JPS58199538A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS58199538A JPS58199538A JP8266882A JP8266882A JPS58199538A JP S58199538 A JPS58199538 A JP S58199538A JP 8266882 A JP8266882 A JP 8266882A JP 8266882 A JP8266882 A JP 8266882A JP S58199538 A JPS58199538 A JP S58199538A
- Authority
- JP
- Japan
- Prior art keywords
- film
- substrate
- oxide film
- crystal layer
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76224—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
- H01L21/76232—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、酸化膜により素子間分離を行なう半導体装置
の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device in which elements are isolated using an oxide film.
従来、高集積回路の素子間分離法として、例えばI、o
cog法(選択酸化法)を用いた半導体装置の製造方法
が知られている。この方法は、素子分離用酸化膜の膜厚
のWに当る部分を選択酸化によりシリコン基板表面から
下に設けるものである。しかしながら、かかる方法によ
ると、熱酸化時、耐酸化性マスクとして用いられるシリ
コン窒化膜下に横方向から酸化が進行する、いわゆるバ
ードビークを生じる。その結果、素子領域が両側で短か
くなシ、素子の集積度が低下するという欠点があった。Conventionally, as a method for separating elements in highly integrated circuits, for example, I, o
A method of manufacturing a semiconductor device using the COG method (selective oxidation method) is known. In this method, a portion of the element isolation oxide film corresponding to the film thickness W is provided below the surface of the silicon substrate by selective oxidation. However, according to this method, during thermal oxidation, oxidation progresses laterally under the silicon nitride film used as an oxidation-resistant mask, resulting in so-called bird's beak. As a result, the device region is short on both sides, resulting in a reduction in the degree of device integration.
このよう々ことから、最近、ポリシリコンを用いた選択
酸化技術(5EPOX)や埋込み酸化技術(BOX)等
の素子分離法による半導体装置の製造方法が提案されて
いる。For these reasons, recently, methods for manufacturing semiconductor devices using element isolation methods such as selective oxidation technology (5EPOX) using polysilicon and buried oxidation technology (BOX) have been proposed.
始めに、5EPOXをMOS )ランジスタの製造方法
に適用した場合について第1図(a)〜(g)に基づい
て説明する。まず、p型シリコン基板1上に第1の5I
O2膜21.多結晶シリコン層3.第2のSiO□膜2
2全22形成する(第1図(a)図示)。First, a case in which 5EPOX is applied to a method of manufacturing a MOS transistor will be described based on FIGS. 1(a) to 1(g). First, a first 5I layer is placed on a p-type silicon substrate 1.
O2 membrane 21. Polycrystalline silicon layer 3. Second SiO□ film 2
2 (as shown in FIG. 1(a)).
つづいて、全面に813N4膜を堆積し、パターニング
して513N4パターン4を形成する(第1図(b)図
示)。ひきつづき、この813N4パターン4をマスク
としてp型不純物をイオン注入し、活性化して基板1に
p+型のチャネルストッパ領域5・・・を形成する。次
に、513N4ノ母ターン4を耐酸化性マスクとして多
結晶シリコン層3を選択酸化し、厚い酸化膜6を形成す
る(第1図(C)図示)。次いで、前記81.N4/千
ターン4.第2の5IO2膜22.5t3N4ノ千ター
ン4下の多結晶シリコン層3及び第1のStO□膜21
全21除去して基板1表面の一部を露出する。この時、
厚い酸化膜6のオーバーハング部の多結晶シリコン層3
も除去されるため、第1図(d)に示す如く素子領域側
の部分が横方向に凸状には9出した形状の素子間分離膜
7が形成される。この後、常法により露出する基板1上
にダート酸化膜8を形成し、このf−)酸化膜上にダー
ト電極9を形“成し、更に基板1にn 型のソース、ド
レイン(図示せず)を形成してnチャネルMO8)ラン
ノスタを製造する(第1図(、)図示)。しかしながら
、このような5EPOXを用いた製造法によれば、前述
したバーズビークを著しく抑制して素子の高集積化を図
れるものの、513N4/#ターン4をマスクとして深
い位置にある基板にインプラを行なうためその作業が困
難であるとともに、素子分離膜7の段差部が急なためf
f−)電極9の形成時に断切れの恐れがあった。Subsequently, an 813N4 film is deposited on the entire surface and patterned to form a 513N4 pattern 4 (as shown in FIG. 1(b)). Subsequently, using this 813N4 pattern 4 as a mask, p-type impurities are ion-implanted and activated to form p+-type channel stopper regions 5 in the substrate 1. Next, the polycrystalline silicon layer 3 is selectively oxidized using the 513N4 mother turn 4 as an oxidation-resistant mask to form a thick oxide film 6 (as shown in FIG. 1C). Next, the above 81. N4/1,000 turns 4. The polycrystalline silicon layer 3 under the second 5IO2 film 22.5t3N4 thousand turns 4 and the first StO□ film 21
All 21 are removed to expose a part of the surface of the substrate 1. At this time,
Polycrystalline silicon layer 3 in the overhang part of thick oxide film 6
As shown in FIG. 1(d), an inter-element isolation film 7 having a convex 9-shaped portion on the element region side in the lateral direction is formed. Thereafter, a dirt oxide film 8 is formed on the exposed substrate 1 by a conventional method, a dirt electrode 9 is formed on this f-) oxide film, and an n-type source and drain (not shown) are formed on the substrate 1. An n-channel MO8) runnostar is manufactured by forming an n-channel MO8) (as shown in FIG. Although integration can be achieved, it is difficult to perform implantation into the substrate at a deep position using 513N4/# turn 4 as a mask, and the steps of the element isolation film 7 are steep, making it difficult to perform f.
f-) There was a risk of breakage during formation of the electrode 9.
次ニ、5EPOXヲMOSトランジスタの製造方法に適
用した場合について第2図(&)〜(f)に基づいて説
明する。まず、p型シリコン基板1上に例1fAノ層を
蒸着しi4ターニングしてAノ・臂ターンIOを形成す
る(第2図(a)図示)。つづいて、と(7)Aツバタ
ーン10をマスクとして露出する基板1をRIE法によ
り適宜除去し、Aツノ(ターン10下に島状部11を形
成する。次に、基板Iを熱酸化処理して基板1表面及び
前記島状部IZO側部に第3のSiO2膜23全23す
る。ひきつづき、前記Aツバターン10をマスクとして
基板1表面にp型不純物をイオン注入し、活性化してp
+型チャネルストッパ領域5・・・を形成した後、全面
にプラズマS10□膜I2を形成する(第2図(b)図
示)。次いで、このプラズマ5102膜I2を希釈し九
HF溶液で処理する。このとき、前記プラズマ5IO2
膜12が島状部IIのAツバターン20上に残存すると
ともに、島状部11を除く第3のStO□膜23上23
上状部1ノ5−
表面と同レベルまで残存する。なお、第3の5I02膜
23上の残存プラズマ8102膜12’と島状部11と
の間にV溝13が形成される(第2図(c) 図示)。Next, a case in which the present invention is applied to a method of manufacturing a 5EPOX MOS transistor will be described based on FIGS. 2(&) to (f). First, a layer of Example 1fA is deposited on a p-type silicon substrate 1 and subjected to i4 turning to form an A/arm turn IO (as shown in FIG. 2(a)). Subsequently, (7) the exposed substrate 1 is appropriately removed by RIE using the A-horn turn 10 as a mask, and an island-shaped portion 11 is formed under the A-horn (turn 10).Next, the substrate I is subjected to thermal oxidation treatment. A third SiO2 film 23 is then deposited on the surface of the substrate 1 and on the side of the island IZO.Subsequently, p-type impurities are ion-implanted into the surface of the substrate 1 using the A-shaped turn 10 as a mask, and activated to form a p-type impurity.
After forming the + type channel stopper region 5..., a plasma S10□ film I2 is formed on the entire surface (as shown in FIG. 2(b)). This plasma 5102 film I2 is then diluted and treated with a HF solution. At this time, the plasma 5IO2
The film 12 remains on the A-tube turn 20 of the island portion II, and the third StO□ film 23 excluding the island portion 11 23
Upper part 1-5 - Remains at the same level as the surface. Note that a V-groove 13 is formed between the residual plasma 8102 film 12' on the third 5I02 film 23 and the island portion 11 (as shown in FIG. 2(c)).
更ニ、Aツノ量ターンZOをエツチング除去して島状部
11上に残存したプラズマ5IO2膜をリフトオフした
後、全面にCVD5iO□膜14゜レゾスト膜15を順
次形成する(第2図(d)図示)。Further, after removing the A horn amount turn ZO by etching and lifting off the plasma 5IO2 film remaining on the island portion 11, a CVD 5iO□ film 14°resist film 15 is sequentially formed on the entire surface (FIG. 2(d)). (Illustrated).
ひきつづき、RIE法により前記レゾスト膜15゜CV
D5 I O2膜I4をその除去面が前記島状部11表
面と同レベルになるまで除去してV溝13にのみCVD
酸化膜14′を残存させ、この残存CVDSiO2膜1
4′と前記残存プラズマ5to2膜12’とにより素子
間分離を行なう。この後、常法により露出する基板1上
にダート酸化膜8を形成し、このf−)酸化膜8上にゲ
ート電1極9を形成し、更に基板1にn+型のソース領
域、ドレイン領域(図示せず)を形成してnチャネルM
O8)ランソスタを製造する(第2図(f)図示)。し
かしながら、このような製造方法によれば、Aツノリー
ン10をマスクとしてRIE法により基板1を選 6−
択的に除去するため、ldl□ターン10と雰囲ガスと
が反応し、露出する基板1の表面が汚染される恐れがあ
った。Subsequently, the resist film was heated to 15°CV by RIE method.
D5 Remove the IO2 film I4 until its removed surface is at the same level as the surface of the island-shaped portion 11, and apply CVD only to the V-groove 13.
The oxide film 14' remains, and this remaining CVDSiO2 film 1
4' and the residual plasma 5to2 film 12' perform isolation between elements. After that, a dirt oxide film 8 is formed on the exposed substrate 1 by a conventional method, a gate electrode 1 is formed on this f-) oxide film 8, and an n+ type source region and a drain region are further formed on the substrate 1. (not shown) to form an n-channel M
O8) Manufacture a lansosta (as shown in FIG. 2(f)). However, according to such a manufacturing method, since the substrate 1 is selectively removed by the RIE method using the AtsunoLean 10 as a mask, the ldl□turn 10 and the atmospheric gas react, and the exposed substrate 1 is removed. There was a risk of surface contamination.
本発明は上記事情に鑑みてなされたもので、電極の断切
れやA!パターンによる基板面への汚染を防止し得る半
導体装置の製造方法を提供することを目的とするもので
ある。The present invention was made in view of the above-mentioned circumstances, and eliminates the problem of electrode breakage and A! It is an object of the present invention to provide a method for manufacturing a semiconductor device that can prevent contamination of a substrate surface due to a pattern.
本発明者はSt基板を高真空中でsi蒸着を行なうと、
ある基板温度以上で5i02膜のエツチングが起こり、
5102膜のエツチングとSl基板面上の81単結晶層
成長によって選択成長が可能であるという事実に基づい
て本発明を完成するに至った。即ち、本発明は、第1導
電型の半導体基板上に酸化膜を形成し、素子形成予定部
に対応する該酸化膜を除去して開孔部、、を設けた後、
該基板へのエピタキシャル成長により前記酸化膜をエツ
チングして該酸化膜の厚みを減少させるとともに、前記
開孔部から露出する基板上に残存する酸化膜と略同厚の
第1導電型の半導体単結晶層を形成することによって、
素子形成領域素面と残存酸化膜安置を同レベルとし、も
って後工程の素子間分離の容易化及びダート電極等の配
線の断切れや基板面への汚染の阻止を図ったことを骨子
とする。The present inventor has discovered that when Si evaporation is performed on a St substrate in a high vacuum,
Etching of the 5i02 film occurs above a certain substrate temperature,
The present invention was completed based on the fact that selective growth is possible by etching the 5102 film and growing the 81 single crystal layer on the Sl substrate surface. That is, in the present invention, after forming an oxide film on a semiconductor substrate of a first conductivity type and removing the oxide film corresponding to a portion where an element is to be formed to provide an opening portion,
The oxide film is etched by epitaxial growth on the substrate to reduce the thickness of the oxide film, and a semiconductor single crystal of the first conductivity type having approximately the same thickness as the oxide film remaining on the substrate exposed from the opening is formed. By forming layers,
The main idea is to keep the bare surface of the element formation area and the residual oxide film at the same level, thereby facilitating isolation between elements in subsequent processes, and preventing disconnection of wiring such as dirt electrodes and contamination of the substrate surface.
本発明を、nチャネルMO8)ランゾスタに適用した場
合について第3図(、)〜(f)に基づいて説明する・
〔1〕 まず、p+型シリコン基板21上に熱処理を
施して厚さ約2μmの810□膜22を形成した(第3
図(a)図示)。つづいて、この5io2膜22のうち
素子形成部分に対応する部分を写真蝕刻法により除去し
開孔部23を設けた(第3図(b)図示)。次いで、前
記基板21を所定の真空装置にセットし、高木、、空中
でボロンを濃度をかえてドーピングしながら基板温度1
000℃、蒸着量6μm/hrの条件下で10分間SS
薫蒸を行なった。その結果、第3図(C)に示す如く開
孔部23から露出する基板21上にp型81単結晶層2
4、p−型81単結晶層25からなる厚さ1μmの単結
晶層が形成されるとともに、SlO□膜22が膜厚の1
hに対応する部分がエツチングされた。そして、厚さ1
μmの8102膜22′が残存し、この残存5IO2膜
22′と前記単結晶層間にV溝26が形成された。The case where the present invention is applied to an n-channel MO8) Lanzostar will be explained based on FIGS. A 810□ film 22 of 810□ was formed (third
Figure (a) shown). Subsequently, a portion of the 5io2 film 22 corresponding to the element formation portion was removed by photolithography to form an opening 23 (as shown in FIG. 3(b)). Next, the substrate 21 is set in a predetermined vacuum apparatus, and the substrate temperature is increased to 1 while doping boron in the air at different concentrations.
SS for 10 minutes at 000°C and a deposition rate of 6 μm/hr.
Fumigation was performed. As a result, as shown in FIG. 3(C), a p-type 81 single crystal layer 2 is formed on the substrate 21 exposed through the opening 23.
4. A 1 μm thick single crystal layer consisting of the p-type 81 single crystal layer 25 is formed, and the SlO□ film 22 is formed with a thickness of 1 μm.
The part corresponding to h was etched. and thickness 1
A 8102 μm thick film 22' remained, and a V-groove 26 was formed between this remaining 5IO2 film 22' and the single crystal layer.
〔1)〕 次に、前記V溝26が十分埋まるように全
面にCVD酸化膜27を形成した後、CvD酸化膜27
上にスぎンナにニジレゾスト膜28を塗布した(第3図
(d)図示)、なお、レジスト膜28は粘性を有するた
め、その表面は平坦となる。つづいて、RIE法により
前記レゾスト膜28及びCVD酸化膜27をそれらのエ
ツチング速度が1:1となる条件下で、前記p−型81
単結晶層25表面及び残存8102膜22′表面が露出
するまで除去した。その結果、前記V溝26にのみCV
D酸化膜27′が残り、この残存CVD酸化膜27′と
残存sio□膜22′により素子間分離が行なわれた(
第3図(−)図示)。この後、常法によ9 −
り前記p−型St単結晶層25上に部分的にr−)酸化
膜29を形成し、このゲート酸化膜29をマスクとして
前記p−型S1単結晶層25にn型ソース領域30、ド
レイン領域31を形成し、全面にA7膜を蒸着しこれを
パターニングして前記ダート酸化膜29上にダート電極
32を、前記ソース領域so、ドレイン3Zの一部分に
夫々接続する配線33.33を形成して所望のUチャネ
ルMOSトランジスタを製造した(第3図(f)図示)
。[1)] Next, after forming a CVD oxide film 27 on the entire surface so that the V groove 26 is sufficiently filled, the CVD oxide film 27 is
A rainbow resist film 28 is applied thereon (as shown in FIG. 3(d)). Since the resist film 28 has viscosity, its surface becomes flat. Subsequently, the p-type 81 is etched by the RIE method under the condition that the etching rate of the resist film 28 and the CVD oxide film 27 is 1:1.
The surface of the single crystal layer 25 and the remaining 8102 film 22' were removed until they were exposed. As a result, only the V groove 26 has a CV
A D oxide film 27' remained, and isolation between elements was performed by this remaining CVD oxide film 27' and the remaining SIO□ film 22'.
Figure 3 (-) shown). Thereafter, an r-) oxide film 29 is partially formed on the p-type St single crystal layer 25 by a conventional method, and the p-type S1 single crystal layer is formed using this gate oxide film 29 as a mask. An n-type source region 30 and a drain region 31 are formed in 25, and an A7 film is deposited on the entire surface and patterned to form a dirt electrode 32 on the dirt oxide film 29 and a part of the source region so and drain 3Z, respectively. A desired U-channel MOS transistor was manufactured by forming connecting wirings 33 and 33 (as shown in FIG. 3(f)).
.
しかして、前述した製造方法によれば、5102膜22
の開孔部23から露出する基板21上にSiミラボロン
ドーピングとともに蒸着するだけで素子領域を形成し、
かつその後のCVD酸化膜27、レジスト膜28の形成
及びRIE法によるこれら膜27.28の除去によりV
溝26にのみCVD酸化膜27′を残存させるため、こ
の残存CVD酸化膜27′と前記残存5IO2膜22′
によシ容易に集子分離を行なうことができる。According to the manufacturing method described above, the 5102 film 22
An element region is formed by simply vapor depositing Si miraboron doping on the substrate 21 exposed through the opening 23,
Then, by forming a CVD oxide film 27 and a resist film 28 and removing these films 27 and 28 by RIE method, V
In order to leave the CVD oxide film 27' only in the groove 26, this remaining CVD oxide film 27' and the remaining 5IO2 film 22'
It is possible to easily perform agglomerate separation.
また、素子領域の一部となるp−型si単結晶層10−
25表面と残存sio□膜22′、残存CVD酸化膜2
7′の表面が同レベルとなるため、ダート電極32や配
線に従来の如き断切れの生ずる恐れがなく平坦に形成で
きる・
更に、素子間分離に際し、前述のBOX法の如くAツバ
ターンをマスクとしてRIEを行なうことがないため、
露出する基板面への汚染を防止できる。In addition, the surface of the p-type Si single crystal layer 10-25, the remaining SIO□ film 22', and the remaining CVD oxide film 2, which will become a part of the element region, are also covered.
Since the surfaces of 7' are at the same level, the dirt electrode 32 and wiring can be formed flat without the risk of breakage as in the conventional method.Furthermore, when isolating between elements, the A-flange turn can be used as a mask as in the BOX method described above. Because RIE is not performed,
Contamination of the exposed substrate surface can be prevented.
なお、上記実施例では、Slの蒸着により基板上にp型
及びp−型シリコン単結晶層を形成する場合について述
べたが、これに限らない。例えば基板温度を適宜上げれ
ば、5ta4. stcノ4等を用いたガスプラズマ分
解或いはCVDによっても形成することもできる。又一
度形成したシリコン単結晶層中にリン、砒素等のU型の
不純物をドーピングすることにより該単結晶層をn型化
したり、或いははロン等のp型の不純物なドー11:
ピングすることにより該単結晶層の不純物濃度を高くす
ることができる。In the above embodiment, a case has been described in which p-type and p-type silicon single crystal layers are formed on a substrate by vapor deposition of Sl, but the present invention is not limited to this. For example, if the substrate temperature is increased appropriately, 5ta4. It can also be formed by gas plasma decomposition using STC-4 or the like or CVD. Furthermore, by doping the silicon single crystal layer once formed with a U-type impurity such as phosphorus or arsenic, the single crystal layer can be made into an n-type, or by doping with a p-type impurity such as Ron. Accordingly, the impurity concentration of the single crystal layer can be increased.
また、上記実施例では基板としてシリコンを用いたが、
これに限らない。例えば、基板を81その化合物を8I
2とした場合、
S +5I2(固体)→28I(気体)となるものであ
ればすべて用いることができる。Furthermore, although silicon was used as the substrate in the above embodiment,
It is not limited to this. For example, the substrate is 81 and the compound is 8I.
2, any substance can be used as long as S +5I2 (solid) → 28I (gas).
具体的にはGe(ffルマニウム)等が挙げられる。Specific examples include Ge (ff rumanium) and the like.
更に、上記実施例ではMOS )ランジスタの製造の場
合について述べたが、これに限らず、・寸イポーラトラ
ンジスタ等の高密度の集積回路を有する半導体装置にも
同様に適用できる。Further, in the above embodiment, the case of manufacturing a MOS (MOS) transistor was described, but the present invention is not limited to this, and can be similarly applied to a semiconductor device having a high-density integrated circuit such as a 2-inch impolar transistor.
以上詳述した如く本発明によれば、電極の断切れや基板
面への汚染をもたらすことなく容品に素子間分離が可能
なMOS )ランジスタ等の信頼性の高い半導体装置の
製造方法を提供できるものである。As described in detail above, the present invention provides a method for manufacturing highly reliable semiconductor devices such as MOS transistors, etc., in which elements can be separated in a package without causing disconnection of electrodes or contamination of the substrate surface. It is possible.
ヤネルMO8)ランジスタの製造方法を工程順に示す断
面図、第2図(&)〜(f)は素子間分離技術としてB
OX法を用いた従来のロチャネルMO8)ラソ゛ジスタ
の製造方法を工程順に示す断面図、第3図(IL)〜(
f)は本発明によるMOS )ランソスタの製造方法を
工程順に示す断面図でおる。Yarnell MO8) Cross-sectional diagrams showing the manufacturing method of transistors in order of process, Figures 2 (&) to (f) are B as an element isolation technology.
3 (IL) - (
f) is a cross-sectional view illustrating the manufacturing method of a MOS (MOS) lansoster according to the present invention in the order of steps;
2I・・・p+型シリコン基板、22・・・5IO2膜
、22儒残存StO□膜、23・・・開孔部、24・・
・p型St単結晶層、25・・・p−型si単結晶層、
26・・・V溝、27−CVD5iO□膜、27’・・
・残存CVDSiO2膜、28・・・レゾスト膜、29
・・・e−ト酸化膜、30・・・計型ソース領域、31
・・・?型ドレイン領域、32・・・ダート電極、33
・・・配線。2I... p + type silicon substrate, 22... 5 IO2 film, 22 residual StO□ film, 23... opening, 24...
・p-type St single crystal layer, 25...p-type Si single crystal layer,
26...V groove, 27-CVD5iO□ film, 27'...
・Residual CVDSiO2 film, 28...Resist film, 29
. . . e-t oxide film, 30 . . . meter-shaped source region, 31
...? Type drain region, 32... dart electrode, 33
···wiring.
出願人代理人 弁理士 鈴 江 武 彦=13−Applicant's agent: Patent attorney Suzue Takehiko = 13-
Claims (1)
程と、前記酸化膜のうち素子形成予定部に対応する部分
を選択的に除去して開孔部を設ける工程と、第1導電型
の不純物をP−プさせながら半導体材料をエピタキシャ
ル成長をすることによって前記酸化膜をエツチングして
該酸化膜の厚みを減少させるとともに、前記開孔部から
露出する基板上に、残存する酸化膜・と略同厚の第1導
電型の半導体単結晶層を形成する工程とを具備すること
を特徴とする半導体装置の製造方法。 2、 基板上に第1導電型の半導体単結晶層を形成した
後、該単結晶層中に第1導電型あるいは第2導電型の不
純物を導入することを特徴とする特許請求の範囲第1項
記載の半導体装置の製造方法。 3、基板上に第1導電型の半導体単結晶層を形成した後
、全面に絶縁膜を被覆し、しかる後この絶縁膜を前記半
導体単結晶層及び酸化膜表面まで除去して残存する酸化
膜と半導体単結晶層間のV溝にのみ該絶縁膜を残存させ
、残存する酸化膜とV溝の絶縁膜によシ半導体単結晶層
を分離することを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。[Claims] 1. Forming an oxide film on a semiconductor substrate of a first conductivity type, and forming an opening by selectively removing a portion of the oxide film corresponding to a portion where an element is to be formed. the oxide film is etched to reduce the thickness of the oxide film by epitaxially growing a semiconductor material while impurities of a first conductivity type are pumped; A method for manufacturing a semiconductor device, comprising: forming a first conductivity type semiconductor single crystal layer having substantially the same thickness as the remaining oxide film. 2. After forming a semiconductor single crystal layer of a first conductivity type on a substrate, an impurity of the first conductivity type or a second conductivity type is introduced into the single crystal layer. A method for manufacturing a semiconductor device according to section 1. 3. After forming a semiconductor single crystal layer of the first conductivity type on the substrate, the entire surface is covered with an insulating film, and then this insulating film is removed down to the semiconductor single crystal layer and the oxide film surface to form a remaining oxide film. Claim 1 is characterized in that the insulating film is left only in the V-groove between the semiconductor single-crystal layer and the semiconductor single-crystal layer, and the semiconductor single-crystal layer is separated by the remaining oxide film and the insulating film in the V-groove. A method for manufacturing a semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8266882A JPS58199538A (en) | 1982-05-17 | 1982-05-17 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8266882A JPS58199538A (en) | 1982-05-17 | 1982-05-17 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58199538A true JPS58199538A (en) | 1983-11-19 |
Family
ID=13780803
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8266882A Pending JPS58199538A (en) | 1982-05-17 | 1982-05-17 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58199538A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61214460A (en) * | 1985-03-19 | 1986-09-24 | Mitsubishi Electric Corp | Semiconductor integrated circuit device |
-
1982
- 1982-05-17 JP JP8266882A patent/JPS58199538A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61214460A (en) * | 1985-03-19 | 1986-09-24 | Mitsubishi Electric Corp | Semiconductor integrated circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2647134B2 (en) | Method for manufacturing semiconductor device | |
JPS59124141A (en) | Manufacture of semiconductor device | |
JP2785919B2 (en) | Method of manufacturing semiconductor device having growth layer on insulating layer | |
US6445043B1 (en) | Isolated regions in an integrated circuit | |
US4696095A (en) | Process for isolation using self-aligned diffusion process | |
JPH05304202A (en) | Fabrication of semiconductor device | |
JPS58199538A (en) | Manufacture of semiconductor device | |
JPS6252950B2 (en) | ||
JPS63207177A (en) | Manufacture of semiconductor device | |
US4546537A (en) | Method for producing a semiconductor device utilizing V-groove etching and thermal oxidation | |
JPS6325707B2 (en) | ||
JPS5893252A (en) | Semiconductor device and manufacture thereof | |
JP2937459B2 (en) | Method for forming contact hole in semiconductor device | |
JPS5933271B2 (en) | Manufacturing method of semiconductor device | |
JPH0316150A (en) | Manufacture of semiconductor element | |
JPS59105367A (en) | Manufacture of metal oxide semiconductor type transistor | |
KR930005237B1 (en) | Manufacturing method of isolation regions in semiconductor | |
JPH023306B2 (en) | ||
JPH0226061A (en) | Manufacture of semiconductor integrated circuit | |
JPH1050820A (en) | Semiconductor device and its manufacture | |
RU2046454C1 (en) | Process of manufacture of large-scale integrated cos/mos circuits | |
JP2722829B2 (en) | Method for manufacturing semiconductor device | |
KR930008540B1 (en) | Isolating method in semiconductor devices | |
JPH05335407A (en) | Manufacture of semiconductor device | |
JPH06196553A (en) | Semiconductor device |