JPS6053617A - Flow passage controller for helical type suction port - Google Patents

Flow passage controller for helical type suction port

Info

Publication number
JPS6053617A
JPS6053617A JP58161904A JP16190483A JPS6053617A JP S6053617 A JPS6053617 A JP S6053617A JP 58161904 A JP58161904 A JP 58161904A JP 16190483 A JP16190483 A JP 16190483A JP S6053617 A JPS6053617 A JP S6053617A
Authority
JP
Japan
Prior art keywords
intake
intake passage
combustion chamber
valve
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58161904A
Other languages
Japanese (ja)
Other versions
JPS641651B2 (en
Inventor
Katsuhiko Motosugi
本杉 勝彦
Kazuo Kato
和雄 加藤
Itsuo Koga
古賀 逸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58161904A priority Critical patent/JPS6053617A/en
Publication of JPS6053617A publication Critical patent/JPS6053617A/en
Publication of JPS641651B2 publication Critical patent/JPS641651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/085Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/247Arrangement of valve stems in cylinder heads the valve stems being orientated in parallel with the cylinder axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To produce a powerful swirl inside a combustion chamber in time of low load driving as well as to secure high charging efficiency in time of high load driving, by making a first suction passage higher in its level than that of a second suction passage and, in turn, the second suction passage wider in its width than that of the first suction passage, respectively. CONSTITUTION:When an engine is driven at low load, a suction control valve 22 closes an inlet part of a first suction passage 11. Since width l2 of a second suction passage 12 is wide enough and thereby flow resistance is small, an air- fuel mixture is led into a combustion chamber 8 after being turned to a powerful swirl. When the engine is driven at high load, the suction control valve 22 is fully opened. The air-fuel mixture is led into the combustion chamber 8 from both these first and second suction passages 11 and 12. The air-fuel mixture flowing inside the first suction passage 11 has a large velocity component in a vertical direction by means of an upper wall surface 18 so that the following mixture easily flows into the combustion chamber 8.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は内燃機関に用いるヘリカル型吸気ボートの流路
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a flow path control device for a helical intake boat used in an internal combustion engine.

従来技術 各気筒が夫々第1吸気弁および第2吸気弁と、第1吸気
弁を介して燃焼室内に連結された第1吸気通路と、第2
吸気弁を介して燃焼室内に連結されたヘリカル状第2吸
気通路と、第1吸気通路内に配置された吸気制御弁とを
具備し、第1吸気通路と第2吸気通路とが共通の気化器
に連結されている内MA t&関が実公昭58−270
58号公報に記載されているように公知である。この内
燃機関では機関低負荷運転時に吸気制御弁が閉弁せしめ
られるために混合気がヘリカル状第2吸気通路および第
2吸気弁を介して燃焼室内に供給され、それによって燃
焼室内に旋回流が発生せしめられる。一方、機関高負荷
運転時には吸気制御弁が開弁するために混合気が第1吸
気通路および第2吸気通路の双方から夫々第1吸気弁お
よび第2吸気弁を介して燃焼室内に供給され、それによ
って十分な量の混合気を燃焼室内に供給するようにして
いる。しかしながらこの内燃機関では第1吸気通路およ
び第2吸気通路がほぼ同様な断面形状を有しているため
に低負荷運転時に燃焼室内に発生ずる旋回流もさほど強
力ではなく、また高負荷運転時における充填効率もさほ
ど高(ないという問題を有する。
Prior Art Each cylinder has a first intake valve, a second intake valve, a first intake passage connected to the combustion chamber via the first intake valve, and a second intake valve.
A helical second intake passage connected to a combustion chamber via an intake valve, and an intake control valve disposed within the first intake passage, the first intake passage and the second intake passage being common to each other. The inner MA t & Seki connected to the vessel was actually published in 1986-270.
This method is known as described in Japanese Patent No. 58. In this internal combustion engine, the intake control valve is closed during engine low load operation, so the air-fuel mixture is supplied into the combustion chamber via the helical second intake passage and the second intake valve, thereby creating a swirling flow inside the combustion chamber. caused to occur. On the other hand, during high engine load operation, the intake control valve opens, so the air-fuel mixture is supplied into the combustion chamber from both the first intake passage and the second intake passage via the first intake valve and the second intake valve, respectively. This ensures that a sufficient amount of air-fuel mixture is supplied into the combustion chamber. However, in this internal combustion engine, since the first intake passage and the second intake passage have almost the same cross-sectional shape, the swirling flow generated in the combustion chamber during low-load operation is not very strong, and the The problem is that the filling efficiency is not very high.

発明の目的 本発明は低負荷運転時に強力な旋回流を燃焼室内に発生
することができ、しかも高負荷運転時に高い充填効率を
得ることのできるヘリカル型吸気ボートの流路制御装置
を提供することにある。
OBJECTS OF THE INVENTION The present invention provides a flow path control device for a helical intake boat that can generate a strong swirling flow in a combustion chamber during low-load operation, and can obtain high charging efficiency during high-load operation. It is in.

発明の構成 本発明の構成は、各気筒が第1吸気弁および第2吸気弁
と唯一個の吸気ボートを具備し、吸気ボートの下流側を
垂直隔壁によって第1吸気通路と第2吸気通路とに分離
して第1吸気通路内に導入された吸入空気を第1吸気弁
を介して燃焼室内に供給すると共に第2供給通路内に導
入された吸入空気を第2吸気弁を介して燃焼室内に供給
するようにした内燃機関において、機関低負荷運転時に
閉弁しかつ機関高負荷時に開弁する吸気制御弁を第1吸
気通路内に配置し、第1吸気通路の;rIJさを第2吸
気通路の高さよりも高くすると共に第2吸気通路の横巾
を第1吸気通路の横巾まりも広くしたことにある。
Structure of the Invention The structure of the present invention is such that each cylinder is equipped with a first intake valve, a second intake valve, and a single intake boat, and the downstream side of the intake boat is separated into a first intake passage and a second intake passage by a vertical partition. The intake air introduced into the first intake passage is supplied into the combustion chamber via the first intake valve, and the intake air introduced into the second supply passage is supplied into the combustion chamber via the second intake valve. In an internal combustion engine configured to supply air to The height of the second intake passage is made higher than that of the intake passage, and the width of the second intake passage is also made wider than the width of the first intake passage.

実施例 第1図および第2図を参照すると、1はシリンダブロッ
ク、2ばピストン、3はシリンダヘット、4は吸気ボー
ト、5aは第1吸気弁、5bは第2吸気弁、6は排気ボ
ート、7aは第1排気弁、7bは第2排気弁を夫々示す
。なお、燃焼室8の頂部には点火栓(図示せず)が配置
される。吸気ボート4内には吸気ボート4の入口開口9
と吸気弁5a 、 5bとの中間部から吸気弁5a 、
 5bの近傍まで吸気ボー1−4の軸線方向に延びる垂
直隔壁1oが配置され、吸気ボート4の下流側はこの垂
直隔壁10によってほぼまっずくに延びる第1吸気通路
11と、ヘリカル状をなす第2吸気通路12とに分割さ
れる。第1図に示されるように垂直隔壁10は吸気ボー
ト4の上壁面から下方に突出して吸気ボート4の底壁面
13の近傍まで延びる。第3図に示されるように吸気ボ
ー1へ4の底壁面13は横断面内においてほぼ水平に延
びており、更に第1図に示されるように吸気ボー;〜5
の底壁面13は長手断面内において入口開口9から吸気
弁5a 、 5bに向けて始めはほぼ水平方向に延び、
次いで燃焼室8に向けて徐々に下降する。一方、垂直隔
壁10に対向配置された第1吸気通路11の外側壁面1
4はほぼ垂直に配置され、垂直隔壁10に対向配置され
た第2吸気通路12の外側壁面15もほぼ垂直に配置さ
れる。更に、垂直隔壁10の両側壁面16 、17もほ
ぼ垂直をなす。一方、第1吸気通路11の上壁面18は
底壁面13との間隔がほぼ一定となるように延びており
、従ってこの上壁面18は入口開口6から1及気弁5a
 p 5bに向けて始めはほぼ水平方向に延び、次いで
燃焼室8に向けて徐々に下降する。なお、第3図に示さ
れるように上壁面18は横断面内においてほぼ水平に延
びる。一方、第2吸気通路12の上壁面19は垂直隔壁
10の上流端20の近傍から吸気弁5a 、 5bのバ
ルブガイド21の近傍までほぼまっすぐに傾斜して延び
る。従って垂直隔壁10の上流端20の近傍からバルブ
ガイド21の近傍までの間において第3図に示されるよ
うに第1吸気通路11の土壁面18の高さhlは第2吸
気通路12の上壁面19の高さh2よりも高くなってい
る。なお、第3図かられかるように第2吸気通路12の
上壁面19は横断面内においてほぼ水平に延びる。一方
、第2図および第3図に示されるように第2吸気通路1
2の横rll A 2は第1吸気通路11の横巾11よ
りも広くなっている。従って第1吸気通路11は縦長の
矩形Wi面形状を有し、第2吸気通路12は第3図に示
す横断面位置において横長の矩形断面形状を有する。
Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston, 3 is a cylinder head, 4 is an intake boat, 5a is a first intake valve, 5b is a second intake valve, and 6 is an exhaust boat. , 7a indicates a first exhaust valve, and 7b indicates a second exhaust valve. Note that an ignition plug (not shown) is arranged at the top of the combustion chamber 8. Inside the intake boat 4, there is an inlet opening 9 for the intake boat 4.
and the intake valves 5a, 5b from the intermediate part between them.
A vertical partition wall 1o extending in the axial direction of the intake boat 1-4 is disposed near the intake boat 5b, and the downstream side of the intake boat 4 has a first intake passage 11 extending almost straight through the vertical partition wall 10, and a first intake passage 11 having a helical shape. It is divided into two intake passages 12. As shown in FIG. 1, the vertical partition wall 10 protrudes downward from the upper wall surface of the intake boat 4 and extends to the vicinity of the bottom wall surface 13 of the intake boat 4. As shown in FIG. 3, the bottom wall surface 13 of the intake bow 1 to 4 extends approximately horizontally in the cross section, and as shown in FIG.
The bottom wall surface 13 initially extends in a substantially horizontal direction from the inlet opening 9 toward the intake valves 5a, 5b in the longitudinal section;
Then, it gradually descends toward the combustion chamber 8. On the other hand, the outer wall surface 1 of the first intake passage 11 facing the vertical partition wall 10
4 is arranged substantially vertically, and the outer wall surface 15 of the second intake passage 12, which is arranged opposite to the vertical partition wall 10, is also arranged substantially vertically. Further, both side wall surfaces 16 and 17 of the vertical partition wall 10 are also substantially vertical. On the other hand, the upper wall surface 18 of the first intake passage 11 extends so that the distance from the bottom wall surface 13 is approximately constant, so that the upper wall surface 18 extends from the inlet opening 6 to the first air valve 5a.
p 5b at first in an almost horizontal direction and then gradually descending towards the combustion chamber 8. Note that, as shown in FIG. 3, the upper wall surface 18 extends substantially horizontally in the cross section. On the other hand, the upper wall surface 19 of the second intake passage 12 extends obliquely almost straight from the vicinity of the upstream end 20 of the vertical partition wall 10 to the vicinity of the valve guides 21 of the intake valves 5a and 5b. Therefore, as shown in FIG. 3, from the vicinity of the upstream end 20 of the vertical partition 10 to the vicinity of the valve guide 21, the height hl of the earthen wall surface 18 of the first intake passage 11 is equal to the upper wall surface of the second intake passage 12. It is higher than the height h2 of No. 19. As can be seen from FIG. 3, the upper wall surface 19 of the second intake passage 12 extends substantially horizontally in the cross section. On the other hand, as shown in FIGS. 2 and 3, the second intake passage 1
2 is wider than the width 11 of the first intake passage 11. Therefore, the first intake passage 11 has a vertically long rectangular Wi surface shape, and the second intake passage 12 has a horizontally long rectangular cross-sectional shape at the cross-sectional position shown in FIG.

第1吸気通路11の入口部には薄板状の吸気制御弁22
が挿入され、この吸気制御弁22の上端部にはアーム2
3が固着′される。第4し1に示されるようにこのアー
ム23は共通の連結ロッド24を介してアクチュエータ
25のダイアフラム26に連結される。アクチュエータ
25ばダイアフラム26によって隔離された負圧室27
と大気圧室28とを有し、負圧室27内には圧縮ばね2
9が挿入される。一方、吸気ボート4の入口開口9ば吸
気マニホルド30を介して気化器31に連結され、アク
チュエータ25の負圧室27は負圧導管32を介して吸
気マニホルド30に連結される。
A thin plate-shaped intake control valve 22 is provided at the entrance of the first intake passage 11.
is inserted into the upper end of this intake control valve 22.
3 is fixed. As shown in Figure 4, this arm 23 is connected to a diaphragm 26 of an actuator 25 via a common connecting rod 24. Negative pressure chamber 27 isolated by actuator 25 and diaphragm 26
and an atmospheric pressure chamber 28, and a compression spring 2 is provided in the negative pressure chamber 27.
9 is inserted. On the other hand, the inlet opening 9 of the intake boat 4 is connected to the carburetor 31 through the intake manifold 30, and the negative pressure chamber 27 of the actuator 25 is connected to the intake manifold 30 through the negative pressure conduit 32.

この負圧導管32内には絞り33が挿入される。A throttle 33 is inserted into this negative pressure conduit 32 .

スロットル弁340開度が小さな機関低負荷運転時には
負圧室27内に大きな負圧が作用するためにダイアフラ
ム26は圧縮ばね29に抗して負圧室27側に移動する
。このとき第1図および第2図に示すように吸気制御弁
22が第1吸気通路11を閉鎖する。一方、スロットル
弁34の開度が大きな高負荷運転時にば負圧室27内に
加わる負圧が小さくなるためにダイアフラム2 fiは
圧縮ばね29のばね力により大気圧室28側に移動する
。その結果、吸気制御弁22はほぼ90度回動せしめら
れて第1吸気通路11を全開する。
When the engine is operated at low load with a small opening degree of the throttle valve 340, a large negative pressure acts within the negative pressure chamber 27, so the diaphragm 26 moves toward the negative pressure chamber 27 against the compression spring 29. At this time, the intake control valve 22 closes the first intake passage 11 as shown in FIGS. 1 and 2. On the other hand, during high-load operation with a large opening of the throttle valve 34, the negative pressure applied to the negative pressure chamber 27 becomes small, so the diaphragm 2 fi moves toward the atmospheric pressure chamber 28 by the spring force of the compression spring 29. As a result, the intake control valve 22 is rotated approximately 90 degrees to fully open the first intake passage 11.

上述したように機関低負荷運転時には吸気制御弁22が
第1吸気通路11の入口部を閉鎖するために大部分の混
合気は第2吸気通路12および第2吸気弁5bを介して
燃焼室8内に流入する。1rJ述したように第2吸気通
路12の土壁面19は低くしかもほぼまっすくに延びて
いるので混合気は第2吸気通路12内をほぼ水平方向に
流れ、次いで水平方向の大きな速度成分をもちつつ燃焼
室8内に流入する。このように機関低負荷運転時には燃
焼室8内に流入した混合気は水平方向の大きな速度成分
を有するので燃焼室8内に強力な旋回流を発生せしめる
ことができる。また、第2吸気通路12の横巾7!2が
広く、従って流れ抵抗が小さなために混合気が高速度で
燃焼室8内に流入する。
As described above, during low engine load operation, the intake control valve 22 closes the inlet of the first intake passage 11, so most of the air-fuel mixture flows into the combustion chamber 8 via the second intake passage 12 and the second intake valve 5b. flow inside. 1rJ As mentioned above, the earthen wall surface 19 of the second intake passage 12 is low and extends almost straight, so the air-fuel mixture flows in the second intake passage 12 almost horizontally, and then has a large velocity component in the horizontal direction. while flowing into the combustion chamber 8. In this way, when the engine is operating at low load, the air-fuel mixture flowing into the combustion chamber 8 has a large velocity component in the horizontal direction, so that a strong swirling flow can be generated within the combustion chamber 8. Further, the width 7!2 of the second intake passage 12 is wide, and therefore the flow resistance is small, so that the air-fuel mixture flows into the combustion chamber 8 at a high speed.

従って第2吸気通路12の横+lJ、 e 2が広いこ
とも強力な旋回流の発生に寄与している。
Therefore, the wide width +lJ, e2 of the second intake passage 12 also contributes to the generation of a strong swirling flow.

一方、機関高負荷運転時には前述したように吸気制御弁
22が全開し、斯くしてこのときには第1吸気通路11
および第2吸気通路12の双方から夫々第1吸気弁5a
および第2吸気弁5bを介して混合気が燃焼室8内に流
入する。このとき第1吸気通路11内を流れる混合気流
は第1吸気通路11の」二壁面18によって流れ方向が
徐々に下向きに偏向され、次いで」三方から燃焼室8内
に流入する。即ち、このとき第1吸気通路11から燃焼
室8内に流入する混合気は垂直方向の大きな速度成分を
もつ。このように機関高質イ11運転時には混合気が、
下降するピストン2の頂面に向かって大きな慣性をもっ
て流入するので後続する混合気が容易に燃焼室8内に流
入することができるようになり、斯くして高い充填効率
が11Iられるごとになる。
On the other hand, during high-load engine operation, the intake control valve 22 is fully opened as described above, and at this time the first intake passage 11
and the second intake passage 12 from the first intake valve 5a, respectively.
The air-fuel mixture then flows into the combustion chamber 8 via the second intake valve 5b. At this time, the flow direction of the air mixture flowing in the first intake passage 11 is gradually deflected downward by the second wall surface 18 of the first intake passage 11, and then flows into the combustion chamber 8 from three sides. That is, at this time, the air-fuel mixture flowing into the combustion chamber 8 from the first intake passage 11 has a large velocity component in the vertical direction. In this way, when the engine is operating in high quality I11, the air-fuel mixture is
Since it flows with great inertia toward the top surface of the descending piston 2, the following air-fuel mixture can easily flow into the combustion chamber 8, thus achieving high charging efficiency.

第5図に別の実施例を示す。この実施例では垂直隔壁1
0の上流端20の近傍が上流&l!J 2 (lに向け
て収態する楔状断面に形成され、更に吸気制御弁22が
上流端20の上流に配置される。また吸気制御弁22は
全閉したときに第5図に示すように斜めになる。その結
果、この実施例では吸気制御弁22が閉弁したときに吸
入空気が吸気制御弁22によって案内されて第2吸気通
路12内に流入し、斯くして吸入空気が第2吸気通路1
2内に流れやすくなる。
Another embodiment is shown in FIG. In this embodiment, the vertical bulkhead 1
The vicinity of the upstream end 20 of 0 is the upstream &l! It is formed in a wedge-shaped cross section that converges toward J 2 (L), and an intake control valve 22 is disposed upstream of the upstream end 20. When the intake control valve 22 is fully closed, it has a wedge-shaped cross section that converges toward As a result, in this embodiment, when the intake control valve 22 is closed, the intake air is guided by the intake control valve 22 and flows into the second intake passage 12, so that the intake air flows into the second intake passage 12. Intake passage 1
2 will flow more easily.

第6図に更に別の実施例を示す。この実施例では第2吸
気通路12がほぼまっずぐに延びる、いわゆるストレー
I・ボートから形成される。この場合でも機関低負荷運
転時に燃焼室8内に強力な旋回流を発生させることがで
きる。
FIG. 6 shows yet another embodiment. In this embodiment, the second intake passage 12 is formed from a so-called straight I-boat, which extends substantially straight. Even in this case, a strong swirling flow can be generated within the combustion chamber 8 during low engine load operation.

第7図および第8図に更に別の実施例を示す。Still another embodiment is shown in FIGS. 7 and 8.

この実施例では隔壁1oが吸気ボート4の底壁面13上
まで延設され、それによって第1吸気通路11と第2吸
気通路12とが垂直隔壁10によって完全に分離されて
いる。この場合でも第8図に示される第1吸気通路11
の高さhlは第2吸気通路12の高さh2よりも高く、
第2吸気通路12の横巾12は第1吸気通路11の横1
1月1よりも広くなっている。また、この実施例では気
化器に代えて燃料噴射弁35が用いられている。この燃
料噴射弁35は吸気ボート4の」三方に配置され、燃料
噴射弁35がら燃料が垂直隔壁1oの上流端20に向け
て噴射される。この実施例においても第1図から第4図
に示される実施例とほぼ同様の効果が得られる。
In this embodiment, the partition wall 1o extends above the bottom wall surface 13 of the intake boat 4, whereby the first intake passage 11 and the second intake passage 12 are completely separated by the vertical partition wall 10. Even in this case, the first intake passage 11 shown in FIG.
The height hl is higher than the height h2 of the second intake passage 12,
The width 12 of the second intake passage 12 is 1 lateral width of the first intake passage 11.
It is wider than January 1st. Further, in this embodiment, a fuel injection valve 35 is used in place of the carburetor. The fuel injection valves 35 are arranged on three sides of the intake boat 4, and fuel is injected from the fuel injection valves 35 toward the upstream end 20 of the vertical partition wall 1o. This embodiment also provides substantially the same effects as the embodiments shown in FIGS. 1 to 4.

発明の効果 機関低負荷運転時に燃焼室内に強力な旋回流を発生せし
めることができるので稀薄混合気を用いても安定したア
イドリング運転をU(1″保することができ、斯くして
燃料消費率を向」二できると共にNOxを低減すること
ができる。一方、機関inJ負荷運転時には高い充填効
率が得られるために機関出力を高めることができ、更に
機関高負荷運転時であっても旋回流が発生せしめられる
ために良好な燃焼が得られ、燃料消費率を向上すること
ができる。
Effects of the Invention Since it is possible to generate a strong swirling flow in the combustion chamber during low-load engine operation, stable idling operation can be maintained even when using a lean mixture, and thus the fuel consumption rate can be reduced. On the other hand, when the engine is operating under high load, high charging efficiency can be obtained, so the engine output can be increased, and even when the engine is under high load, the swirl flow can be Since the fuel is generated, good combustion can be obtained and the fuel consumption rate can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による内燃機関の側面断面図、第2図は
第1図の断面平面図、第3図は第1図のm−m線に沿っ
てみた断面図、第4図は第1図の内燃機関の一部の平面
図、第5図は別の実施例の断面平面図、第6図は更に別
の実施例の断面平面図、第7図は更に別の実施例の側面
断面図、第8図は第7図の■−■線に沿ってみた断面図
である。 4・・・吸気ボート、5a・・・第1吸気弁、5b・・
・第2吸気弁、10・・・隔壁、11・・・第1吸気通
路、12・・・第2吸気通路、22・・・吸気制御弁。
FIG. 1 is a side cross-sectional view of an internal combustion engine according to the present invention, FIG. 2 is a cross-sectional plan view of FIG. 1, FIG. 3 is a cross-sectional view taken along line mm in FIG. 1, and FIG. 1 is a plan view of a part of the internal combustion engine, FIG. 5 is a sectional plan view of another embodiment, FIG. 6 is a sectional plan view of yet another embodiment, and FIG. 7 is a side view of still another embodiment. The cross-sectional view, FIG. 8, is a cross-sectional view taken along the line ■-■ in FIG. 7. 4... Intake boat, 5a... First intake valve, 5b...
- Second intake valve, 10... partition, 11... first intake passage, 12... second intake passage, 22... intake control valve.

Claims (1)

【特許請求の範囲】[Claims] 各気筒が第1吸気弁および第2吸気弁と唯一(1^Iの
吸気ポートを具備し、該吸気ボートの下流側を垂直隔壁
によって第1吸気通路と第2吸気通路とに分離して該第
1吸気通路内に導入された吸入空気を第1吸気弁を介し
て燃焼室内に供給すると共に該第2吸気通路内に導入さ
れた吸入空気を第2吸気弁を介して燃焼室内に供給する
ようにした内燃機関において、機関低負荷運転時に閉弁
しかつ機関高負荷運転時に開弁する吸気制御弁を上記第
1吸気通路内に配置し、第1吸気通路の高さを第2吸気
通路の高さよりも゛高くすると共に第2吸気通路の横巾
を第1吸気通路の横巾よりも広くしたヘリカル型吸気ボ
ートの流路制御装置。
Each cylinder has a first intake valve, a second intake valve, and a single (1^I) intake port, and the downstream side of the intake boat is separated into a first intake passage and a second intake passage by a vertical partition. The intake air introduced into the first intake passage is supplied into the combustion chamber via the first intake valve, and the intake air introduced into the second intake passage is supplied into the combustion chamber via the second intake valve. In such an internal combustion engine, an intake control valve that closes during low engine load operation and opens during high engine load operation is disposed within the first intake passage, and the height of the first intake passage is set to the second intake passage. A flow path control device for a helical intake boat, in which the height of the second intake passage is higher than that of the second intake passage, and the width of the second intake passage is wider than the width of the first intake passage.
JP58161904A 1983-09-05 1983-09-05 Flow passage controller for helical type suction port Granted JPS6053617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58161904A JPS6053617A (en) 1983-09-05 1983-09-05 Flow passage controller for helical type suction port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58161904A JPS6053617A (en) 1983-09-05 1983-09-05 Flow passage controller for helical type suction port

Publications (2)

Publication Number Publication Date
JPS6053617A true JPS6053617A (en) 1985-03-27
JPS641651B2 JPS641651B2 (en) 1989-01-12

Family

ID=15744223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58161904A Granted JPS6053617A (en) 1983-09-05 1983-09-05 Flow passage controller for helical type suction port

Country Status (1)

Country Link
JP (1) JPS6053617A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2553821A (en) * 2016-09-15 2018-03-21 Perkins Engines Co Ltd Cylinder Head

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112308A (en) * 1977-03-11 1978-09-30 Mitsubishi Motors Corp Internal combustion engine
JPS5793626A (en) * 1980-12-02 1982-06-10 Toyota Motor Corp Suction device for multi-cylinder internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53112308A (en) * 1977-03-11 1978-09-30 Mitsubishi Motors Corp Internal combustion engine
JPS5793626A (en) * 1980-12-02 1982-06-10 Toyota Motor Corp Suction device for multi-cylinder internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2553821A (en) * 2016-09-15 2018-03-21 Perkins Engines Co Ltd Cylinder Head
WO2018050789A1 (en) * 2016-09-15 2018-03-22 Perkins Engines Company Limited Cylinder head
GB2553821B (en) * 2016-09-15 2020-04-01 Perkins Engines Co Ltd Cylinder head with helical inlet passage

Also Published As

Publication number Publication date
JPS641651B2 (en) 1989-01-12

Similar Documents

Publication Publication Date Title
JPS589249B2 (en) Intake system for multi-cylinder internal combustion engine
JP2639721B2 (en) Combustion chamber of internal combustion engine
JPS6125894B2 (en)
JPS58187519A (en) Intake device of engine
JPS589248B2 (en) Intake system for multi-cylinder internal combustion engine
JPS6158921A (en) Intake device of internal-combustion engine
US4303046A (en) Intake system of a multi-cylinder internal combustion engine
JPS5848712A (en) Air inlet device of internal-combustion engine
US5014662A (en) Device for controlling the jet of carburetted mixture delivered by a pneumatic injection system
JPS6238533B2 (en)
JPS5845573B2 (en) Internal combustion engine intake passage device
JPS5934850B2 (en) Intake system for multi-cylinder internal combustion engine
JPS6053617A (en) Flow passage controller for helical type suction port
JPS5828411B2 (en) Intake system for multi-cylinder internal combustion engine
JPH0133790Y2 (en)
US4314529A (en) Intake system of a multi-cylinder internal combustion engine
JPS5849385Y2 (en) Intake system for multi-cylinder internal combustion engine
JPH0410339Y2 (en)
JP2001317361A (en) Stratified scavenging double stroke internal combustion engine
JPH0415944Y2 (en)
JP2629757B2 (en) Engine intake system
JPH0465232B2 (en)
JP2508636Y2 (en) Intake port structure of internal combustion engine
JPS5843618Y2 (en) Intake system for multi-cylinder internal combustion engine
JPS6029650Y2 (en) Recirculated exhaust gas and air-fuel ratio control device