JPS6350527B2 - - Google Patents

Info

Publication number
JPS6350527B2
JPS6350527B2 JP58057780A JP5778083A JPS6350527B2 JP S6350527 B2 JPS6350527 B2 JP S6350527B2 JP 58057780 A JP58057780 A JP 58057780A JP 5778083 A JP5778083 A JP 5778083A JP S6350527 B2 JPS6350527 B2 JP S6350527B2
Authority
JP
Japan
Prior art keywords
engine
valve
wall surface
intake port
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58057780A
Other languages
Japanese (ja)
Other versions
JPS59183026A (en
Inventor
Masami Ogata
Mitsuharu Taura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP58057780A priority Critical patent/JPS59183026A/en
Publication of JPS59183026A publication Critical patent/JPS59183026A/en
Publication of JPS6350527B2 publication Critical patent/JPS6350527B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/08Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
    • F02B31/082Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets the main passage having a helical shape around the intake valve axis; Engines characterised by provision of driven charging or scavenging pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は内燃機関に用いるヘリカル型吸気ポー
トの流路制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a flow path control device for a helical intake port used in an internal combustion engine.

従来技術 ヘリカル型吸気ポートは通常吸気弁周りに形成
された渦巻部と、この渦巻部に接線状に接続され
かつほぼまつすぐに延びる入口通路部とにより構
成される。このようなヘリカル型吸気ポートを用
いて吸入空気量の少ない機関低速低負荷運転時に
機関燃焼室内に強力な旋回流を発生せしめようと
すると吸気ポート形状が流れ抵抗の大きな形状に
なつてしまうので吸入空気量の多い機関高速高負
荷高運転時に充填効率が低下するという問題を生
ずる。このような問題を解決するためにヘリカル
型吸気ポート入口通路部から分岐されてヘリカル
型吸気ポート渦巻部の渦巻終端部に連通する分岐
路をシリンダヘツド内に形成し、分岐路内に開閉
弁を設けて機関高負荷運転時に開閉弁を開弁する
ようにしたヘリカル型吸気ポートが本出願人によ
り既に提案されている。このヘリカル型吸気ポー
トでは機関高負荷運転時にヘリカル型吸気ポート
入口通路部内に送り込まれた吸入空気の一部が分
岐路を介してヘリカル型吸気ポート渦巻部内に送
り込まれるために吸入空気の流路断面積が増大
し、斯くして充填効率を向上することができる。
しかしながらこのヘリカル型吸気ポートでは機関
高速低負荷運転時に開閉弁が閉弁しているために
吸気ポートの流路面積が狭く、斯くして高い充填
効率が得られないために機関高出力が得られない
という問題がある。一方、ノツキングの発生しや
すい機関低速高負荷運転時には開閉弁が開弁して
いるので強力な旋回流は得られず、斯くして燃焼
速度を十分に速めることができないのでノツキン
グが発生するという問題がある。
BACKGROUND OF THE INVENTION A helical intake port typically consists of a spiral formed around an intake valve and an inlet passageway tangentially connected to the spiral and extending substantially straight. If you try to use such a helical intake port to generate a strong swirling flow in the combustion chamber of the engine during low-speed, low-load operation of the engine with a small amount of intake air, the shape of the intake port will have a large flow resistance. A problem arises in that the filling efficiency decreases when the engine is operated at high speed, high load, and with a large amount of air. To solve this problem, a branch path is formed in the cylinder head that branches from the helical intake port inlet passage and communicates with the spiral end of the helical intake port spiral section, and an on-off valve is installed in the branch path. The applicant has already proposed a helical intake port in which an on-off valve is opened during high engine load operation. In this helical type intake port, during high engine load operation, a part of the intake air sent into the helical type intake port inlet passage is sent into the helical type intake port volute via the branch path, resulting in a break in the intake air flow path. The area can be increased and thus the filling efficiency can be improved.
However, with this helical type intake port, the opening/closing valve is closed during engine high-speed, low-load operation, so the flow path area of the intake port is narrow, and thus high filling efficiency cannot be obtained, making it difficult to obtain high engine output. The problem is that there is no. On the other hand, when the engine is operated at low speed and under high load, where knocking is likely to occur, the on-off valve is open, so a strong swirling flow cannot be obtained, and thus the combustion speed cannot be sufficiently increased, resulting in knocking. There is.

発明の目的 本発明は機関高速高負荷運転時はもとより機関
高速低負荷運転時における充填効率を高めて機関
出力を向上し、機関低速高負荷運転時におけるノ
ツキングの発生を抑制するようにしたヘリカル型
吸気ポートを提供することにある。
Purpose of the Invention The present invention is a helical type fuel pump that improves engine output by increasing charging efficiency not only during high-speed, high-load engine operation, but also during engine high-speed, low-load operation, and suppresses the occurrence of knocking during low-speed, high-load engine operation. Its purpose is to provide an intake port.

発明の構成 本発明の構成は、吸気弁周りに形成された渦巻
部と、渦巻部に接線状に接続されかつほぼまつす
ぐに延びる入口通路部とにより構成されたヘリカ
ル型吸気ポートにおいて、吸気ポート上壁面から
下方に突出しかつ吸入空気流の流れ方向に延びる
隔壁を吸気ポート内に形成して隔壁の両側に入口
通路部と入口通路部から分岐した分岐路とを形成
し、隔壁の下方に入口通路部と分岐路とを連通す
る下側空間を形成すると共に分岐路を渦巻部の渦
巻終端部に連通し、機関回転数および機関負荷に
応動する開閉弁を分岐路内に配置して機関負荷が
予め定められた設定負荷よりも大きなときは機関
回転数が予め定められた第1の設定回転数よりも
高くなつたときに開閉弁を開弁し、機関負荷が設
定負荷よりも小さなときは機関回転数が第1設定
回転数よりも高い第2設定回転数よりも高くなつ
たときに開閉弁を開弁するようにしたことにあ
る。
Structure of the Invention The structure of the present invention provides a helical intake port configured of a spiral portion formed around an intake valve and an inlet passage portion connected tangentially to the spiral portion and extending almost straight. A partition wall protruding downward from the upper wall surface and extending in the flow direction of the intake air flow is formed in the intake port, an inlet passage portion and a branch passage branching from the inlet passage portion are formed on both sides of the partition wall, and an inlet is formed below the partition wall. A lower space is formed that communicates the passage section with the branch passage, and the branch passage is connected to the end of the spiral of the spiral part, and an on-off valve that responds to the engine speed and engine load is placed in the branch passage to reduce the engine load. is larger than a predetermined set load, the on-off valve is opened when the engine speed becomes higher than the predetermined first set speed, and when the engine load is smaller than the set load, the on-off valve is opened. The on-off valve is opened when the engine speed becomes higher than a second set speed which is higher than the first set speed.

実施例 第1図並びに第2図を参照すると、1はシリン
ダブロツク、2はシリンダブロツク1内で往復動
するピストン、3はシリンダブロツク1上に固締
されたシリンダヘツド、4はピストン2とシリン
ダヘツド3間に形成された燃焼室、5は吸気弁、
6はシリンダヘツド3内に形成されたヘリカル型
吸気ポート、7は排気弁、8はシリンダヘツド3
内に形成された排気ポート、9は燃焼室4内に配
置された点火栓、10は吸気弁5のステム5aを
案内するステムガイドを夫々示す。第1図並びに
第2図に示されるように吸気ポート6の上壁面1
1上には下方に突出する隔壁12が一体成形さ
れ、この隔壁12によつて渦巻部Bと、この渦巻
部Bに接続状に接続された入口通路部Aからなる
ヘリカル型吸気ポート6が形成される。この隔壁
12は入口通路部A内から吸気弁5のステムガイ
ド10の周囲まで吸入空気流の流れ方向に延びて
おり、第2図からわかるようにこの隔壁12の根
元部の巾Lは入口通路部Aからステムガイド10
に近づくにつれて徐々に広くなる。隔壁12は吸
気ポート6の入口開口6aに最も近い側に位置す
る先端部13を有し、更に隔壁12は第2図にお
いてこの先端部13から反時計回りにステムガイ
ド10まで延びる第1側壁面14aと、先端部1
3から時計回りにステムガイド10まで延びる第
2側壁面14bとを有する。第1側壁面14aは
先端部13からステムガイド10の側方を通つて
渦巻部Bの側壁面15の近傍まで延びて渦巻部側
壁面15との間に狭窄部16を形成する。次いで
第1側壁面14aは渦巻部側壁面15から徐々に
間隔を隔てるように彎曲しつつステムガイド10
まで延びる。一方、第2側壁面14bは先端部1
3からステムガイド10までほぼまつすぐに延び
る。
Embodiment Referring to FIGS. 1 and 2, 1 is a cylinder block, 2 is a piston that reciprocates within the cylinder block 1, 3 is a cylinder head fixed on the cylinder block 1, and 4 is a piston 2 and a cylinder. A combustion chamber formed between the heads 3, 5 an intake valve,
6 is a helical intake port formed in the cylinder head 3, 7 is an exhaust valve, and 8 is a cylinder head 3.
Reference numeral 9 indicates an ignition plug disposed within the combustion chamber 4, and reference numeral 10 indicates a stem guide for guiding the stem 5a of the intake valve 5. As shown in FIGS. 1 and 2, the upper wall surface 1 of the intake port 6
A partition wall 12 projecting downward is integrally molded on the top of the helical intake port 6 consisting of a spiral portion B and an inlet passage portion A connected to the spiral portion B in a connected manner. be done. This partition wall 12 extends in the flow direction of the intake air flow from inside the inlet passage section A to around the stem guide 10 of the intake valve 5, and as can be seen from FIG. From part A to stem guide 10
It gradually becomes wider as it approaches. The bulkhead 12 has a tip 13 located on the side closest to the inlet opening 6a of the intake port 6, and the bulkhead 12 further has a first side wall surface extending counterclockwise from the tip 13 to the stem guide 10 in FIG. 14a and the tip 1
3 and a second side wall surface 14b extending clockwise from 3 to the stem guide 10. The first side wall surface 14a extends from the distal end portion 13 through the side of the stem guide 10 to the vicinity of the side wall surface 15 of the spiral portion B, and forms a narrow portion 16 between the first side wall surface 14a and the spiral portion side wall surface 15. Next, the first side wall surface 14a is curved so as to be gradually spaced apart from the spiral portion side wall surface 15, and the first side wall surface 14a is connected to the stem guide 10.
Extends to. On the other hand, the second side wall surface 14b is
3 to the stem guide 10 almost immediately.

第1図から第9図を参照すると、入口通路部A
の側壁面17,18はほぼ垂直配置され、一方入
口通路部Aの上壁面19は渦巻部Bに向けて徐々
に下降する。入口通路部Aの側壁面17は渦巻部
Bの側壁面15に滑らかに接続され、入口通路部
Aの上壁面19は渦巻部Bの上壁面20に滑らか
に接続される。渦巻部Bの上壁面20は渦巻部B
と入口通路部Aの接続部から狭窄部16に向けて
下降しつつ徐々に巾を狭め、次いで狭窄部16を
通過すると徐々に巾を広げる。一方、入口通路部
6の底壁面21は第5図に示すように入口開口6
aの近傍においてはその全体がほぼ水平をなして
おり、側壁面17に隣接する底壁面部分21aは
第8図に示すように渦巻部Bに近づくに従つて隆
起して傾斜面を形成する。
Referring to FIGS. 1 to 9, the inlet passage section A
The side wall surfaces 17, 18 of are arranged substantially vertically, while the upper wall surface 19 of the inlet passage section A gradually descends towards the spiral section B. The side wall surface 17 of the inlet passage section A is smoothly connected to the side wall surface 15 of the spiral section B, and the upper wall surface 19 of the entrance passage section A is smoothly connected to the upper wall surface 20 of the spiral section B. The upper wall surface 20 of the spiral part B
The width gradually narrows while descending from the connecting part of the inlet passage part A toward the narrowed part 16, and then, after passing through the narrowed part 16, the width gradually widens. On the other hand, the bottom wall surface 21 of the inlet passage section 6 has an inlet opening 6 as shown in FIG.
The entire surface is substantially horizontal in the vicinity of point a, and the bottom wall surface portion 21a adjacent to the side wall surface 17 rises as it approaches the spiral portion B to form an inclined surface, as shown in FIG.

一方、隔壁12の第1側壁面14aはわずかば
かり傾斜した下向きの傾斜面からなり、第2側壁
面14bはほぼ垂直をなす。隔壁12の底壁面2
2は先端部13からステムガイド10に向うに従
つて入口通路部6の上壁面11との間隔が次第に
大きくなるように入口通路部Aから渦巻部Bに向
けてわずかばかり彎曲しつつ下降する。隔壁12
の底壁面22上には第4図のハツチングで示す領
域に底壁面22から下方に突出するリブ23が形
成され、このリブ23の底面および底壁面22は
わずかばかり彎曲した傾斜面を形成する。
On the other hand, the first side wall surface 14a of the partition wall 12 is a slightly downwardly inclined surface, and the second side wall surface 14b is substantially vertical. Bottom wall surface 2 of partition wall 12
2 descends from the inlet passage A toward the spiral part B while slightly curving so that the distance from the upper wall surface 11 of the inlet passage 6 gradually increases from the tip 13 toward the stem guide 10. Partition wall 12
A rib 23 is formed on the bottom wall surface 22 in a region shown by hatching in FIG. 4 and projects downward from the bottom wall surface 22, and the bottom surface of the rib 23 and the bottom wall surface 22 form a slightly curved inclined surface.

一方、シリンダヘツド3内には渦巻部Bの渦巻
終端部Cと入口通路部Aとを連通する分岐路24
が形成され、この分岐路24の入口部に開閉弁を
構成するロータリ弁25が配置される。この分岐
路24は隔壁12によつて入口通路部Aから分離
されており、分岐路24の下側空間全体が入口通
路部Aに連通している。分岐路24の上壁面26
はほぼ一様な巾を有し、渦巻終端部Cに向けて
徐々に下降して渦巻部Bの上壁面20に滑らかに
接続される。隔壁12の第2側壁面14bに対面
する分岐路24の側壁面27はほぼ垂直をなし、
更にこの側壁面27はほぼ入口通路部Aの側壁面
18の延長上に位置する。なお、第1図からわか
るように隔壁12上に形成されたリブ23はロー
タリ弁25の近傍から吸気弁5に向けて延びてい
る。
On the other hand, a branch passage 24 is provided in the cylinder head 3 that communicates the spiral end C of the spiral portion B with the inlet passage A.
is formed, and a rotary valve 25 constituting an on-off valve is arranged at the inlet of this branch path 24. This branch passage 24 is separated from the inlet passage part A by the partition wall 12, and the entire lower space of the branch passage 24 communicates with the inlet passage part A. Upper wall surface 26 of branch road 24
has a substantially uniform width, gradually descends toward the spiral terminal end C, and is smoothly connected to the upper wall surface 20 of the spiral portion B. A side wall surface 27 of the branch path 24 facing the second side wall surface 14b of the partition wall 12 is substantially vertical;
Furthermore, this side wall surface 27 is located approximately on an extension of the side wall surface 18 of the inlet passage section A. As can be seen from FIG. 1, the rib 23 formed on the partition wall 12 extends from the vicinity of the rotary valve 25 toward the intake valve 5.

第10図に示されるようにロータリ弁25はロ
ータリ弁ホルダ28と、ロータリ弁ホルダ28内
において回転可能に支持された弁軸29とにより
構成され、このロータリ弁ホルダ28はシリンダ
ヘツド3に穿設されたねじ孔30内に螺着され
る。弁軸29の下端部には薄板状の弁体31が一
体形成され、第1図に示されるようにこの弁体3
1は分岐路24の上壁面26から底壁面21まで
延びる。一方、弁軸29の上端部にはアーム32
が固定される。また、弁軸29の外周面上にはリ
ング溝33が形成され、このリング溝33内には
E字型位置決めリング34が嵌込まれる。更にロ
ータリ弁ホルダ28の上端部にはシール部材35
が嵌着され、このシール部材35によつて弁軸2
9のシール作用が行なわれる。
As shown in FIG. 10, the rotary valve 25 is composed of a rotary valve holder 28 and a valve shaft 29 rotatably supported within the rotary valve holder 28. The screw hole 30 is screwed into the screw hole 30. A thin plate-shaped valve body 31 is integrally formed at the lower end of the valve shaft 29, and as shown in FIG.
1 extends from the top wall surface 26 of the branch path 24 to the bottom wall surface 21. On the other hand, an arm 32 is attached to the upper end of the valve shaft 29.
is fixed. Further, a ring groove 33 is formed on the outer peripheral surface of the valve shaft 29, and an E-shaped positioning ring 34 is fitted into the ring groove 33. Furthermore, a sealing member 35 is provided at the upper end of the rotary valve holder 28.
is fitted, and the valve shaft 2 is fitted by this seal member 35.
9 sealing action is performed.

第11図を参照すると、ロータリ弁25の上端
部に固着されたアーム32の先端部は負圧ダイア
フラム装置40のダイアフラム41に固着された
制御ロツド42に連結ロツド43を介して連結さ
れる。負圧ダイアフラム装置40はダイアフラム
41によつて大気から隔離された負圧室44を有
し、この負圧室44内にダイアフラム押圧用圧縮
ばね45が挿入される。シリンダヘツド3には気
化器46を備えた吸気マニホルド47が固締さ
れ、負圧ダイアフラム装置40の負圧室44は負
圧導管48を介して負圧タンク38に連結され
る。この負圧タンク38は逆止弁39を介して吸
気マニホルド47内に連結され、斯くして負圧タ
ンク38内は吸気マニホルド47内に発生する最
大負圧に維持される。負圧導管48内にはソレノ
イド作動型切換弁49が挿入され、この切換弁4
9はソレノイドが付勢されたときに負圧室44と
負圧タンク38との連通を遮断して負圧室44を
大気に開放する。この切換弁49は電子制御ユニ
ツト50の出力端子に接続される。一方、電子制
御ユニツト50の入力端子には気化器スロツトル
弁51に応動する機関負荷検出用のスロツトルス
イツチ52と、機関回転数に応動する回転数スイ
ツチ53とが接続される。回転数スイツチ53は
4個の出力端子a,b,c,dを具備し、これら
の出力端子a,b,c,dは夫々機関回転数が
4000r.p.m以上、3600r.p.m以上、1900r.p.m以上
および1700r.p.m以上になつたときに高レベルと
なる。出力端子aはインバータ54を介してS−
Rフリツプフロツプ55のセツト入力端子Sに接
続され、出力端子bはS−Rフリツプフロツプ5
5のリセツト入力端子Rに接続される。また、出
力端子cはインバータ56を介してS−Rフリツ
プフロツプ57のセツト入力端子Sに接続され、
出力端子dはS−Rフリツプフロツプ57のリセ
ツト入力端子Rに接続される。一方、スロツトル
スイツチ52は一対の出力端子e,fを具備し、
これらの出力端子e,fは夫々スロツトル弁51
の開度が全閉位置に対して40゜以上および35゜以上
になつたときに高レベルとなる。出力端子eはイ
ンバータ58を介してS−Rフリツプフロツプ5
9のセツト入力端子Sに接続され、出力端子fは
S−Rフリツプフロツプ59のリセツト入力端子
Rに接続される。各S−Rフリツプフロツプ5
5,57,59はセツト入力端子Sに印加される
入力電圧の立下がりによつてセツトされ、このと
き各S−Rフリツプフロツプ55,57,59の
出力端子Qは高レベルとなる。一方、各S−Rフ
リツプフロツプ55,57,59はリセツト入力
端子Rに印加される入力電圧の立下りによつてリ
セツトされ、このとき各フリツプフロツプ55,
57,59の出力端子Qは低レベルとなる。電子
制御ユニツト50はS−Rフリツプフロツプ57
の出力を一方の入力とし、S−Rフリツプフロツ
プ59の出力を他方の入力とするアンドゲート6
0と、S−Rフリツプフロツプ55の出力を一方
の入力とし、アンドゲート60の出力を他方の入
力とするオアゲート61とを具備し、オアゲート
61の出力端子は電力増幅器62を介して切換弁
49のソレノイドに接続される。
Referring to FIG. 11, the tip of the arm 32 fixed to the upper end of the rotary valve 25 is connected via a connecting rod 43 to a control rod 42 fixed to a diaphragm 41 of a negative pressure diaphragm device 40. As shown in FIG. The negative pressure diaphragm device 40 has a negative pressure chamber 44 isolated from the atmosphere by a diaphragm 41, and a compression spring 45 for pressing the diaphragm is inserted into the negative pressure chamber 44. An intake manifold 47 having a carburetor 46 is fixed to the cylinder head 3, and a negative pressure chamber 44 of a negative pressure diaphragm device 40 is connected to a negative pressure tank 38 via a negative pressure conduit 48. This negative pressure tank 38 is connected to the intake manifold 47 via a check valve 39, and thus the inside of the negative pressure tank 38 is maintained at the maximum negative pressure generated in the intake manifold 47. A solenoid operated switching valve 49 is inserted into the negative pressure conduit 48, and this switching valve 4
9 cuts off communication between the negative pressure chamber 44 and the negative pressure tank 38 to open the negative pressure chamber 44 to the atmosphere when the solenoid is energized. This switching valve 49 is connected to an output terminal of an electronic control unit 50. On the other hand, an input terminal of the electronic control unit 50 is connected to a throttle switch 52 for detecting engine load, which responds to the carburetor throttle valve 51, and a rotation speed switch 53, which responds to the engine rotation speed. The rotation speed switch 53 is equipped with four output terminals a, b, c, and d, and these output terminals a, b, c, and d correspond to the engine rotation speed, respectively.
It becomes high level when it reaches 4000r.pm or more, 3600r.pm or more, 1900r.pm or more, and 1700r.pm or more. Output terminal a is connected to S- via inverter 54.
It is connected to the set input terminal S of the R flip-flop 55, and the output terminal b is connected to the set input terminal S of the S-R flip-flop 55.
It is connected to the reset input terminal R of No.5. Further, the output terminal c is connected to the set input terminal S of the S-R flip-flop 57 via the inverter 56.
Output terminal d is connected to reset input terminal R of S-R flip-flop 57. On the other hand, the throttle switch 52 includes a pair of output terminals e and f,
These output terminals e and f are connected to the throttle valve 51, respectively.
The high level occurs when the opening angle of the valve is 40° or more and 35° or more relative to the fully closed position. Output terminal e is connected to S-R flip-flop 5 via inverter 58.
The output terminal f is connected to the reset input terminal R of the S-R flip-flop 59. Each S-R flip-flop 5
5, 57, and 59 are set by the fall of the input voltage applied to the set input terminal S, and at this time, the output terminal Q of each S-R flip-flop 55, 57, and 59 becomes high level. On the other hand, each S-R flip-flop 55, 57, 59 is reset by the fall of the input voltage applied to the reset input terminal R, and at this time each flip-flop 55, 57, 59 is reset.
The output terminals Q of 57 and 59 become low level. The electronic control unit 50 is an S-R flip-flop 57.
AND gate 6 which takes the output of S-R flip-flop 59 as one input and the output of S-R flip-flop 59 as the other input.
0 and an OR gate 61 which takes the output of the S-R flip-flop 55 as one input and the output of the AND gate 60 as the other input, and the output terminal of the OR gate 61 is connected to the switching valve 49 via a power amplifier 62. Connected to the solenoid.

第11図からわかるように機関回転数が4000r.
p.mよりも高くなると回転数スイツチ53の出力
端子aが高レベルとなり、その結果インバータ5
4の出力電圧の立下りによつてS−Rフリツプ5
5がセツトされるためにS−Rフリツプフロツプ
55の出力端子Qが高レベルとなる。斯くしてこ
のとき切換弁49のソレノイドが付勢され、負圧
ダイアフラム装置40の負圧室44が大気に開放
される。負圧室44が大気に開放されるとダイア
フラム41は圧縮ばね45のばね力によつてロー
タリ弁25に向けて移動し、その結果ロータリ弁
25が回動せしめられてロータリ弁25が分岐路
24を開弁する。一方、機関回転数が3600r.p.m
よりも低くなると回転数スイツチ53の出力端子
bが低レベルとなるためにS−Rフリツプフロツ
プ55はリセツトされ、S−Rフリツプフロツプ
55の出力端子Qが低レベルとなる。斯くしてこ
のとき切換弁49のソレノイドが消勢され、負圧
室44が負圧タンク38に連結されるために負圧
室44内には負圧が加わる。その結果ダイアフラ
ム41が圧縮ばね45に抗して負圧室44に向け
て移動するためにロータリ弁25が回動せしめら
れてロータリ弁25が分岐路24を閉鎖する。
As you can see from Figure 11, the engine speed is 4000r.
When it becomes higher than pm, the output terminal a of the rotation speed switch 53 becomes high level, and as a result, the inverter 5
Due to the fall of the output voltage of 4, the S-R flip 5
5 is set, the output terminal Q of the S-R flip-flop 55 goes high. At this time, the solenoid of the switching valve 49 is energized, and the negative pressure chamber 44 of the negative pressure diaphragm device 40 is opened to the atmosphere. When the negative pressure chamber 44 is opened to the atmosphere, the diaphragm 41 moves toward the rotary valve 25 by the spring force of the compression spring 45, and as a result, the rotary valve 25 is rotated and the rotary valve 25 is moved toward the branch path 24. Open the door. On the other hand, the engine speed is 3600r.pm
When the number of rotations becomes lower than that, the output terminal b of the rotation speed switch 53 becomes a low level, so that the S-R flip-flop 55 is reset, and the output terminal Q of the S-R flip-flop 55 becomes a low level. Thus, at this time, the solenoid of the switching valve 49 is deenergized, and since the negative pressure chamber 44 is connected to the negative pressure tank 38, negative pressure is applied within the negative pressure chamber 44. As a result, the diaphragm 41 moves toward the negative pressure chamber 44 against the compression spring 45, so that the rotary valve 25 is rotated and the rotary valve 25 closes the branch passage 24.

一方、機関回転数が1900r.p.m以上となりかつ
スロツトル弁51の開度が40゜以上になるとS−
Rフリツプフロツプ57,59は共にセツトさ
れ、その結果アンドゲート60の出力端子が高レ
ベルとなつて切換弁49のソレノイドが付勢され
るためにロータリ弁25が開弁せしめられる。こ
のように機関回転数が3600r.p.m以下となつても
機関回転数が1900r.p.m以上でありかつスロツト
ル弁51の開度が40゜以上のときはロータリ弁2
5が開弁せしめられる。一方、機関回転数が
1700r.p.m以下になるとS−Rフリツプフロツプ
55,57の出力電圧は共に低レベルとなるため
に切換弁49のソレノイドは消勢され、斯くして
ロータリ弁25は開弁せしめられる。一方、スロ
ツトル弁51の開度が35゜以下のときはS−Rフ
リツプフロツプ59がリセツトされるためにアン
ドゲート60の出力電圧は低レベルとなるので機
関回転数が1900r.p.mを少し越えてもはロータリ
弁25は閉弁され続けるが、このとき機関回転数
が4000r.p.mよりも高くなるとS−Rフリツプフ
ロツプ55がセツトされるためにオアゲート61
の出力電圧は高レベルとなり、斯くしてロータリ
弁25は開弁せしめられる。従つてロータリ弁2
5の開閉弁状態は第12図に示すようになる。即
ち、第12図において機関回転数Nおよびスロツ
トル弁開度Pが実線よりも上方のハツチング領域
になるとロータリ弁25が開弁し、機関回転数N
およびスロツトル弁開度Pが破線よりも下方のハ
ツチング領域になるとロータリ弁25が閉弁す
る。なお、第12図において実線と破線の間の領
域はロータリ弁25が以前の状態をそのまま維持
している、いわゆるヒステリシス領域である。
On the other hand, when the engine speed becomes 1900 rpm or more and the opening degree of the throttle valve 51 becomes 40° or more, S-
The R flip-flops 57 and 59 are set together, and as a result, the output terminal of the AND gate 60 goes high and the solenoid of the switching valve 49 is energized, thereby opening the rotary valve 25. In this way, even if the engine speed is 3600r.pm or less, if the engine speed is 1900r.pm or more and the opening degree of the throttle valve 51 is 40° or more, the rotary valve 2
5 is forced to open. On the other hand, the engine speed
When the voltage becomes less than 1700 rpm, both the output voltages of the S-R flip-flops 55 and 57 become low levels, so the solenoid of the switching valve 49 is deenergized, and the rotary valve 25 is opened. On the other hand, when the opening degree of the throttle valve 51 is less than 35 degrees, the S-R flip-flop 59 is reset and the output voltage of the AND gate 60 is at a low level, so even if the engine speed slightly exceeds 1900 rpm. The rotary valve 25 continues to be closed, but at this time, when the engine speed becomes higher than 4000 rpm, the S-R flip-flop 55 is set and the OR gate 61 is closed.
The output voltage becomes a high level, and thus the rotary valve 25 is opened. Therefore, rotary valve 2
The opening/closing state of the valve No. 5 is as shown in FIG. That is, when the engine speed N and the throttle valve opening P reach the hatched area above the solid line in FIG. 12, the rotary valve 25 opens and the engine speed N
When the throttle valve opening degree P reaches a hatched region below the broken line, the rotary valve 25 closes. The region between the solid line and the broken line in FIG. 12 is a so-called hysteresis region in which the rotary valve 25 maintains its previous state.

第12図からわかるように機関低速低負荷運転
時および機関低速高負荷運転時にはロータリ弁2
5が分岐路24を閉鎖している。このとき、入口
通路部A内に送り込まれた混合気の一部は上壁面
19,20に沿つて進み、残りの混合気のうちの
一部の混合気はロータリ弁25に衝突して入口通
路部Aの側壁面17の方へ向きを変えた後に渦巻
部Bの側壁面15に沿つて進む。前述したように
上壁面19,20の巾は狭窄部16に近づくに従
つて次第に狭くなるために上壁面19,20に沿
つて流れる混合気の流路は次第に狭ばまり、斯く
して上壁面19,20に沿う混合気流は次第に増
速される。更に、前述したように隔壁12の第1
側壁面14aは渦巻部Bの側壁面15の近傍まで
延びているので上壁面19,20に沿つて進む混
合気流は渦巻部Bの側壁面15上に押しやられ、
次いで側壁面15に沿つて進むために渦巻部B内
には強力な旋回流が発生せしめられる。次いで混
合気は旋回しつつ吸気弁5とその弁座間に形成さ
れる間隙を通つて燃焼室4内に流入して燃焼室4
内に強力な旋回流を発生せしめる。このように機
関低速低負荷運転時には強力な旋回流が燃焼室4
内に発生せしめられて燃焼速度が速められるので
安定した燃焼を得ることができ、また機関低速高
負荷運転時にも強力な旋回流が燃焼室4内に発生
せしめられて燃焼速度が速められるのでノツキン
グの発生を抑制することができる。
As can be seen from Figure 12, when the engine is running at low speed and low load, and when the engine is running at low speed and high load, the rotary valve 2
5 closes the branch road 24. At this time, part of the air-fuel mixture sent into the inlet passage A advances along the upper wall surfaces 19 and 20, and part of the remaining air-fuel mixture collides with the rotary valve 25 and flows into the inlet passage. After changing its direction toward the side wall surface 17 of section A, it proceeds along the side wall surface 15 of spiral section B. As mentioned above, the widths of the upper wall surfaces 19 and 20 gradually become narrower as they approach the narrowed portion 16, so the flow path for the air-fuel mixture flowing along the upper wall surfaces 19 and 20 gradually narrows, and thus the width of the upper wall surfaces The speed of the air mixture flow along lines 19 and 20 is gradually increased. Furthermore, as described above, the first part of the partition wall 12
Since the side wall surface 14a extends to the vicinity of the side wall surface 15 of the spiral portion B, the air mixture flowing along the upper wall surfaces 19 and 20 is forced onto the side wall surface 15 of the spiral portion B.
Next, a strong swirling flow is generated within the swirl portion B to proceed along the side wall surface 15. Next, the mixture swirls and flows into the combustion chamber 4 through the gap formed between the intake valve 5 and its valve seat.
Generates a strong swirling flow inside. In this way, when the engine is operating at low speed and low load, a strong swirling flow flows into the combustion chamber 4.
The combustion is generated within the combustion chamber 4, accelerating the combustion rate, so stable combustion can be obtained, and even when the engine is operating at low speed and high load, a strong swirling flow is generated within the combustion chamber 4, accelerating the combustion rate, so that no knocking can be achieved. The occurrence of can be suppressed.

一方、第12図に示されるように機関高速高負
荷運転時および機関高速低負荷運転時にはロータ
リ弁25が開弁するので入口通路部A内に送り込
まれた混合気は大別すると3つの流れに分流され
る。即ち、第1の流れは隔壁12の第1側壁面1
4aと入口通路部Aの側壁面17間に流入し、次
いで渦巻部Aの上壁面20に沿つて旋回しつつ流
れる混合気流であり、第2の流れは分岐路24を
介して渦巻部B内に流入する混合気流であり、第
3の流れは入口通路部Aの底壁面21に沿つて渦
巻部B内に流入する混合気流である。。分岐路2
4の流れ抵抗は第1側壁面14aと側壁面17間
の流れ抵抗に比べて小さく、従つて第2の混合気
流の方が第1の混合気流よりも多くなる。更に、
渦巻部B内を旋回しつつ流れる第1混合気流の流
れ方向は第2混合気流によつて下向きに偏向さ
れ、斯くして第1混合気流の旋回力が弱められる
ことになる。このように流れ抵抗の小さな分岐路
24からの混合気流が増大し、更に混合気流の流
れ方向が下向きに偏向されるので高い充填効率が
得られることになる。また、前述したように隔壁
21の底壁面22は下向きの傾斜面から形成され
ているので第3の混合気流はこの傾斜面に案内さ
れて流れ方向が下向きに偏向され、斯くして更に
高い充填効率が得られることになる。
On the other hand, as shown in Fig. 12, the rotary valve 25 opens during engine high-speed, high-load operation and during engine high-speed, low-load operation, so the air-fuel mixture sent into the inlet passage A is roughly divided into three flows. Diverted. That is, the first flow flows through the first side wall surface 1 of the partition wall 12.
4a and the side wall surface 17 of the inlet passage section A, and then flows while swirling along the upper wall surface 20 of the spiral section A, and the second flow flows into the spiral section B via the branch passage 24. The third flow is a mixed air flow that flows into the swirl portion B along the bottom wall surface 21 of the inlet passage portion A. . Branch road 2
4 is smaller than the flow resistance between the first side wall surface 14a and the side wall surface 17, and therefore the second mixed air flow is larger than the first mixed air flow. Furthermore,
The flow direction of the first air mixture flowing while swirling in the swirl portion B is deflected downward by the second air mixture, thus weakening the swirling force of the first air mixture. In this way, the mixed air flow from the branch passage 24 with low flow resistance is increased, and the flow direction of the mixed air flow is further deflected downward, so that high filling efficiency can be obtained. Further, as mentioned above, since the bottom wall surface 22 of the partition wall 21 is formed from a downwardly inclined surface, the third mixed air flow is guided by this inclined surface and the flow direction is deflected downward, thus achieving an even higher filling. Efficiency will be gained.

発明の効果 機関低速低負荷運転時はもとより機関低速高負
荷運転時であつても燃焼室内に強力な旋回流を発
生せしめることができるので低速高負荷運転時に
おけるノツキングの発生を抑制することができ
る。また、機関高速高負荷運転時はもとより機関
高速低負荷運転時であつても高い充填効率を得る
ことができるので高速低負荷運転時に高い出力ト
ルクを得ることができる。更に、隔壁の下方に下
側空間を形成することによつてロータリ弁が開弁
したときに流路面積が増大するばかりでなく吸気
ポートの下方空間全体がストレートポートのよう
になり、斯くして吸入空気量の多い機関高速高負
荷運転時に高い充填効率を得ることができる。
Effects of the Invention A strong swirling flow can be generated in the combustion chamber not only when the engine is running at low speed and with a low load, but also when the engine is running at a low speed and with a high load, so it is possible to suppress the occurrence of knocking during low speed and high load operation. . In addition, high charging efficiency can be obtained not only during high-speed, high-load operation of the engine, but also during high-speed, low-load operation of the engine, so that high output torque can be obtained during high-speed, low-load operation. Furthermore, by forming a lower space below the partition wall, not only does the flow passage area increase when the rotary valve opens, but the entire lower space of the intake port becomes like a straight port. High charging efficiency can be obtained during engine high-speed, high-load operation with a large amount of intake air.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第2図の−線に沿つてみた本発明
に係る内燃機関の側面断面図、第2図は第1図の
−線に沿つてみた平面断面図、第3図はヘリ
カル型吸気ポートの形状を図解的に示す側面図、
第4図はヘリカル型吸気ポートの形状を図解的に
示す平面図、第5図は第3図および第4図の−
線に沿つてみた断面図、第6図は第3図および
第4図の−線に沿つてみた断面図、第7図は
第3図および第4図の−線に沿つてみた断面
図、第8図は第3図および第4図の−線に沿
つてみた断面図、第9図は第3図および第4図の
−線に沿つてみた断面図、第10図はロータ
リ弁の側面断面図、第11図はロータリ弁の駆動
制御装置を示す図、第12図はロータリ弁が開弁
或いは閉弁せしめられる機関回転数とスロツトル
弁開度の関係を示す線図である。 4……燃焼室、6……ヘリカル型吸気ポート、
12……隔壁、24……分岐路、25……ロータ
リ弁、52……スロツトルスイツチ、53……回
転数スイツチ。
1 is a side sectional view of an internal combustion engine according to the present invention taken along the - line in FIG. 2, FIG. 2 is a plan sectional view taken along the - line in FIG. 1, and FIG. 3 is a helical type intake A side view schematically showing the shape of the port,
Fig. 4 is a plan view schematically showing the shape of the helical intake port, and Fig. 5 is a -
6 is a sectional view taken along the - line of FIGS. 3 and 4; FIG. 7 is a sectional view taken along the - line of FIGS. 3 and 4; Figure 8 is a sectional view taken along the - line in Figures 3 and 4, Figure 9 is a sectional view taken along the - line in Figures 3 and 4, and Figure 10 is a side view of the rotary valve. A sectional view, FIG. 11 is a diagram showing a rotary valve drive control device, and FIG. 12 is a diagram showing the relationship between the engine rotational speed at which the rotary valve is opened or closed and the throttle valve opening. 4... Combustion chamber, 6... Helical intake port,
12... Bulkhead, 24... Diversion path, 25... Rotary valve, 52... Throttle switch, 53... Rotation speed switch.

Claims (1)

【特許請求の範囲】[Claims] 1 吸気弁周りに形成された渦巻部と、該渦巻部
に接線状に接続されかつほぼまつすぐに延びる入
口通路部とにより構成されたヘリカル型吸気ポー
トにおいて、吸気ポート上壁面から下方に突出し
かつ吸入空気流の流れ方向に延びる隔壁を吸気ポ
ート内に形成して該隔壁の両側に入口通路部と該
入口通路部から分岐した分岐路とを形成し、該隔
壁の下方に入口通路部と分岐路とを連通する下側
空間を形成すると共に分岐路を渦巻部の渦巻終端
部に連通し、機関回転数および機関負荷に応動す
る開閉弁を上記分岐路内に配置して機関負荷が予
め定められた設定負荷よりも大きなときは機関回
転数が予め定められた第1の設定回転数よりも高
くなつたときに該開閉弁を開弁し、機関負荷が上
記設定負荷よりも小さなときは機関回転数が上記
第1設定回転数よりも高い第2設定回転数よりも
高くなつたときに該開閉弁を開弁するようにした
ヘリカル型吸気ポートの流路制御装置。
1. In a helical intake port configured by a spiral portion formed around the intake valve and an inlet passage connected tangentially to the spiral portion and extending almost straight, the helical intake port projects downward from the upper wall surface of the intake port. A partition wall extending in the flow direction of the intake air flow is formed in the intake port, an inlet passage portion and a branch passage branching from the inlet passage portion are formed on both sides of the partition wall, and an inlet passage portion and a branch passage are formed below the partition wall. A branch passage is connected to the spiral end of the spiral part, and an on-off valve that responds to the engine speed and engine load is disposed within the branch passage, so that the engine load is predetermined. When the engine load is higher than the predetermined set load, the opening/closing valve is opened when the engine speed becomes higher than the predetermined first set speed, and when the engine load is smaller than the above set load, the engine is opened. A flow path control device for a helical intake port, which opens the on-off valve when the rotational speed becomes higher than a second set rotational speed that is higher than the first set rotational speed.
JP58057780A 1983-04-04 1983-04-04 Flow passage control device for herical type intake port Granted JPS59183026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58057780A JPS59183026A (en) 1983-04-04 1983-04-04 Flow passage control device for herical type intake port

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58057780A JPS59183026A (en) 1983-04-04 1983-04-04 Flow passage control device for herical type intake port

Publications (2)

Publication Number Publication Date
JPS59183026A JPS59183026A (en) 1984-10-18
JPS6350527B2 true JPS6350527B2 (en) 1988-10-11

Family

ID=13065379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58057780A Granted JPS59183026A (en) 1983-04-04 1983-04-04 Flow passage control device for herical type intake port

Country Status (1)

Country Link
JP (1) JPS59183026A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730912Y2 (en) * 1986-08-08 1995-07-19 日産自動車株式会社 Intake control system for diesel engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539348B2 (en) * 1975-08-11 1980-10-09

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539348U (en) * 1978-09-07 1980-03-13

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5539348B2 (en) * 1975-08-11 1980-10-09

Also Published As

Publication number Publication date
JPS59183026A (en) 1984-10-18

Similar Documents

Publication Publication Date Title
JPS6158921A (en) Intake device of internal-combustion engine
JPS6238533B2 (en)
JPS6238537B2 (en)
JPS5932647B2 (en) Helical intake port for internal combustion engines
JPS6350527B2 (en)
JPS6236139B2 (en)
JPS6335166Y2 (en)
JPS6229623Y2 (en)
JPS6231619Y2 (en)
JPS6229624Y2 (en)
JPH021966B2 (en)
JPS58204930A (en) Helical intake port
JPS6239672B2 (en)
JPS6239669B2 (en)
JPS6238535B2 (en)
JPH027236Y2 (en)
JPS6238529B2 (en)
JPH0133790Y2 (en)
JPS6236138B2 (en)
JPS6238531B2 (en)
JPS6338336Y2 (en)
JPS6323545Y2 (en)
JPS6238534B2 (en)
JPS58222917A (en) Intake port of helical type
JPH0415935Y2 (en)