JPS58197874A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS58197874A
JPS58197874A JP57080943A JP8094382A JPS58197874A JP S58197874 A JPS58197874 A JP S58197874A JP 57080943 A JP57080943 A JP 57080943A JP 8094382 A JP8094382 A JP 8094382A JP S58197874 A JPS58197874 A JP S58197874A
Authority
JP
Japan
Prior art keywords
fuse element
layer
aluminum
wiring
fuse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57080943A
Other languages
Japanese (ja)
Other versions
JPH0332230B2 (en
Inventor
Taiichi Inoue
井上 泰一
Ryoichi Takamatsu
良一 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57080943A priority Critical patent/JPS58197874A/en
Publication of JPS58197874A publication Critical patent/JPS58197874A/en
Publication of JPH0332230B2 publication Critical patent/JPH0332230B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PURPOSE:To prevent the contamination of an outside part, by selectively providing a poly Si layer, which is formed in the same pattern beneath metal wirings of aluminum and the like, between the metal wirings. CONSTITUTION:After a source and drain diffused layer is formed, PSG insulating films 502 and 511 are formed by a gaseous phase growing method. A source region contact hole 503 and a drain region contact hole 504 are formed by the selective removal utilizing etching. Then, thin poly Si 508 is grown in a gaseous phase, and aluminum is evaporated. The aluminum is selectively etched, and aluminum wirings 505, 506, and 507 are formed. Furthermore, the poly Si 508 is selectively etched away so as to leave the part beneath the aluminum wirings and a fuse element part. Then, a PSG film 509 is formed by a gaseous phase growing method, and a fuse window 510 is formed on the upper part of the fuse element. Thus the work is completed.

Description

【発明の詳細な説明】 本発明は半導体装置およびその製法にかかり、とくに半
導体装置の配線の構造と形成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device and a method for manufacturing the same, and particularly relates to a structure and a method for forming wiring in a semiconductor device.

以下に本発明の二層構造から成る配線の多結晶シリコン
(以降単にPo1y−8iと云う)層のみから成る部分
をヒユーズ材料として用いる場合を例に従来のヒユーズ
素子形成法と共に説明する〇従来、半導体基板上にトラ
ンジスタ素子による(口)路機能と共にヒユーズ素子を
形成するICメモリに代表される半導体装置において、
前記ヒユーズ素子の形成方式として、ヒユーズ素子以外
の部分たとえはトランジスタ回路の配線材料などに使わ
れるPo1y−8i kヒユーズ材料とする場合にヒユ
ーズ素子と他のPo1y−8i層を同一工程で形成し、
その後ヒユーズ素子と該ヒユーズ素子周辺回路との回路
結合を行う方式と、ヒユーズ材料がヒユーズ素子以外で
使用されている材料または使用されていない材料に拘ら
ずヒユーズ素子部分を独立した工程で形成した彼、ヒユ
ーズ素子と該ヒー−ズ素子周辺回路との回路結合を行う
方式などが行われていた。
Hereinafter, the case where a portion of the wiring having a two-layer structure of the present invention consisting only of a polycrystalline silicon (hereinafter simply referred to as Po1y-8i) layer is used as a fuse material will be explained along with a conventional method for forming a fuse element. In a semiconductor device represented by an IC memory, in which a fuse element is formed along with a path function by a transistor element on a semiconductor substrate,
The method for forming the fuse element is to form the fuse element and other Poly-8i layers in the same process when parts other than the fuse element are made of Poly-8i k fuse material, for example, which is used as a wiring material for transistor circuits.
After that, the method of circuit coupling between the fuse element and the circuit surrounding the fuse element, and the method of forming the fuse element part in an independent process regardless of whether the fuse material is used or not used in a material other than the fuse element. , a method of circuit coupling between a fuse element and a circuit surrounding the fuse element has been used.

NチャネルMO8atFETのゲート電極材料にPo1
y−84を用い、さらにヒエーメ材料にPo1y−8i
を用いたトランジスタ素子とヒユーズ素子を例に従来方
式の(ロ)路動作と構造と工程について図により説明す
る。
Po1 is used as the gate electrode material of N-channel MO8atFET.
Using Poly-84, Poly-8i was added to the Hiehme material.
The operation, structure, and process of the conventional method will be explained using diagrams, taking as an example a transistor element and a fuse element using the conventional method.

tAx図にNチャネルMO8mFETとヒーーズ素子の
平面パターン図を示す。第2図は第1図中のx−x’に
おける断面図を示し、第3図は第1図を回路図として表
わしたものである。
The tAx diagram shows a plan pattern diagram of an N-channel MO8mFET and a heating element. FIG. 2 shows a sectional view taken along line xx' in FIG. 1, and FIG. 3 shows FIG. 1 as a circuit diagram.

第1図において、ソース拡散層101はコンタクト・ホ
ール105t−通してアルミ配線109によ、9 GN
D (接地)に結合されている・ヒーーズ素子104の
一端はコンタクト・ホール108を通してアルミ配@1
11によ、9Vpo亀源に結合されている。前記ヒ工−
ズ素子104の他の一端はコンタクト・ホール107を
通してアルミ配−110に結合され咳アルミ配線110
Uコンタクト・ホール106によりドレイン拡散層10
2に結合されている。今ヒユーズ素子104の状態を結
合状態からll’r線状態にするには、Po1y−8i
ゲート電極103に正の高電圧合印加することによシト
レイン・ソース関を電気的に非常な低抵抗の4通状態に
し VDDt源よりヒユーズ素子104に大電流が流れ
込み溶断させる。またレーサーを直接ヒユーズ素子10
4に加え、溶断させる。そしてそのヒユーズ素子104
の状態を検出するには、Po1y−8i ケート電極1
03 Vc通常動作電圧(たとえは+5V)を印加する
ことで結合状態であれはドレイ/仰jアルミ配−110
にはzVDo電圧が表われ、11rIi18I状態でめ
れはドレイン側アルミ配kllOのレベルはGNDへ引
き込まれる。以上回路動作についての説明を第1図によ
シ行った。
In FIG. 1, the source diffusion layer 101 is connected to the aluminum wiring 109 through the contact hole 105t.
D (ground) - One end of the heating element 104 is connected to the aluminum wiring @1 through the contact hole 108.
11, it is coupled to the 9Vpo source. The above-mentioned
The other end of the element 104 is coupled to an aluminum wiring 110 through a contact hole 107.
Drain diffusion layer 10 through U contact hole 106
It is connected to 2. To change the state of the fuse element 104 from the coupled state to the ll'r line state, Po1y-8i
By applying a high positive voltage to the gate electrode 103, the cell train-source connection is electrically brought into a four-way state with very low resistance, and a large current flows from the VDDt source into the fuse element 104, causing it to melt. In addition, the fuse element 10 can be connected directly to the racer.
In addition to step 4, melt. And the fuse element 104
To detect the state of the Po1y-8i gate electrode 1
03 Vc By applying the normal operating voltage (for example +5V), if it is in a coupled state, the drain/suction j aluminum wiring -110
zVDo voltage appears, and in the 11rIi18I state, the level of the drain-side aluminum wiring kllO is pulled to GND. The circuit operation has been explained above with reference to FIG.

次に第2図により構造と工程についての説明を打う。P
tiシリコン基板200に公知の方法により厚いフィー
ルド酸化シリコン換216を形成しエツチングによシト
ランジヌタ活性領域を選択的に除去する。さらにゲート
酸化膜203となる酸化シリコン展を熱酸化に19形成
し、さらにゲート電極204およびヒユーズ素子205
となるPo1y−8iをs o o oX程度気相成長
させる。そしてゲート電極204およびヒユーズ素子2
05となる部分以外のPo1y−8iをエツチングによ
り選択的に除去し、さらにソース・ドレイン領域の酸化
シリコン膜を除去し、その後N+拡散を行いソース拡散
層201、ドレイン拡散層202を形成する。
Next, the structure and process will be explained using Fig. 2. P
A thick field silicon oxide layer 216 is formed on the Ti silicon substrate 200 by a known method, and the active region of the transistor is selectively removed by etching. Furthermore, a silicon oxide layer 19 that will become the gate oxide film 203 is formed by thermal oxidation, and then a gate electrode 204 and a fuse element 205 are formed.
Po1y-8i is grown in a vapor phase to an extent of so o o x. and gate electrode 204 and fuse element 2
Po1y-8i other than the portion where 05 is to be etched is selectively removed by etching, and the silicon oxide film in the source/drain region is also removed, and then N+ diffusion is performed to form a source diffusion layer 201 and a drain diffusion layer 202.

次に気相成長法によfi PEGの絶縁膜206゜20
7を形成し、エツチングによりヒユーズ素子205のコ
ンタクト・ホール210.211ドレインii城コンタ
クトeホール209お、よびソース領域コンタクト・ホ
ール208t−選択的に除去しで形成する。さらに20
00Xi!ii:の薄いPo1y−8iを気相成長させ
、その恢アルミを蒸盾した依アルミをエツチングによシ
選択的に除去し、さらに前記ZOOoX Po 1y−
8i  のアルミ部分以外を選択的にエツチングしてア
ルミ配!!11212,213,214を形成する。
Next, a fi PEG insulating film 206°20
The contact hole 210, 211, drain ii, contact hole 209, and source region contact hole 208t of the fuse element 205 are selectively removed by etching. 20 more
00Xi! ii: A thin Po1y-8i of ZOOoX was grown in a vapor phase, and the aluminum that was vaporized was selectively removed by etching, and the ZOOoX Po1y-
Selectively etched the parts other than the aluminum part of 8i and made it aluminum! ! 11212, 213, 214 are formed.

次に気相成長法によ#P8G農215を形成し九後、ヒ
ューズ素子205上部にヒエーズ窓217を選択的にエ
ツチングして完了する。
Next, a #P8G layer 215 is formed by vapor phase growth, and after that, a fuse window 217 is selectively etched above the fuse element 205 to complete the process.

以上、従来方式によるヒユーズ素子の構造と形成工程で
あるが、この方式で形成されるヒユーズ素子は他の回路
(図においてはゲート電極)に用いられているPo1y
−8iと同一工程で形成されることから、通常4000
X以上の厚いものとなる。
The above is the structure and formation process of the fuse element according to the conventional method.
- Since it is formed in the same process as 8i, it is usually 4000
It will be thicker than X.

しかしLSI化が進み回路素子密度が増すに伴ない、素
子あたシの単位IjiI積および消費電力が小さくなり
、ヒユーズ素子の溶断に要する電力も小さなものが会費
になる。そこでヒユーズ素子のPo1y−8i膜厚を下
げることで、溶断電力を小さくすることが可能になるが
、前記説廚の従来方式においてPo1y−8iをさらに
薄くしようとするとたとえはゲート電極に用いられるP
o1y−8iの配縁抵抗が^〈なり、ゲート電極を駆動
する回路の負荷が増しスイッチングスピードが遅くなる
などの障害か発生する。
However, as LSI technology progresses and the density of circuit elements increases, the unit IjiI product of element heating and power consumption become smaller, and the smaller the power required to blow out the fuse element becomes the cost. Therefore, by reducing the Po1y-8i film thickness of the fuse element, it is possible to reduce the fusing power. However, in the conventional method described above, if you try to make the Po1y-8i even thinner, the
The wiring resistance of o1y-8i becomes ^<, which causes problems such as an increase in the load on the circuit that drives the gate electrode and a slowdown in switching speed.

またヒユーズ素子以外への影411になくすためにヒユ
ーズ素子を独立した形成工程により薄いヒエ−ズ素子を
形成することが可能になるが、工程数が増す丸めコスト
が高くなシさらに欠陥発生原因の増加を招くことになる
。ヒユーズ素子1に薄く形成することにより、さらにレ
ーザーによる溶断時においてもよシ小さなレーザーエネ
ルギーで溶断可能となるため、レーザーによる周辺に対
するダメージが抑えられる。
In addition, in order to eliminate the shadow 411 on areas other than the fuse element, it is possible to form a thin fuse element by an independent forming process, but this increases the number of processes, increases the rounding cost, and also reduces the number of defects. This will lead to an increase. By forming the fuse element 1 thinly, even when the fuse element 1 is blown by a laser, it can be blown with a much lower laser energy, so that damage to the surrounding area caused by the laser can be suppressed.

さらにヒユーズ素子の溶断特性を向上させるため、ヒユ
ーズ素子上部の保護膜に開口部を作りヒエーズ窓とする
(第2図におけるヒユーズ窓217)ことは公知の方法
であるが、従来方式によるヒユーズ素子の形成ではヒエ
ーズ窓下部にPSGなどの保1i膜が形成されていない
ため、ヒユーズ窓から基板に対して外部汚染を受けやす
い構造になっている。
Furthermore, in order to improve the fusing characteristics of the fuse element, it is a known method to create an opening in the protective film above the fuse element and use it as a fuse window (fuse window 217 in Figure 2). During formation, a protective film such as PSG is not formed under the fuse window, so the structure is such that the substrate is susceptible to external contamination from the fuse window.

本発明はアルミなどの金属配線下に同一ノ(ターンで形
成されるPo1y−84層t−選択的に金属配縁間に存
在させることによシヒーーズ素子を形成することで、工
程数を増すことなく、薄いPo l y−b iヒエー
ズを実現し、かつPoty−stヒユーズ下にPSG保
護膜を形成することでヒユーズ窓からの外部汚染の対策
を行り九ものである。
The present invention increases the number of steps by forming a sheath element by selectively forming a Po1y-84 layer formed in the same turn under a metal wiring such as aluminum. By realizing a thin Poly-bi fuse and forming a PSG protective film under the Poly-st fuse, measures against external contamination from the fuse window are taken.

本発明の特徴は、PSG膜を配線の絶縁膜とし、前記配
線が金属層と該金属層下にtlは則−パターンによる多
結晶シリコン層1+する二層構造を形成して成る半導体
集積回路装置において、前記P8G絶縁膜上に形成され
る前記二層構造から成る配線の少なくとも一部が多結晶
シリコン層のみから成る半導体装置にある。
A feature of the present invention is a semiconductor integrated circuit device in which a PSG film is used as an insulating film for wiring, and the wiring has a two-layer structure including a metal layer and a polycrystalline silicon layer 1+ with a tl pattern under the metal layer. In the semiconductor device, at least a part of the wiring having the two-layer structure formed on the P8G insulating film is made of only a polycrystalline silicon layer.

又、本発明は上記半導体装置において、前記P8G絶縁
編上に前記二層構造から成る配線を形成した彼、該配線
の上層に形成されている金属層の一部を除去することに
よシ、一部が多結晶シリコン層のみから成る配線を実現
する半導体装置の製法にある。
Further, in the semiconductor device of the present invention, the wiring having the two-layer structure is formed on the P8G insulation layer, and by removing a part of the metal layer formed on the upper layer of the wiring, The present invention relates to a method for manufacturing a semiconductor device that realizes wiring partially consisting of only a polycrystalline silicon layer.

本発明の実現の手法について図を用いて以下に説明する
。第4図は本発明の実施例によるヒユーズ素子とNチャ
ネルMO8型FETの平ljo図を示す。第4図におい
てヒユーズ素子部以外は従来方式と比軟することから同
様の構造になっている。
A method for implementing the present invention will be described below using figures. FIG. 4 shows a plan view of a fuse element and an N-channel MO8 type FET according to an embodiment of the present invention. In FIG. 4, the structure other than the fuse element is the same as that of the conventional system because it is softer than the conventional system.

JIs図は114図中のY−Y’における断面図を示す
The JIs diagram shows a cross-sectional view along YY' in Figure 114.

第4図においてアルミ配[403,405下部の点線で
示されるPo1y−8i 404の部分406が本発明
によるヒユーズ素子を示す、尚、401はドレイン拡散
層、402はコンタクトホール、407はGND、li
tを形成しているアルミ配線である。第5図においてF
ETのソース・ドレイン拡散層を形成するまでの工程は
、ゲート電極501と同一工程においてPo1y−8i
ヒエーズ素子を形成しないことを除いては同様である。
In FIG. 4, a portion 406 of the Poly-8i 404 indicated by a dotted line below the aluminum wiring [403, 405] represents the fuse element according to the present invention. 401 is a drain diffusion layer, 402 is a contact hole, 407 is a GND, li
This is the aluminum wiring forming the t. In Figure 5, F
The process up to forming the source/drain diffusion layer of ET is the same process as the gate electrode 501.
The structure is the same except that no Hiez element is formed.

ソースΦドレイン拡散層を形成した後、気相成長法によ
、9 PEGの絶縁膜502.511を形成し、エツチ
ングによりソース領域コンタクト・ホール503および
ドレイ/領域コンタクト・ホール504を選択的に除去
して形成する0 次に2000X程度の薄いPo1y−8i 508を気
相成長した後アルミを蒸着し、エツチングによりアルミ
を選択的に除去してアルミ配@sos、so6゜507
を形成する。さらに前記Po1y−8i 508會アル
ミ配線下とヒユーズ素子部が残るようにエツチングによ
り選択的に除去する。
After forming the source Φ drain diffusion layer, 9 PEG insulating films 502 and 511 are formed by vapor phase growth, and the source region contact hole 503 and drain/region contact hole 504 are selectively removed by etching. Next, a thin Po1y-8i 508 of about 2000X is grown in a vapor phase, and then aluminum is vapor-deposited, and the aluminum is selectively removed by etching to form an aluminum layer @sos, so6゜507.
form. Further, the poly-8i 508 aluminum wiring is selectively removed by etching so that the underside and the fuse element remain.

次に気相成長法によjDP8G膜509膜形09た後、
ヒユーズ素子上部にヒユーズ窓510を形成して完了す
る。尚、501はゲート電極を形成するPo1y−8i
、502はPSG膜、503,504はコンタクトホー
ル、511はPEG@である。
Next, after forming a jDP8G film 509 film type 09 by vapor phase epitaxy,
A fuse window 510 is formed above the fuse element to complete the process. In addition, 501 is Po1y-8i forming the gate electrode.
, 502 is a PSG film, 503 and 504 are contact holes, and 511 is PEG@.

以上のようにアルミ配線の拡散領域との反応を押上する
などの目的で使用されているアルミ配線下のPo1y−
8iは、2000XIi1度の薄さであシまたアルミ配
線とダイレクトに接続されているため、ヒユーズ素子に
適しており、かつ接続のためのコンタクト部が不要にな
る。
As mentioned above, the Po1y-
8i is as thin as 2000×Ii1 degree and is directly connected to aluminum wiring, making it suitable for use as a fuse element and eliminating the need for a contact portion for connection.

またPEGの絶縁膜を形成した後、配線形成工程を行う
ため、本発明によるヒユーズ素子形成では前記PEG絶
縁15図における絶#換511)がヒユーズ素子の直下
層に必然的に形成され、工株数を増すことなく外部汚染
対策がなされる。
In addition, since the wiring forming process is performed after forming the PEG insulating film, in the fuse element formation according to the present invention, the discontinuous switch 511) in the PEG insulation diagram 15 is inevitably formed in the layer immediately below the fuse element, which increases the man-hours. Measures against external pollution can be taken without increasing the pollution.

以上ヒユーズ素子を例として、 、、Po l y−8
i層のみから成る部分を有するPo1y−8i鳩と金一
層の二層構造から形成される配線の%黴と形成法の説明
を行ったが、ヒユーズ素子以外にPo1y−8凰層のみ
から成る部分を単なる抵抗素子として用いることなども
可能である。
Taking the above fuse element as an example, ,Poly-8
We have explained the wiring structure and formation method of a two-layer structure consisting of a Po1y-8i layer and a single gold layer, which has a portion consisting only of the i-layer. It is also possible to use it as a simple resistance element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来方式によるヒユーズ素子とNチャネルMO
8型FETの平面パターン図で、lX2図は第1図のx
−x’における断面図、第3図は第1図、第2図の記号
化した回路図である・第1図、第2図において、200
はP型シリコン基板、101.201はソース拡散層、
 102゜202はドレイン拡散層、203はゲート版
化膿を形成する酸化シリコン膜、lQ3.204はケー
ト電極を形成するPo1y−8i層、104,205は
ヒユーズ素子を形成するPo1y−8i 盾、 206
゜207は絶縁j1!IIを形成するPSG膜、105
,106゜107.108,208.2(J9,210
,2.11はコンタクト・ホール、109,212はG
ND#t″形成するアルミ°配線、110.213はヒ
ユーズ素子とF E Tを接続しているアルミ配線、t
ll、214は電源線を形成しているアルミ配線、21
5は保S膜を形成しているPSG膜、112,217は
ヒユーズ窓、216はフィールド酸化シリコン膜をそれ
ぞれ示す。 第4図は本発明によるヒユーズ素子とNチャネルMO8
型FETの平面パターン図で、第5図は第4図のY−Y
’における断面図である。 第4図、第5図において、501はゲート電極を形成す
るPo1y−8i 、502.511は絶に&膜および
保護JIJI形成するPSG膜、401はドレイン拡散
層、402,503,504はコンタクト・ホール、4
03.506はヒユーズ素子とFETを接続しているア
ルミ配線、404,508 はヒユーズ素子を形成して
いるPo1y−8i 、405.507はII!源巌を
形成しているアルミ配線、406はヒユーズ素子を形成
しているPo1y−8iのヒエーズ機能部、407.5
05は(jNLJ蛤を形成しているア〒 ルミ配線、509は保@膜を形成しているPEG第2閉 DD 第、5図 ロ         函 )              η 畦         粧
Figure 1 shows a conventional fuse element and an N-channel MO
This is a plane pattern diagram of an 8-type FET.
-x' cross-sectional view, Figure 3 is a symbolic circuit diagram of Figures 1 and 2.
is a P-type silicon substrate, 101.201 is a source diffusion layer,
102° 202 is a drain diffusion layer, 203 is a silicon oxide film forming a gate version suppuration, lQ3.204 is a Po1y-8i layer forming a gate electrode, 104, 205 is a Po1y-8i shield forming a fuse element, 206
゜207 is insulation j1! PSG film forming II, 105
, 106° 107.108, 208.2 (J9, 210
, 2.11 are contact holes, 109, 212 are G
ND#t'' aluminum wiring, 110.213 is aluminum wiring connecting the fuse element and FET, t
ll, 214 is aluminum wiring forming the power supply line, 21
Reference numeral 5 indicates a PSG film forming an S retention film, reference numerals 112 and 217 indicate fuse windows, and reference numeral 216 indicates a field silicon oxide film. FIG. 4 shows a fuse element according to the present invention and an N-channel MO8
Figure 5 is a plane pattern diagram of a type FET, and Figure 5 is Y-Y in Figure 4.
' is a sectional view at '. In FIGS. 4 and 5, 501 is a Po1y-8i film forming a gate electrode, 502.511 is a PSG film to be formed as a & film and a protective JIJI, 401 is a drain diffusion layer, and 402, 503, and 504 are contact layers. hall, 4
03.506 is the aluminum wiring connecting the fuse element and FET, 404,508 is the Po1y-8i forming the fuse element, and 405.507 is II! Aluminum wiring forming the source, 406, fuse function part of Po1y-8i forming the fuse element, 407.5
05 is the aluminum wiring forming the jNLJ clam, 509 is the PEG second closed DD forming the protective film.

Claims (2)

【特許請求の範囲】[Claims] (1)P2O膜を配線の絶縁膜とし・前記配線が金属層
と該金属層下にほぼ同一パターンによる多結晶シリコン
層を有する二層構造を形成して成る半導体装置であって
、前記P8G絶縁膜上に形成される前記二層構造から成
る配線の少なくとも一部が多結晶シリコン層のみかり成
ることを特徴とする半導体装置・
(1) A semiconductor device in which a P2O film is used as an insulating film for wiring, and the wiring forms a two-layer structure having a metal layer and a polycrystalline silicon layer with substantially the same pattern under the metal layer, the P8G insulation A semiconductor device characterized in that at least a part of the wiring formed on the film and having the two-layer structure consists only of a polycrystalline silicon layer.
(2)P8G絶縁膜上に金属層と多結晶シリコン層がほ
ぼ同一のパターンとなり構成される二層構造から成る配
線を形成した後、咳配線の上層に形成されている金鵬層
の一部を除去することにより、一部が多結晶シリコン層
のみから成る配線を実現することt−特徴とする半導体
装置の製法・
(2) After forming a wiring with a two-layer structure consisting of a metal layer and a polycrystalline silicon layer with almost the same pattern on the P8G insulating film, a part of the metal layer formed on the upper layer of the wiring is removed. By removing the polycrystalline silicon layer, a part of the wiring is made of only a polycrystalline silicon layer.
JP57080943A 1982-05-14 1982-05-14 Semiconductor device and manufacture thereof Granted JPS58197874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57080943A JPS58197874A (en) 1982-05-14 1982-05-14 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57080943A JPS58197874A (en) 1982-05-14 1982-05-14 Semiconductor device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58197874A true JPS58197874A (en) 1983-11-17
JPH0332230B2 JPH0332230B2 (en) 1991-05-10

Family

ID=13732567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57080943A Granted JPS58197874A (en) 1982-05-14 1982-05-14 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58197874A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158660A (en) * 1984-01-28 1985-08-20 Toshiba Corp Semiconductor memory and manufacture thereof
JPS6355955A (en) * 1986-08-26 1988-03-10 Nec Corp Semiconductor device
JPS63161641A (en) * 1986-12-25 1988-07-05 Nec Corp Semiconductor memory device
JPH0249450A (en) * 1988-03-18 1990-02-19 Digital Equip Corp <Dec> Integrated circuit having metallized layer reformable by laser
JP2004515061A (en) * 2000-11-27 2004-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Poly-fuse ROM having cell structure based on MOS device and method of reading and writing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567467A (en) * 1979-07-02 1981-01-26 Nec Corp Semiconductor memory device
JPS5685846A (en) * 1979-12-14 1981-07-13 Fujitsu Ltd Semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS567467A (en) * 1979-07-02 1981-01-26 Nec Corp Semiconductor memory device
JPS5685846A (en) * 1979-12-14 1981-07-13 Fujitsu Ltd Semiconductor integrated circuit device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158660A (en) * 1984-01-28 1985-08-20 Toshiba Corp Semiconductor memory and manufacture thereof
JPS6355955A (en) * 1986-08-26 1988-03-10 Nec Corp Semiconductor device
JPS63161641A (en) * 1986-12-25 1988-07-05 Nec Corp Semiconductor memory device
JPH0249450A (en) * 1988-03-18 1990-02-19 Digital Equip Corp <Dec> Integrated circuit having metallized layer reformable by laser
JP2004515061A (en) * 2000-11-27 2004-05-20 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Poly-fuse ROM having cell structure based on MOS device and method of reading and writing the same

Also Published As

Publication number Publication date
JPH0332230B2 (en) 1991-05-10

Similar Documents

Publication Publication Date Title
US4792835A (en) MOS programmable memories using a metal fuse link and process for making the same
US5466638A (en) Method of manufacturing a metal interconnect with high resistance to electromigration
JPH04226067A (en) Formation method of antifuse element provided with substantially reduced capacitance
KR900002084B1 (en) Semiconductor device
JPS62128556A (en) Semiconductor device
JPS60163455A (en) Read only memory device and manufacture thereof
JPS58197874A (en) Semiconductor device and manufacture thereof
JPH0436466B2 (en)
JPS598065B2 (en) MOS integrated circuit manufacturing method
JPS62102564A (en) Semiconductor device
JPH06302699A (en) Fuse structure
JPS58162064A (en) Manufacture of semiconductor device
JPH07130861A (en) Manufacture of semiconductor integrated circuit device
JP2797498B2 (en) Method for manufacturing semiconductor device
KR960010070B1 (en) Method of manufacturing a tft sram
JPH03175676A (en) Semiconductor device
JPS6184052A (en) Semiconductor device
JPS5817658A (en) Semiconductor device
JPH05267205A (en) Manufacture of semiconductor device
JPS5951130B2 (en) Method for manufacturing semiconductor devices with low leakage current
JPS61187253A (en) Manufacture of semiconductor device
JPH05326554A (en) Manufacture of field effect transistor
JPH0298960A (en) Manufacture of semiconductor device
JPH0855961A (en) Semiconductor device
JPS58212165A (en) Semiconductor device