が制限を受けるので十分に満足のいく高い充填効率を
得るのが困難となっている。更に、ヘリカル型吸気ポー
トはそれ自体の形状が複雑であり、しかも入口通路部か
ら完全に独立した分岐路を併設した場合には吸気ポート
の全体構造が極めて複雑となるのでこのような分岐路を
具えたヘリカル型吸気ポートヲシリンダヘッド内に形成
するのはかなシ困離である。
A helical intake port usually includes a spiral portion formed on the side of the intake valve, and an inlet passage portion that is tangentially connected to the spiral portion and extends substantially straight. When trying to generate a strong swirling flow in the combustion chamber of an engine using such a helical type air intake when the engine is operating at low speed and low load with a small amount of intake air, the shape of the intake port becomes a shape that has a large flow resistance. This causes a problem in that charging efficiency decreases when the engine is operated at high speed and under high load with a large amount of intake air. To solve this problem, we formed a branch passage in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral part, and installed an on-off valve in the branch passage. The applicant has already proposed a helical intake port in which an on-off valve is opened during high-speed, high-load engine operation. In this helical type intake port, when the engine is operated at high speed and under high load, the negative part of the intake air sent into the helical type intake port inlet passage is sent into the spiral part of the helical type intake port through a branch passage, so the intake air is drawn into the helical type intake port. The cross-sectional area of the air flow path is increased, and thus the filling efficiency can be improved. However, in this helical intake port, the branch passage is formed as a cylindrical passage completely independent from the inlet passage, so the flow resistance of the branch passage is relatively large, and the branch passage is formed adjacent to the inlet passage. This limits the cross-sectional area of the inlet passage, making it difficult to obtain a sufficiently high filling efficiency. Furthermore, the helical intake port itself has a complicated shape, and if a branch passage that is completely independent from the inlet passage is added, the overall structure of the intake port will become extremely complicated. It is difficult to form a helical intake port in the cylinder head.

本発明は機関高速高負荷運転−に高い充填効率を得るこ
とができると共に製造の容易な新規形状を有するヘリカ
ル型吸気ポートヲ提供することにある。
SUMMARY OF THE INVENTION The present invention provides a helical intake port which is capable of achieving high filling efficiency during engine high-speed, high-load operation and has a new shape that is easy to manufacture.

以下、添附図面を参照して本発明の詳細な説明するO 第1図並びに第2図を参照すると、1はシリンダブロッ
ク、2けシリンダブロックl内で往復動するピストン、
3はシリンダプロ、り1上に固締されたシリンダヘッド
、4はぎストン2とシリンダヘッド3間に形成された燃
焼室、5は吸気弁、6はシリンダヘッド3内に形成され
たヘリカル型吸気ポート、7は排気弁、8はシリンダヘ
ッド3内に形成されたわト気ポート、9は燃焼室4内に
配置された点火栓、10は吸気弁5のステム5a’に案
内するステムガイドを夫々示す。第1図並びに第2図に
示されるように吸気ポート6の上壁面11上には下方に
突出する隔壁12が一体成形され、この隔壁12によっ
て渦巻部Bと、との渦巻部Bに接線状に接続された入口
通路部Aからなるヘリカル型吸気ポニ1トロが形成され
る。この隔壁12は入口通路部A内から吸気弁5のステ
ムガイド10の周囲まで延びており、第2図かられかる
ようにこの隔壁12の根本部の巾りは入口通路部Aに近
い側が最も狭く、この最狭部からステムガイド10の近
傍まではitぼ一様であシ、ステムガイド10の周シで
最も広くなる。隔壁12は吸気ポート6の入口開口6a
に最も近い側に位置する先端部13tl−有し、更に隔
壁12は第2図においてこの先端部13から反時it回
シに延びる第1側壁面14mと、先端部13から時計(
ロ)シに延びる第2側壁面14bとを有する。第1側壁
面141は先端部13からステムガイド10の側方を通
って渦巻部Bの側壁面15の近傍まで延びて渦巻部側壁
面15との間に狭窄部16を形成する。一方、第2側壁
面14bは先端部13からステムガイド10に向けて始
めは第1側壁面14&との間隔が増大するように、次い
で第1側壁面14mとの間隔がほぼ一様となるように延
びる。次いでこの第2側壁面14bはステムガイド10
の外周に油って延びて狭窄部16に達する。
Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. Referring to FIGS.
3 is a cylinder pro, the cylinder head is fixed on the cylinder head 1, 4 is a combustion chamber formed between the piston 2 and the cylinder head 3, 5 is an intake valve, and 6 is a helical intake formed in the cylinder head 3. 7 is an exhaust valve, 8 is a horizontal air port formed in the cylinder head 3, 9 is a spark plug arranged in the combustion chamber 4, and 10 is a stem guide that guides the stem 5a' of the intake valve 5. Show each. As shown in FIGS. 1 and 2, a partition wall 12 projecting downward is integrally formed on the upper wall surface 11 of the intake port 6, and this partition wall 12 forms a tangent to the spiral portion B of the A helical intake valve is formed by an inlet passage section A connected to the intake passage A. This partition wall 12 extends from inside the inlet passage part A to around the stem guide 10 of the intake valve 5, and as can be seen from FIG. It is narrow and uniform from the narrowest part to the vicinity of the stem guide 10, and becomes widest around the circumference of the stem guide 10. The partition wall 12 is the inlet opening 6a of the intake port 6.
The partition wall 12 further has a first side wall surface 14m extending counterclockwise from the tip 13 in FIG.
(b) A second side wall surface 14b extending in (b) (b). The first side wall surface 141 extends from the distal end portion 13 through the side of the stem guide 10 to the vicinity of the side wall surface 15 of the spiral portion B, and forms a narrow portion 16 between the first side wall surface 141 and the spiral portion side wall surface 15 . On the other hand, the distance between the second side wall surface 14b and the first side wall surface 14& increases from the tip end 13 toward the stem guide 10, and then the distance between the second side wall surface 14b and the first side wall surface 14m becomes approximately uniform. Extends to. Next, this second side wall surface 14b is connected to the stem guide 10.
The oil extends around the outer periphery of the tube and reaches the narrowed portion 16.

第1図から第9図を参照すると、入口通路部Aの一方の
側壁面17はほぼ垂直配置され、他方の側壁面18はわ
ずかげかシ傾斜した下向きの傾斜面から形成される。一
方、入口通路部Aの土壁面19は渦巻部Bに向けて下降
し、渦巻部Bの上壁面20に滑らかに接続される。渦巻
部Bの上壁面20は渦巻部Bと入口通路部Aの接続部か
ら狭窄部16に向けて下降しつつ徐々に巾を狭め、次い
で狭窄部1fl1通過すると徐々に巾を広げる。一方、
入口通路部Aの側壁面17は渦巻部Bの側壁面15に滑
らかに接続され、入口通路部人の底壁面21は渦巻部B
に向けて下降する。
Referring to FIGS. 1 to 9, one side wall surface 17 of the inlet passageway portion A is arranged substantially vertically, and the other side wall surface 18 is formed from a slightly inclined downwardly inclined surface. On the other hand, the earthen wall surface 19 of the entrance passage section A descends toward the spiral section B and is smoothly connected to the upper wall surface 20 of the spiral section B. The upper wall surface 20 of the spiral portion B gradually narrows in width while descending from the connecting portion between the spiral portion B and the inlet passage portion A toward the narrowing portion 16, and then gradually widens after passing through the narrowing portion 1fl1. on the other hand,
The side wall surface 17 of the entrance passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the bottom wall surface 21 of the entrance passage section A is connected smoothly to the side wall surface 15 of the spiral section B.
descend towards.

一方、隔壁12の第1側壁面14mはわずかげかシ傾斜
した下向きの傾斜面からなり、第2側壁面14bはほぼ
垂直をなす。隔壁12の底壁面22は、隔壁12の先端
部13からステムガイド10の近傍まで延びる第1底壁
面部分22mと、ステムガイド10の周如に位置する第
2底壁面部分22bからなる。第1底壁面部分22鼻は
上壁面19とほぼ平行をなして底壁面210近くまで延
びる。一方、土壁面19から測った第2底壁面部分22
bの高さは第1底壁面部分22mの高さよりも低く、更
に第2底壁面部分22bと上壁面19との間隔は狭窄部
16に向かって徐々に小さくなる。また、@2底壁面部
分22b上には第4図のハツチングで示す領域に下方に
突出するリブ23が形成され、とのリブ23は第1底壁
面部分22mから狭窄部16まで延びる。第8図に示さ
れるように第2底壁面部分22bはリブ23に向けて下
降する。
On the other hand, the first side wall surface 14m of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. The bottom wall surface 22 of the partition wall 12 includes a first bottom wall surface portion 22m extending from the tip 13 of the partition wall 12 to the vicinity of the stem guide 10, and a second bottom wall surface portion 22b located around the circumference of the stem guide 10. The first bottom wall surface portion 22 extends substantially parallel to the top wall surface 19 to near the bottom wall surface 210. On the other hand, the second bottom wall surface portion 22 measured from the soil wall surface 19
The height of b is lower than the height of the first bottom wall surface portion 22m, and the distance between the second bottom wall surface portion 22b and the upper wall surface 19 gradually decreases toward the narrowed portion 16. Further, a rib 23 that projects downward is formed on the @2 bottom wall surface portion 22b in a region indicated by hatching in FIG. 4, and the rib 23 extends from the first bottom wall surface portion 22m to the narrowed portion 16. As shown in FIG. 8, the second bottom wall surface portion 22b descends toward the rib 23.

一方、シリンダヘッド3内には渦巻部Bの渦巻終端部C
と入口通路部Aとを連通する分岐路24が形成され、こ
の分岐路240入口部にロータリ弁25が配置される。
On the other hand, inside the cylinder head 3, there is a spiral end portion C of the spiral portion B.
A branch path 24 is formed that communicates the inlet passage section A with the inlet passage section A, and a rotary valve 25 is disposed at the inlet of this branch path 240.

この分岐路24は隔壁12によって入口通路部Aから分
離されておシ、分岐路24の下側空間全体が入口通路部
Aに連通している。分岐路24の上壁面26は11は一
様な巾を有し、渦巻終端部Cに向けて下降して渦巻部B
の上壁面20に滑らかに接続される。なお、第7図に示
されるように底壁面21か鷹測・た分岐路24の上壁面
26の高さHlは入口通路部Aの上壁面19の高さH,
よりも高くなっている。隔壁12の第2側壁面14bに
対面する分岐路24の側壁面27ばほぼ垂直上なし、ま
た分岐路24下方の底壁面部分21mは隆起せしめられ
て傾斜面金形成する。この傾斜底壁面部分21aは第1
図に示すように吸気ポート6の入口開口6aの近傍から
渦巻部Bまで延びる。一方、第1図、第4図および第8
図かられかるように分岐路24の出口近傍の渦巻部Bの
側壁面部分15aはわずかに傾斜した下向きの煩多1面
に形成され、隔壁12の第2側壁面14bけこの傾斜側
壁面部分15aに向けて張り出している。従って第2側
壁面14bと傾斜側壁面部分15a間には第2の狭窄部
16aが形成される。
This branch passage 24 is separated from the inlet passage part A by the partition wall 12, and the entire lower space of the branch passage 24 communicates with the inlet passage part A. The upper wall surface 26 of the branching path 24 has a uniform width, and descends toward the spiral end portion C to form the spiral portion B.
It is smoothly connected to the upper wall surface 20 of. In addition, as shown in FIG. 7, the height Hl of the top wall surface 26 of the bottom wall surface 21 or the falconry branch path 24 is the height Hl of the top wall surface 19 of the entrance passage section A,
It is higher than that. The side wall surface 27 of the branch passage 24 facing the second side wall surface 14b of the partition wall 12 is substantially vertical, and the bottom wall surface portion 21m below the branch passage 24 is raised to form an inclined surface. This inclined bottom wall surface portion 21a is the first
As shown in the figure, it extends from the vicinity of the inlet opening 6a of the intake port 6 to the spiral portion B. On the other hand, Figures 1, 4 and 8
As can be seen from the figure, the side wall surface portion 15a of the spiral portion B near the exit of the branching path 24 is formed into a slightly sloped downward surface, and the second side wall surface 14b of the partition wall 12 has a sloped side wall surface portion. It extends toward 15a. Therefore, a second narrowed portion 16a is formed between the second side wall surface 14b and the inclined side wall surface portion 15a.

第9図に示されるようにロータリ弁25はロータリ弁ホ
ルダ28と、ロータリ弁ホルダ28内において回転可能
に支持された弁軸29とによ多構成され、このロータ′
り弁ホルダ28はシリンダへ21、、stc*ystu
l:taea3on<5ash、b。
As shown in FIG. 9, the rotary valve 25 is composed of a rotary valve holder 28 and a valve shaft 29 rotatably supported within the rotary valve holder 28.
The valve holder 28 is attached to the cylinder 21,,stc*ystu
l:taea3on<5ash, b.

弁軸29の下端部には薄板状の弁体31が一体形成され
、第1図に示されるようにこの弁体31は分岐路24の
上壁面26から底壁面21まで延びる。一方、弁軸29
の上端部にはアーム32が固定される。また、弁軸29
の外周面上にはリング溝33が形成され、このリング溝
33内にはE字型位置決めリング34が嵌込まれる。更
にロータリ弁ホルダ28の上端部にはシール部材35が
嵌着され、このシール部材35によって弁軸29のシー
ル作用が行なわれる。
A thin plate-like valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG. 1, this valve body 31 extends from the top wall surface 26 of the branch passage 24 to the bottom wall surface 21. On the other hand, the valve stem 29
An arm 32 is fixed to the upper end of. In addition, the valve shaft 29
A ring groove 33 is formed on the outer peripheral surface of the ring groove 33, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Further, a seal member 35 is fitted to the upper end of the rotary valve holder 28, and the seal member 35 performs a sealing action on the valve shaft 29.

jilO図を参照すると、ロータリ弁25の上端部に固
着されたアーム32の先端部は負圧ダイアフラム装置4
0のダイアフラム41に固着された制御ロッド42に連
結ロッド43t−介して連結される。負圧ダイアフラム
装置40はダイアフラム41によって大気から隔離され
た負圧室44を有し、この負圧室44内にダイアフラム
押圧用圧縮ばね45が挿入される。シリンダヘッド3に
は1次側気化器46mと2次側気化器46bからなるコ
ンパウンド型気化器46を具えた吸気マニホルド47が
取付けられ、負圧室44は負圧導管48を介して吸気マ
ニホルド47内に連結される。この負圧導管48内には
負圧室44から吸気マニホルド47内に向けてのみ流通
可能な逆止弁49が挿入される。更に、負圧室44は大
気導管50並びに大気開放制御弁51を介して大気に連
通ずる。
Referring to the diagram, the tip of the arm 32 fixed to the upper end of the rotary valve 25 is connected to the negative pressure diaphragm device 4
It is connected to a control rod 42 fixed to a diaphragm 41 of No. 0 through a connecting rod 43t. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. An intake manifold 47 equipped with a compound carburetor 46 consisting of a primary carburetor 46m and a secondary carburetor 46b is attached to the cylinder head 3, and the negative pressure chamber 44 is connected to the intake manifold 47 via a negative pressure conduit 48. connected within. A check valve 49 is inserted into the negative pressure conduit 48 and allows flow only from the negative pressure chamber 44 into the intake manifold 47 . Further, the negative pressure chamber 44 communicates with the atmosphere via an atmosphere conduit 50 and an atmosphere release control valve 51.

この大気開放制御弁51はダイアフラム52によって隔
成された負圧室53と大気圧室54とを有し、更に大気
圧室54に瞬接して弁室55を有する。この弁室55は
一方では大気導w50を介1〜て負圧室44内に遵通し
、他方では弁ポート56並びにエアフィルタ57を介し
て大気に連通ずる。
This atmospheric release control valve 51 has a negative pressure chamber 53 and an atmospheric pressure chamber 54 separated by a diaphragm 52, and further has a valve chamber 55 in instant contact with the atmospheric pressure chamber 54. This valve chamber 55 communicates with the negative pressure chamber 44 via an atmospheric air conduit w50 on the one hand, and with the atmosphere via a valve port 56 and an air filter 57 on the other hand.

弁室55内には弁ポート56の開閉制御をする弁体58
が設けられ、この弁体58は弁ロッド59を介してダイ
アフラム52に連結される。負圧室53内にはダイアフ
ラム押圧用圧縮ばね60が挿入され、更に負圧室53は
負圧導管61會介して1次側気化器46mのペンチーリ
部62に連結される。
Inside the valve chamber 55 is a valve body 58 that controls opening and closing of the valve port 56.
The valve body 58 is connected to the diaphragm 52 via a valve rod 59. A compression spring 60 for pressing the diaphragm is inserted into the negative pressure chamber 53, and the negative pressure chamber 53 is further connected to the pentagonal portion 62 of the primary side carburetor 46m via a negative pressure conduit 61.

気化器46は通常用いられる気化器であって1次側スロ
ットル弁63が所定開度以上開弁したときに2次側スロ
ットル弁64が開弁じ、1次側スロットル弁63が全開
すれば2次側スロットル弁64も全開する。1次側気化
器46&のベンチュリ部62に発生する負圧は機関シリ
ンダ内に供給される吸入空気量が増大するほど大きくな
シ、従ってベンチュリ部62に発生する負圧が所定負圧
よシも大きくなったときに、即ち機関高速高負荷運転時
に大気開放制御弁51のダイアフラム52が圧縮はね6
0に抗して右方に移動し、その結果弁体58が弁ポート
56を開弁して負圧ダイアフラム装置40の負圧室44
を大気に開放する。このときダイアフラム41は圧縮ば
ね45のばね力によ)下方に移動し、その結果ロータリ
弁25が回転せしめられて分岐路24全全開する。一方
1次側スロットル弁63の開度が小さいときにはベンチ
ュリ部62に発生する負圧が小さなために大気開放制御
弁51のダイアフラム52は圧縮はね60のはね力によ
シ左方に移動し、弁体58が弁□ ポート56を閉鎖する。更にこのように1次側ス1十 ロットル弁63の開度が小さいときには吸気マニホルド
47内には大きな負圧が発生している。逆止弁49は吸
気マニホルド4フ内の負圧が負圧ダイアフラム装置40
の負圧室44内の負圧よりも大きくなると開弁し、吸気
マニホルド47内の負圧が負圧室44内の負圧よ)も、
J\さくなると閉弁するので大気開放制御弁51が閉弁
している限シ負圧室44内の負圧は吸気マニホルド47
内に発生した最大負圧に維持される。負圧室44内に負
圧が加わるとダイアフラム41は圧縮ばね45に抗して
上昇し、その結果ロータリ弁25が回動せしめられて分
岐路24が閉鎖される。従って機関低速低負荷運転時に
はロータリ弁25によって分岐路24が閉鎖されること
になる。なお、高負荷運転時であっても機関回転数が低
い場合、並びに機関回転数が高くても低負荷運転が行な
われている場合にはベンチュリ部62に発生する負圧が
小さなために大気開放制御弁51は閉鎖され続けている
。従ってこのような低速高負荷運転時並びに高速低負荷
運転時、、〈は負圧室44内の負圧が前述□ 1 の最大負圧に維持されているのでロータリ弁25によっ
て分岐路24が閉鎖されている。
The carburetor 46 is a commonly used carburetor, and when the primary throttle valve 63 opens a predetermined opening degree or more, the secondary throttle valve 64 opens, and when the primary throttle valve 63 fully opens, the secondary throttle valve 64 opens. The side throttle valve 64 is also fully opened. The negative pressure generated in the venturi section 62 of the primary side carburetor 46 increases as the amount of intake air supplied into the engine cylinder increases. When the pressure increases, that is, when the engine is operated at high speed and high load, the diaphragm 52 of the atmospheric release control valve 51 releases the compression spring 6.
0, and as a result, the valve body 58 opens the valve port 56 and opens the negative pressure chamber 44 of the negative pressure diaphragm device 40.
open to the atmosphere. At this time, the diaphragm 41 moves downward (by the spring force of the compression spring 45), and as a result, the rotary valve 25 is rotated and the branch passage 24 is fully opened. On the other hand, when the opening degree of the primary throttle valve 63 is small, the negative pressure generated in the venturi section 62 is small, so the diaphragm 52 of the atmospheric release control valve 51 moves to the left by the spring force of the compression spring 60. , the valve body 58 closes the valve □ port 56. Furthermore, when the opening degree of the primary throttle valve 63 is small as described above, a large negative pressure is generated within the intake manifold 47. The check valve 49 is configured so that the negative pressure inside the intake manifold 4 is connected to the negative pressure diaphragm device 40.
The valve opens when the negative pressure in the negative pressure chamber 44 becomes greater than the negative pressure in the negative pressure chamber 44, and the negative pressure in the intake manifold 47 also exceeds the negative pressure in the negative pressure chamber 44.
Since the valve closes when the temperature drops, the negative pressure in the negative pressure chamber 44 is transferred to the intake manifold 47 when the atmospheric release control valve 51 is closed.
maintained at the maximum negative pressure generated within. When negative pressure is applied within the negative pressure chamber 44, the diaphragm 41 rises against the compression spring 45, and as a result, the rotary valve 25 is rotated and the branch passage 24 is closed. Therefore, when the engine is operating at low speed and low load, the rotary valve 25 closes the branch passage 24. Note that when the engine speed is low even during high-load operation, or when low-load operation is performed even when the engine speed is high, the negative pressure generated in the venturi section 62 is small, so it is not released to the atmosphere. Control valve 51 remains closed. Therefore, during such low-speed, high-load operation and high-speed, low-load operation, the branch passage 24 is closed by the rotary valve 25 because the negative pressure in the negative pressure chamber 44 is maintained at the maximum negative pressure of □ 1 mentioned above. has been done.

上述したように吸入空気量が少ない機関低速低負荷運転
時にはロータリ弁25が分岐路24を閉鎖している。こ
のとき、入口通路部A内に送シ込まれた混合気の一部は
土壁面19.20に沿って進み、残シの混合気のうちの
一部の混合気はロータリ弁25に衝突して入口通路部A
の側壁面17の方へ向きを変えた後に渦巻部Bの側壁面
15に涜って進む。前述したように上壁面19.20の
巾は狭窄部16に近づくに従って次第に狭くなるために
土壁面19.20に沿って流れる混合気の流路は次第に
狭ば′1シ、斯くして土壁面19.20に沿う混合気流
は次第に増速される。更に、前述したように隔壁12の
第1側壁面14&は渦巻部Bの側壁面15の近傍まで延
びているので上壁面19 r 20KGって進む混合気
流は渦巻部Bの側壁面15上に押しやられ、斯くしてこ
の混合気は側壁面15に溢って進むことになる。次いで
この混合気が1i11J壁面部分15mに達するとこの
側壁面部分15mは前述したように下向きの傾斜面から
形成されているために混合気は旋回しつつその流路方向
が下向きに偏向される。このように混合気の流路方向が
下向きに偏向せしめられるとこの混合気流は隔壁12に
衝突することなく旋回しながら燃焼室4内に供給される
。従って、渦巻部B内に発生した旋回流は弱められるこ
となく燃焼室4内に供給されるために燃焼室4内には強
力な旋回流が発生せしめられる。
As described above, the rotary valve 25 closes the branch passage 24 when the engine is operated at low speed and under low load with a small amount of intake air. At this time, part of the air-fuel mixture sent into the inlet passage section A travels along the earth wall surface 19.20, and part of the remaining air-fuel mixture collides with the rotary valve 25. Inlet passage section A
After changing its direction toward the side wall surface 17 of the spiral portion B, it moves toward the side wall surface 15 of the spiral portion B. As mentioned above, the width of the upper wall surface 19.20 gradually becomes narrower as it approaches the narrowed part 16, so the flow path for the air-fuel mixture flowing along the earth wall surface 19.20 becomes gradually narrower. The mixture flow along 19.20 is gradually accelerated. Furthermore, as described above, since the first side wall surface 14 & of the partition wall 12 extends to the vicinity of the side wall surface 15 of the spiral portion B, the air mixture flowing along the upper wall surface 19 r 20KG is pushed onto the side wall surface 15 of the spiral portion B. As a result, this air-fuel mixture overflows onto the side wall surface 15 and advances. Next, when this air-fuel mixture reaches the 1i11J wall surface portion 15m, since this side wall surface portion 15m is formed from a downwardly inclined surface as described above, the air-fuel mixture swirls and its flow path direction is deflected downward. When the flow path direction of the mixture is deflected downward in this manner, the mixture flow is supplied into the combustion chamber 4 while swirling without colliding with the partition wall 12. Therefore, the swirling flow generated in the swirl portion B is supplied into the combustion chamber 4 without being weakened, so that a strong swirling flow is generated in the combustion chamber 4.

一方、吸入空気i/lが多い機関高速高負荷運転時には
ロータリ弁25が開弁するので入口通路部A内に送シ込
まれた混合気は大別すると3つの流れに分流される。即
ち、第1の流れは隔壁12の第1側壁面14mと入口通
路部Aの側壁面17間に流入し、次いで渦巻部Aの土壁
面20VcGって旋回しつつ流れる混合気流であシ、第
2の流れは分岐路24を介して渦巻部B内に流入する混
合気流であ)、第3の流れは入口通路部Aの底壁面21
に油って渦巻部B内に流入する混合気流である。
On the other hand, when the engine is operated at high speed and under high load with a large amount of intake air i/l, the rotary valve 25 is opened, so that the air-fuel mixture sent into the inlet passage A is roughly divided into three streams. That is, the first flow is a mixed air flow that flows between the first side wall surface 14m of the partition wall 12 and the side wall surface 17 of the inlet passage section A, and then flows while swirling at the soil wall surface 20VcG of the spiral section A. The second flow is a mixed air flow that flows into the swirl part B via the branch passage 24), and the third flow is a mixture flow that flows into the bottom wall surface 21 of the inlet passage part A.
This is the mixed air flow that flows into the swirl portion B.

分岐路24の流れ抵抗は第1側壁面14mと側壁面17
間の流れ抵抗に比べて小さく、従って第2の混合気流の
方が第1の混合気流よシも多くなる。
The flow resistance of the branch path 24 is between the first side wall surface 14m and the side wall surface 17.
Therefore, the flow resistance of the second air mixture flow is smaller than that of the first air mixture flow.

更に、分岐路24の出口には第2狭窄部16aが形成さ
れているために分岐路24から流入した第2混合気流は
第2狭窄部16mを通過する際に流速を速められ、次い
でこの第2混合気流は渦巻部Bの側壁面15に沿って旋
回する第1混合気流の上側に斜めに衝突して第1混合気
流の流れ方向を下向きに偏向せしめる。このように流れ
抵抗の小さな分岐路24から多量の混合気が供給され、
更に第1混合気流の流れ方向が下向きに偏向されるので
高い充填効率が得られることになる。
Furthermore, since the second constriction part 16a is formed at the outlet of the branch passage 24, the second air mixture flow flowing in from the branch passage 24 has a flow velocity increased when passing through the second constriction part 16m, and then The second mixed gas flow collides obliquely with the upper side of the first mixed gas flow swirling along the side wall surface 15 of the swirl portion B, thereby deflecting the flow direction of the first mixed gas flow downward. In this way, a large amount of air-fuel mixture is supplied from the branch passage 24 with low flow resistance,
Furthermore, since the flow direction of the first mixed gas flow is deflected downward, high filling efficiency can be obtained.

また、本発明によるへりカA/型吸気ポートは吸気ポー
)bの上壁面上に隔壁12全一体成形すればよいのでヘ
リカル型吸気ポートを容易に製造することができる。
Further, in the helical A/type intake port according to the present invention, since the partition wall 12 may be entirely integrally molded on the upper wall surface of the intake port b, the helical type intake port can be easily manufactured.

以上述べたように本発明によれば機関低速低負荷運転時
には分岐路を遮断して多量の混合気を渦巻部の上壁面K
Gって流し、次いで渦巻部側壁面に涜って旋回しつつ流
れる混合気流の流れ方向を下向きに傾斜した側壁面部分
によって下向きに偏向させることによって強力な旋回流
を燃焼室内に発生せしめることができる。一方、機関高
速高置(15) ・・・隔壁、24・・・分岐路、25・・・ロータリ弁
As described above, according to the present invention, when the engine is operating at low speed and low load, the branch passage is shut off and a large amount of air-fuel mixture is transferred to the upper wall surface K of the volute part.
A strong swirling flow can be generated in the combustion chamber by deflecting the flow direction of the mixed gas flow, which then flows while swirling against the side wall surface of the volute part, downward by the downwardly inclined side wall surface portion. can. On the other hand, high-speed engine (15)... bulkhead, 24... branching path, 25... rotary valve.

荷運転時には分岐路を開口することによシ多量の混合気
が流れ抵抗の小さな分岐路を介して渦巻部内に送シ込ま
れ、更に旋回する混合気の流れ方向が分岐路から流入す
る混合気流によって下向きに偏向せしめられるので高い
充填効率を得ることができる。
During loading operation, by opening the branch passage, a large amount of air-fuel mixture flows and is sent into the volute through the branch passage with low resistance, and the flow direction of the swirling mixture is the mixture flow that flows in from the branch passage. Since it is deflected downward, high filling efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第2図のif線に沿ってみた本発明に係る内燃
機関の0i11面断面図、第2図は第1図のn −n、
Bに沿ってみた平面断面図、第3図は本発明によるヘリ
カル型吸気ポートの形状全図解的に示す側面図、第4図
はヘリカル型吸気ポートの形状全図解的に示す平面図、
第5図は第3図の■−■線に治ってみた断面図、第6図
は第3図の■−■線に浴ってみた断面図、第7図は第3
図の■−■線に沿ってみた断9面図、第8図は第3図の
■−エK G v□4“119工。−□ヶ。 側面断面図、第10図はロータリ弁の駆動制御装[を示
す図である。 4・・・燃焼室、6・・・ヘリカル型吸気ポート、12
(16) 特許出願人 トヨタ自動車工業株式会社 特許出願代理人 弁理士 青 木   朗 弁理士西舘和之 弁理士 中 山 恭 介 弁理士 山 口 昭 之
FIG. 1 is a 0i11 cross-sectional view of the internal combustion engine according to the present invention taken along line if in FIG. 2, and FIG.
3 is a side view schematically showing the shape of the helical intake port according to the present invention; FIG. 4 is a plan view schematically showing the shape of the helical intake port;
Figure 5 is a cross-sectional view taken along the line ■-■ in Figure 3, Figure 6 is a cross-sectional view taken along the line ■-■ in Figure 3, and Figure 7 is a cross-sectional view taken along the line ■-■ in Figure 3.
Figure 8 is a cross-sectional view taken along the line ■-■ in the figure, and Figure 8 is a cross-sectional view of the rotary valve. It is a diagram showing a drive control device. 4... Combustion chamber, 6... Helical intake port, 12
(16) Patent Applicant Toyota Motor Corporation Patent Attorney Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Kyo Nakayama Akira Yamaguchi

Claims (1)

【特許請求の範囲】[Claims] 吸気弁周夛に形成された渦巻部と、該渦巻部に接線状に
接続されかつほぼまっすぐに延びる入口通路部とにより
構成されたヘリカル型吸気ポートにおいて、上記入口通
路部から分岐されて上記渦巻部の渦巻終端部に連通ずる
分岐路を上記入口通路部に併設し、吸気ポート上壁面か
ら下方に突出しかつ入口通路部から吸気弁ステム周シま
で延びる隔壁によって該分岐路が入口通路部から分離さ
れ、該分岐路の下側空間全体が横断面内において上記入
口通路部に連通ずると共に該入口通路部と分岐路との通
路壁を一体的に連結形成し、該分岐路内に開閉弁を設け
て該開閉弁によシ分岐路内を流れる吸入空気流を制御し
、更に分岐路出口に隣接する渦巻部側壁面を下向きの傾
斜面から形成したヘリカル型吸気ポート。
In a helical intake port configured with a spiral formed around the intake valve and an inlet passage connected tangentially to the spiral and extending almost straight, the spiral is branched from the inlet passage. A branch passage communicating with the spiral terminal end of the part is provided in the inlet passage part, and the branch passage is separated from the inlet passage part by a partition wall that projects downward from the upper wall surface of the intake port and extends from the inlet passage part to the periphery of the intake valve stem. The entire lower space of the branch passage communicates with the inlet passage portion in the cross section, and the passage walls of the inlet passage portion and the branch passage are integrally connected, and an on-off valve is provided in the branch passage. A helical intake port in which the intake air flow flowing through the branch passage is controlled by the on-off valve, and the side wall surface of the spiral portion adjacent to the outlet of the branch passage is formed from a downwardly inclined surface.
JP57087209A 1982-05-25 1982-05-25 Helical intake port Granted JPS58204933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57087209A JPS58204933A (en) 1982-05-25 1982-05-25 Helical intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57087209A JPS58204933A (en) 1982-05-25 1982-05-25 Helical intake port

Publications (2)

Publication Number Publication Date
JPS58204933A true JPS58204933A (en) 1983-11-29
JPS6238538B2 JPS6238538B2 (en) 1987-08-18

Family

ID=13908551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57087209A Granted JPS58204933A (en) 1982-05-25 1982-05-25 Helical intake port

Country Status (1)

Country Link
JP (1) JPS58204933A (en)

Also Published As

Publication number Publication date
JPS6238538B2 (en) 1987-08-18

Similar Documents

Publication Publication Date Title
JPS58204924A (en) Helical intake port
JPS6238537B2 (en)
JPS58204933A (en) Helical intake port
JPS58195016A (en) Helical suction port
JPS58204930A (en) Helical intake port
JPS58204927A (en) Helical intake port
JPS6335166Y2 (en)
JPS5939928A (en) Helical type suction port
JPS6229623Y2 (en)
JPS6229624Y2 (en)
JPS58204926A (en) Helical intake port
JPS6231619Y2 (en)
JPS58204925A (en) Helical intake port
JPS58195015A (en) Helical suction port
JPS58200029A (en) Helical suction port
JPS58204934A (en) Helical intake port
JPS58204931A (en) Helical intake port
JPS6232327B2 (en)
JPS6236136B2 (en)
JPS5970854A (en) Internal-combustion engine
JPS58222917A (en) Intake port of helical type
JPS6238531B2 (en)
JPS58202330A (en) Helical type suction port
JPS6238528B2 (en)
JPS58200027A (en) Flow duct controller of helical suction port