JPS5817658A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5817658A
JPS5817658A JP56115092A JP11509281A JPS5817658A JP S5817658 A JPS5817658 A JP S5817658A JP 56115092 A JP56115092 A JP 56115092A JP 11509281 A JP11509281 A JP 11509281A JP S5817658 A JPS5817658 A JP S5817658A
Authority
JP
Japan
Prior art keywords
region
input
diode
junction area
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56115092A
Other languages
Japanese (ja)
Other versions
JPH0319709B2 (en
Inventor
Kiyobumi Uchibori
内堀 清文
Naoki Yashiki
直樹 屋鋪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56115092A priority Critical patent/JPS5817658A/en
Publication of JPS5817658A publication Critical patent/JPS5817658A/en
Publication of JPH0319709B2 publication Critical patent/JPH0319709B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0255Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using diodes as protective elements

Abstract

PURPOSE:To obtain sufficient breaking strength even when a junction area is reduced by deepening a section, to which high voltage is applied, in a semiconductor region as a protective resistor to comparatively deep value and expanding the junction area. CONSTITUTION:When a comparatively deep well region 3 is formed integrally to the input section of the protective resistor R, the junction area in region falling to a diffusion region 2 from a pad for input is enlarged, and dielectric resistance can sharply be elevated. A diode D2 is directed in the forward direction and currents flow through a substrate 1 when positive abnormal input is applied to the diffusion resistance R, and the diode D2 can resist sufficiently against negative abnormal input by the large junction area while currents can be made escape through a clamping diode D1. Accordingly, an input protective circuit indicates sufficient breaking strength even when either abnormal voltage is applied.

Description

【発明の詳細な説明】 本発明は半導体装置、%に入力保−回路を有する半導体
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and a semiconductor device having an input protection circuit.

OM OB (Oomp’lementary M O
8)型Ls工においては、ゲート保−のために入力gy
c入力保護回1lI81ft設けている。この保−回路
として種々考えられるが1本発明者が検討し友ところ、
いずれも満足丁べき結果が得られないことが判明した。
OM OB (Oomp'lementary M O
8) In the type Ls construction, input gy is required for gate protection.
c input protection circuit 1lI81ft is provided. Various types of protection circuits can be considered, but one that the inventor has considered is the following:
It was found that neither of these methods gave satisfactory results.

即ち1例えば入力用パッドと0MO8用M工8(Met
al工n8u14tor 8emiconauCtor
 )P IRTのゲートとの関に拡散、抵抗及びクラン
プダイオードを接続した場合には、微細パターン化に伴
なって拡散抵抗が浅く歩成逼れることから七の接合耐圧
が低くなり、パッド側から異常電圧が加わったときに拡
散領域−半導体基板間が、破壊し易くなる。
In other words, 1, for example, the input pad and the M 8 for 0MO8 (Met
al engineering n8u14tor 8emiconauCtor
) When a diffusion, a resistor, and a clamp diode are connected to the gate of the P IRT, the junction breakdown voltage of 7 becomes low because the diffusion resistance becomes shallower with finer patterning. When an abnormal voltage is applied, the space between the diffusion region and the semiconductor substrate is likely to be destroyed.

また、上記拡散抵抗に代えて、半導体基板上に形成した
ポリシリコン膜を保II抵抗として用いた場合、このポ
リシリコン抵抗では半導体基板へ電流を流子ことができ
ないからその分クランプダイオードの面積を大きくして
耐圧tもたぜる必4Fが生じ、li細パターン化(Al
l槓化)Kとって不利となる。
In addition, when a polysilicon film formed on a semiconductor substrate is used as a holding resistor instead of the above-mentioned diffused resistor, the area of the clamp diode is reduced by that amount because the polysilicon resistor cannot conduct current to the semiconductor substrate. 4F must be increased to increase the breakdown voltage t, and thin Li patterning (Al
1) This is disadvantageous for K.

従って1本発明は、上記の如き認@に基いて、占有面積
が小もいにも拘らず保護機能か光分な保−回路を組込ん
だ半導体装置、例えば0MO8型L8型金8工すること
t目的とするものである。
Therefore, the present invention is based on the above-mentioned recognition, and provides a semiconductor device incorporating a protection function or an optical protection circuit even though it occupies a small area, such as a 0MO8 type L8 type metal 8 type device. t purpose.

この目的を達成する丸めに、本発明によれば、保S抵抗
としての半導体領域のうち高電圧が加わる部分(%に入
力パッドとの接続領域)を比較的深くして、接合面積を
拡げることによって、そこでの接合耐圧を上昇ちぜてい
る。従って、保饅抵抗自体を微細パターン化のために浅
くしかつ面積を小さくしても充分な破壊強度が得られる
ことになる。
To achieve this purpose, according to the present invention, the part of the semiconductor region serving as the S resistor to which high voltage is applied (the region connected to the input pad) is made relatively deep to increase the junction area. This increases the junction breakdown voltage there. Therefore, sufficient breaking strength can be obtained even if the protective resistor itself is made shallow and has a small area for fine patterning.

以下、本発明′9tOMOa型L8工に適用した実施例
を図面について詳細に述べる。
Hereinafter, an embodiment in which the present invention is applied to a '9tOMOa type L8 machine will be described in detail with reference to the drawings.

第1図〜第3−は、eMosWL日Iのうち初段の0M
O8インバータと七の入力保護回路部とt示すものであ
る。
Figures 1 to 3 show the first stage 0M of eMosWL Day I.
The figure shows the O8 inverter and the input protection circuit section.

即ち、共通のN型シリコン基板1の一生面側には、cM
oa1r構成するPチャネルMIgFICτqI及びN
チャネルM工81FICTQ、雪と、これら11丁のゲ
ート保繰回路を構成するクランプダイオードD、及び拡
散抵抗Rとが夫々設けられている。拡散抵抗Rは浅くて
小面積のP 型領域2とこれ和連設されt比較的深いP
−型ウェル領域3とからなっている。P+型領域2の深
さは0.5μ惧穆度1幅は6μ?)%穆度てあシ、ウェ
ル領域3は4μ鶏程度の採石で24p惧×24μ悔の面
積を有しているう従って、入力パッドから伸びるアルミ
ニウム配線番が拡散抵抗Rに接続される領域で杜、ウェ
ル領域3の存在によって基板1との間の接合の面積がか
なり拡大されていることになる。
That is, cM
oa1r constitutes P channel MIgFICτqI and N
A channel M 81FICTQ, a clamp diode D, and a diffusion resistor R, which constitute these 11 gate retention circuits, are provided, respectively. The diffused resistance R is connected to a shallow, small-area P-type region 2, and is connected to a relatively deep P-type region 2.
- type well region 3. The depth of the P+ type region 2 is 0.5μ, and the width of the degree 1 is 6μ? ) The well region 3 has an area of 24p × 24μ with a quarry of about 4μ.Therefore, the aluminum wiring number extending from the input pad is the region where it is connected to the diffused resistor R. Due to the presence of the well region 3, the area of the junction with the substrate 1 is considerably expanded.

つまり、その接合によって形成されるPM接合ダイオー
ドD!は接合面積が大であシ、しかも保護抵抗Rと一体
であって最も高電圧の加わシ易い(破壊し易い)位*に
設けられていることが極めて重要である。抵抗Rはアル
ミニウム配@5によってクランプダイオードDI(DI
  型拡散領域6に接続もれ、更にこの拡散領域はFK
TQ、及びQmの各ゲート電極7及び8に共通に接M嘔
れている。抵抗Rのウェル領域3とクランプダイオード
DIのP−型ウェル領域9とFKTQ冨のP−型ウェル
領域10とは同一の拡散工程で同時に形成ちれたもので
あり、また鵜抗RのP 型領域2とFITQIのP 型
拡散領域11及び12.クランプダイオードD1のN 
型領域5トFk!?にLsのN+型拡散領域13及び1
4も夫々同−王権で形成された本のである。なか、15
.16及び17は0M0Bの各アルミニウム配線又は電
極であり、18拡フィールド810!膜、19はゲート
酸化膜。
In other words, the PM junction diode D! formed by that junction! It is extremely important that the junction area is large, and that it is integrated with the protective resistor R and is provided at a location* where high voltage is most likely to be applied (easily destroyed). The resistor R is connected to the clamp diode DI (DI
There is a connection leakage to the mold diffusion region 6, and this diffusion region is also FK.
It is commonly connected to the gate electrodes 7 and 8 of TQ and Qm. The well region 3 of the resistor R, the P-type well region 9 of the clamp diode DI, and the P-type well region 10 of the FKTQ layer are formed at the same time in the same diffusion process, and the P-type well region of the resistor R is formed at the same time. Region 2 and FITQI P type diffusion regions 11 and 12. N of clamp diode D1
Type area 5 to Fk! ? N+ type diffusion regions 13 and 1 of Ls in
4 are also books formed by the same royal power. Naka, 15
.. 16 and 17 are each aluminum wiring or electrode of 0M0B, and 18 expanded field 810! 19 is a gate oxide film.

20はポリシリコンゲート電極の表面に成長嘔ぜた81
03膜、21はリンシリケートガラス膜である。
20 shows the growth on the surface of the polysilicon gate electrode81
03 film and 21 are phosphosilicate glass films.

上記のように保−抵抗Rの入力側部分に比較的深いウェ
ル@jJI3に一体に形成丁れば、第3図から理解され
るように、入力用パッドから拡散領域2に落ちる領域で
の接合面積が大きくeシ、耐圧を大ll1l!に上昇さ
ぜることができる。つまシ、その領域は最も弱い部分で
あって高い異常電圧が加わるとジュール熱で破壊し易い
が、接合面積(接合耐圧)の大きいダイオードDlの形
成によってそうしたI#態は効果的に防止され、充分な
ゲート保護(静電破壊強度)を図ることが可能となる。
If a relatively deep well @jJI3 is formed integrally with the input side portion of the holding resistor R as described above, as can be understood from FIG. Large area and large pressure resistance! It can be stirred up. This region is the weakest part and is easily destroyed by Joule heat when a high abnormal voltage is applied, but such an I# state can be effectively prevented by forming a diode Dl with a large junction area (junction withstand voltage). It becomes possible to achieve sufficient gate protection (electrostatic breakdown strength).

これは、上記の如くダイオードDst−抵抗只の入力−
−で一体化したことによって可能となることが理s4も
れるでおろう。具体的に菫えば、拡散抵抗Rに正の異常
入力が入ったときにダイオードDIが順方向となって基
板IVC11fltが流れ、また負の異常入力に対して
はダイオードD、は大きな接合面積によって充分に耐え
得ると共にクランプダイオードDI k介して電流を逃
が丁ことかできる。従っていずれの異常電圧が加わって
も、本例による入力保膜回路は充分な破壊強度を示すも
のとなっている。
As mentioned above, this is the input of the diode Dst - just a resistor -
There are many things that will become possible by integrating the - s4. To be specific, when a positive abnormal input enters the diffused resistor R, the diode DI becomes forward and the substrate IVC11flt flows, and for a negative abnormal input, the diode D has a large junction area. In addition to being able to withstand the current, it is possible to escape the current through the clamp diode DIk. Therefore, no matter which abnormal voltage is applied, the input membrane protection circuit according to this example exhibits sufficient breaking strength.

これに反し、仮にダイオードD諺を拡散領域2から離し
た位置に設けた場合には、4M護抵抗只の入力側の接合
が浅くて面積が小さいままであるから、もろに異常入力
の影響を受けて破壊ヶ免れ得ないことになる。
On the other hand, if the diode D was placed at a location away from the diffusion region 2, the input side junction of the 4M protection resistor would be shallow and the area would remain small, so it would be less susceptible to the effects of abnormal input. It is inevitable that it will be damaged and destroyed.

次に、第1図に示した構造の作成方法を第4図で説明す
る。
Next, a method for creating the structure shown in FIG. 1 will be explained with reference to FIG.

まず第4ム図のように、N型シリコン基板1の一主向に
形成したSin、績22會マスクとして、上記の各ウェ
ル領域用の不純物(例えばボロン)の導入上例えばイオ
ン注入技術又扛拡散技術で行ない、引仰汀し拡散によっ
て比較的深いP−型つエル@琥3.9.10t−夫々形
成する。
First, as shown in FIG. A relatively deep P-type well is formed by the diffusion technique.

次いでマスク22Q除去した後、第4B図のように、窒
化シリコン膜23會マスクとする公知の選択酸化技術に
よってフィールド810.膜1st−所定パターンに成
長もぜ、各素子領域を分離する。
After removing the mask 22Q, as shown in FIG. 4B, fields 810. Film 1st - Grows in a predetermined pattern and separates each element region.

次いで窒化シリコン膜23及び下地のsio、膜24會
願次エツチングで除去した後、第4C図のように、#化
性雰囲気中での熱処理でゲート酸化−191i形成し、
更に化学的気相成長法(OVD)で全面にポリシリコン
を析出ざゼる。このポリシリコン膜に公知のリン処理を
施した後、公知のフォトエツチングt−施してゲート電
極形状のポリシリコンalI7.8を形成する。
Next, after removing the silicon nitride film 23 and the underlying SIO film 24 by etching, as shown in FIG.
Furthermore, polysilicon is deposited over the entire surface by chemical vapor deposition (OVD). This polysilicon film is subjected to a known phosphorus treatment and then subjected to a known photoetching process to form a polysilicon AlI7.8 in the shape of a gate electrode.

次いでポリシリコン1s7.80表面會熱酸化して博い
8103線20を形成した後、第4D図のように、ウェ
ル領域9及び!θ上のみtマスク24、例えばフォトレ
ジストでset、、この状態で全面にボロン等のイオン
ビーム2511−照射する。これによって、マスク24
.ポリシリコン膜7.フィールド日101腺18の存在
しない領域にあるゲート酸化膜19全通して基板1に不
純物を打込み、アニールを経て各P 型領域2,11.
12’i夫々形成する。このうちP 型領域2はウェル
領域3とオーバーラツプして形成され、共に上記した保
護抵抗R及びダイオードIh k構成するものである。
Then, after thermally oxidizing the surface of the polysilicon 1s7.80 to form wide 8103 lines 20, as shown in FIG. 4D, well regions 9 and ! A t-mask 24, for example, a photoresist, is set only on θ, and in this state, the entire surface is irradiated with an ion beam 2511 of boron or the like. This allows the mask 24
.. Polysilicon film7. Impurities are implanted into the substrate 1 through the entire gate oxide film 19 in the region where the field region 101 and the gland 18 are not present, and through annealing, each P type region 2, 11 .
12'i are formed respectively. Of these, the P type region 2 is formed to overlap with the well region 3, and both constitute the above-mentioned protective resistor R and diode Ihk.

次いで1141図のように、今度はP+型領域2及びF
mTQ、の領域上のみ會マスク26、例えばフォトレジ
ストで被覆し、全面にリン又は砒素のイオンビーム27
1照射し、マスク26、ポリシリコン1s、8及びフィ
ールド510m膜18の存在しない領域にあるゲート酸
化膜19會通してイオン打込み1行ない、アニールを経
て各ウェル領域9.10内にN+型領領域613.14
’に夫々形成する。
Next, as shown in Fig. 1141, P+ type region 2 and F
Only the area of mTQ is covered with a mask 26, for example photoresist, and the entire surface is covered with a phosphorus or arsenic ion beam 27.
One ion implantation is performed through the mask 26, the polysilicon 1s, 8, and the gate oxide film 19 in the area where the field 510m film 18 does not exist, and after annealing, an N+ type region is formed in each well region 9.10. 613.14
' to form respectively.

次いで@4p図のように、保護回路領域のゲート−化膜
のみtエツチングで除去した後、OVDで全(figリ
ンシリケートガラスJ[211cm1[し。
Next, as shown in Figure @4p, only the gate-forming film in the protection circuit area was removed by T-etching, and then the entire (Fig. phosphosilicate glass J [211 cm1] was removed by OVD.

これにフォトエツチングを施して所定箇所に各コンタク
トホール28,29.30.31、J2゜33.34t
−夫々形成する。そして次に1例えば真空蒸着技術で全
面にアルミニウムを付N嘔ぜ、これtフォトエツチング
でパターニングして第1図の各アルミニウム配線又は電
極番、5,15゜16.1711−形成する。コンタク
トホール28はコンタク)?充分にとるために領域3上
で4箇所(第2図参照)VC形成姑れている。な訃1図
示省略したが、更に層闇絶縁娯、2層目了ルミニウム配
a、ファイナルパッシベーション膜等を施して。
This was photo-etched to form contact holes 28, 29, 30, 31, J2゜33.34t at predetermined locations.
- form respectively. Next, aluminum is deposited on the entire surface using, for example, a vacuum evaporation technique, and patterned by photo-etching to form each aluminum wiring or electrode number 5,15°, 16,1711- as shown in FIG. Contact hole 28 is a contact)? In order to ensure sufficient coverage, VC formation is missed at four locations on region 3 (see FIG. 2). Although not shown, a layer of insulation, a second layer of aluminum, a final passivation film, etc. were also applied.

IC1−完成名ゼる◇ 以上、本発明を例示し九が、上述の実施例は本発明の技
術的思想に基いて更に変形か可能である。
IC1-Complete name ◇ The present invention has been illustrated above, but the above-described embodiments can be further modified based on the technical idea of the present invention.

例えば、上述のウェル領域3の形状は種々に変更してよ
い。また上述の各牛導体領域の導電型を逆導電型に変換
してもよい。なお1本発明は0M0B以外の次段回路の
保護回路にも適用可能である。
For example, the shape of the well region 3 described above may be modified in various ways. Further, the conductivity type of each of the above-mentioned conductor regions may be converted to an opposite conductivity type. Note that the present invention can also be applied to protection circuits of next-stage circuits other than 0M0B.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発Ijll:0M0BfliLB工に適用した
実施例を示すものであって、第1図はそのOMo8及び
ゲート保!1回路部の断面図、第2図はゲート保護回路
部の平面図(そのX−X線断面が第1図に相当する)、
第3図は第1図の等価回路図、第4ム図〜wL4P図は
#1図の構造の作成方法を工程順に示す各断面図である
。 なお、図面に用いられている符号において、3はP−型
ウェル領域、4及び5#iアルミニウム配線、R1−j
入力保護抵抗、DIはクランプダイオード、D雪は接合
ダイオード、Ql及びQ!は(jMOB全構成する各M
工871c丁である。
The drawings show an example applied to the Ijll:0M0BfliLB construction of this invention, and Figure 1 shows its OMo8 and gate protection! 1 is a cross-sectional view of the circuit section, FIG. 2 is a plan view of the gate protection circuit section (the cross section taken along line X-X corresponds to FIG. 1),
Fig. 3 is an equivalent circuit diagram of Fig. 1, and Figs. In addition, in the symbols used in the drawings, 3 is a P-type well region, 4 and 5#i aluminum wiring, R1-j
Input protection resistors, DI is a clamp diode, D is a junction diode, Ql and Q! (Each M that makes up all jMOB
It is 871c.

Claims (1)

【特許請求の範囲】[Claims] 1、第1導電型の半導体基体の一生面に次段回路の保護
抵抗として形成ちれた第2導電型の半導体領域と、この
半導体領域の一端側に接続逼れた状態で前記−主面に形
成された次段回路の保護ダイオードとによって保護回路
が構成ちれている半導体装置において、前記半導体領域
のうち高電圧の加わる他端側部分が比較的深′く形成さ
れ、これによってその他端W部分と前記半導体基体との
接合の面積が拡大されていることt特徴とする半導体装
fう
1. A semiconductor region of a second conductivity type formed as a protective resistor for the next stage circuit on the whole surface of a semiconductor substrate of a first conductivity type, and a semiconductor region of the second conductivity type formed on the whole surface of the semiconductor substrate of the first conductivity type, and the above-mentioned main surface in a state of being tightly connected to one end side of this semiconductor region. In a semiconductor device in which a protection circuit is constituted by a protection diode of a next-stage circuit formed in the semiconductor region, a portion of the semiconductor region on the other end side to which a high voltage is applied is formed relatively deep. A semiconductor device characterized in that a bonding area between the W portion and the semiconductor substrate is expanded.
JP56115092A 1981-07-24 1981-07-24 Semiconductor device Granted JPS5817658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56115092A JPS5817658A (en) 1981-07-24 1981-07-24 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56115092A JPS5817658A (en) 1981-07-24 1981-07-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5817658A true JPS5817658A (en) 1983-02-01
JPH0319709B2 JPH0319709B2 (en) 1991-03-15

Family

ID=14653998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56115092A Granted JPS5817658A (en) 1981-07-24 1981-07-24 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5817658A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077459A (en) * 1983-10-05 1985-05-02 Fujitsu Ltd Semiconductor device
JPH02298393A (en) * 1989-05-15 1990-12-10 Raizaa Kogyo Kk Photo-oxidation treatment method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422277A (en) * 1977-07-18 1979-02-20 Shinya Minemura Making of ornamental material from flowers or leaves

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5422277A (en) * 1977-07-18 1979-02-20 Shinya Minemura Making of ornamental material from flowers or leaves

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077459A (en) * 1983-10-05 1985-05-02 Fujitsu Ltd Semiconductor device
JPH0476216B2 (en) * 1983-10-05 1992-12-03 Fujitsu Ltd
JPH02298393A (en) * 1989-05-15 1990-12-10 Raizaa Kogyo Kk Photo-oxidation treatment method and apparatus

Also Published As

Publication number Publication date
JPH0319709B2 (en) 1991-03-15

Similar Documents

Publication Publication Date Title
US4609568A (en) Self-aligned metal silicide process for integrated circuits having self-aligned polycrystalline silicon electrodes
CA1121070A (en) Method for forming semiconductor contacts
US4746622A (en) Process for preparing a charge coupled device with charge transfer direction biasing implants
US3913217A (en) Method of producing a semiconductor device
US4169270A (en) Insulated-gate field-effect transistor with self-aligned contact hole to source or drain
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
US4740482A (en) Method of manufacturing bipolar transistor
US4883772A (en) Process for making a self-aligned silicide shunt
JPS5817658A (en) Semiconductor device
KR940006692B1 (en) Manufacturing method of semiconductor device
JPH01192159A (en) Semiconductor device
US3860461A (en) Method for fabricating semiconductor devices utilizing composite masking
JPS6237547B2 (en)
JPS58197874A (en) Semiconductor device and manufacture thereof
US5179030A (en) Method of fabricating a buried zener diode simultaneously with other semiconductor devices
KR940003292Y1 (en) Oxide semiconductor device with w layer
JP3372109B2 (en) Semiconductor device
KR100273283B1 (en) Method for fabricating electrostatic discharge protection portion
EP0264309A1 (en) Self-aligned base shunt for transistor
KR910009613B1 (en) Method for integration of resistor chod capacitor and structure of semiconductor apparatus
JPH0738413B2 (en) Semiconductor device
KR850000037B1 (en) The method of mos with self alignment metal electroid
JPH0426791B2 (en)
JPS6232639A (en) Input protective circuit of semiconductor device and manufacture thereof
US20030077869A1 (en) Semiconductor device and a method of masking