JPS58197861A - Ceramic substrate and manufacture thereof - Google Patents

Ceramic substrate and manufacture thereof

Info

Publication number
JPS58197861A
JPS58197861A JP8092882A JP8092882A JPS58197861A JP S58197861 A JPS58197861 A JP S58197861A JP 8092882 A JP8092882 A JP 8092882A JP 8092882 A JP8092882 A JP 8092882A JP S58197861 A JPS58197861 A JP S58197861A
Authority
JP
Japan
Prior art keywords
earth
power source
wiring layers
metallic wiring
metal wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8092882A
Other languages
Japanese (ja)
Other versions
JPS6331101B2 (en
Inventor
Takashi Miyamoto
隆 宮本
Eiji Hagimoto
萩本 英二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8092882A priority Critical patent/JPS58197861A/en
Publication of JPS58197861A publication Critical patent/JPS58197861A/en
Publication of JPS6331101B2 publication Critical patent/JPS6331101B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Abstract

PURPOSE:To contrive to reduce the maximum conduction resistance by a method wherein metallic wiring layers are provided (=side surface metallize) on the wall surface of a recess called a cavity and further connected to the second metallic wiring layer. CONSTITUTION:The electrode of a semiconductor element 1 and the first metallic wiring layers 2 are connected by Al wires, after the semiconductor element 1 is fixed on the metal surface (=island) 8 plated by Au at the bottom of the cavity 7 with the eutectic alloy of Au/Si. It is power source pins and earth pins that are restricted in the value of conduction resitance. The power source and the earth are surface-metallized on a semi-circular cutout 12 and connected to the second metallic wiring layers 5, resulting in the reduction of conduction resistance. The second metallic wiring layers are used only for the power source and the earth, and accordingly each can be formed wider than the wiring width of the first layers. Therefore, the wiring resistance of the power source and the earth can be reduced at least to less than 1/2, normally 1/4-1/5. After finishing in connection of all the wires, a sealing ring 9 is covered with a metallic cap and sealed by a seam welding method or Au/Sn alloying method.

Description

【発明の詳細な説明】 本発明社セラミック基板疎びその製造方法にかが9、と
くに半導体装置に用いられるセラミック基板及びその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to ceramic substrates and methods of manufacturing the same, and particularly relates to ceramic substrates used in semiconductor devices and methods of manufacturing the same.

近年の半導体装置は、特に計)!機に用いられるものは
高速の演算速度か要求さね、これに伴って半導体#cf
11の高集積化がなされるようになってきた。しかし、
半導体装置の高集積化は、その入出力ビン数の増大を意
味し、それに従って半導体素子を搭載するセラミック基
板の寸法も大きなものとなってきている。セラミック基
板の肥大化は、ひいては、半導体素子と外部リードピン
との闇の導通抵抗の増大をきたし、これによる電位シフ
トが演算の誤動作の原因となってきている。
Semiconductor devices in recent years, especially total)! The devices used in the machine are required to have high calculation speed, and along with this, the semiconductor #cf
11 has become highly integrated. but,
Higher integration of semiconductor devices means an increase in the number of input/output bins, and accordingly, the dimensions of ceramic substrates on which semiconductor elements are mounted have also become larger. The enlargement of the ceramic substrate also causes an increase in the conduction resistance between the semiconductor element and the external lead pins, and the potential shift caused by this has become a cause of malfunction in calculations.

この棟の間馳を解決する為に、従来は第1図の・ よう
に、2層の金属配線層をセラミック基板に開けたヌル−
ホール及び外部リードピンで接続し、2層の金属配−N
Iを並列にすることによシ、導通抵抗の低減を計ってい
喪。
In order to solve this problem, conventionally, as shown in Figure 1, two metal wiring layers were created using a null hole in the ceramic substrate.
Connected with holes and external lead pins, two-layer metal wiring
By connecting I in parallel, the conduction resistance is reduced.

即ち、キャビティ7、に設けた半導体素子lの電極とl
1Ilの金属配線層2とをアルミニウム(Al)や會(
Au) t−主成分とするワイヤ3で接続して外部リー
ドピン4に至る電流路を設定するだけでなく、第2の層
にも金属配線層5を設け、第1と第2の金属配線層をス
ルーホール6で接続することに電流路を並列化し導通抵
抗の低下を計ってきた。
That is, the electrode of the semiconductor element l provided in the cavity 7 and the
The metal wiring layer 2 of 1Il is made of aluminum (Al) or aluminum (
In addition to setting the current path to the external lead pin 4 by connecting with the wire 3 mainly composed of Au) t-, a metal wiring layer 5 is also provided in the second layer, and the first and second metal wiring layers are connected. We have attempted to reduce the conduction resistance by connecting the through holes 6 and parallelizing the current paths.

しかし、従来のこの方法では、lX1の金属配線層のワ
イヤが接続される部位(=ボンディング・パッド)は配
縁が密集してスルーホールt−開けるスペースがないの
で、通常は、ボンディング・パッドの外側の位置に開け
られるため、2つの金属配線層の並列にできる長さが短
くなり、それだけ導通抵抗の低減が十分にはいかない欠
点があった。
However, in this conventional method, the area where the wires of the lX1 metal wiring layer are connected (= bonding pad) is crowded and there is no space to open a through hole, so usually the bonding pad is Since the openings are made at the outer positions, the length of the two metal wiring layers in parallel is shortened, which has the disadvantage that the conduction resistance cannot be sufficiently reduced.

不発明は従来の上記の欠点を無くすべくなされたもので
、キャビティと称する凹部の壁面に全綱配線t@を設け
(=側面メタライズ)、良に第2の金属配4!i11w
Iに接続することにより最大限の導通抵抗の減少を計っ
たものである。又、本発明は焼成前のセラミックΦシー
トに貫通孔を設けておき、この貫通孔に金栖粒子を分散
させた液体t−犬し込んた後、この貫通孔の一部會切断
することにより側面メタライズを達成し、このシートに
他のセラミック・シートラ重ね合わせて焼成することに
ょシ、側面メタライズされたセラミック基板を得ようと
するものである。
The invention was made in order to eliminate the above-mentioned drawbacks of the conventional technology, and by providing the entire wire wiring t@ on the wall surface of the recessed part called the cavity (=side surface metallization), the second metal wiring 4! i11w
By connecting it to I, the conduction resistance can be reduced to the maximum extent possible. In addition, the present invention provides a through hole in the ceramic Φ sheet before firing, and after filling the through hole with a liquid containing Kanasu particles dispersed, a portion of the through hole is cut. The aim is to achieve side metallization, and to obtain a ceramic substrate with side metallization by superposing this sheet with another ceramic sheet and firing it.

以下に不発明について詳細に説明する。第2図に本発明
の代表的な実施例を斜視図で示した。組立法は、従来と
同様に半導体素子1をキャビティ7の底部の金(Au)
めっきされた金鵬面(=アイランド)8上にA u/S
 iの共晶合金により固着した佐、半導体素子1の電極
(図示せず)と第1の蓋輌配耐層2とをアルミニウムA
lのワイヤにより接続する。半導体装置に於いて導通抵
抗の値が厳も制約されるのは、電源ビンと接地ビンであ
る。
Non-invention will be explained in detail below. FIG. 2 shows a typical embodiment of the present invention in a perspective view. The assembly method is similar to the conventional one, in which the semiconductor element 1 is placed in the gold (Au) layer at the bottom of the cavity 7.
A u/S on the plated gold surface (= island) 8
The electrodes (not shown) of the semiconductor element 1 and the first cover layer 2 are bonded by the eutectic alloy of aluminum A.
Connect by l wire. In a semiconductor device, the value of conduction resistance is severely restricted in the power supply bin and the ground bin.

従って、この例では、15号の入出力用の配線は従来通
りm−だけで形成したか、を源及び接地は図のらうに半
日形状の切り欠きMS12に側面メタライズし、謝に第
2の全綱配#層5に接続されて導通抵抗上下けている。
Therefore, in this example, the input/output wiring for No. 15 is formed only with m- as before, or the source and ground are formed by metalizing the sides in the half-circular notch MS12 as shown in the figure, and the second All wires are connected to #layer 5 and the conduction resistance is raised and lowered.

第2の金−配線層は電源と接地用のみであるので、おの
おのは第1層の配線    1輪より広く形成できる。
Since the second gold wiring layer is only for power supply and grounding, each layer can be made wider than one ring of wiring in the first layer.

従って、電源や接地用の配線抵抗は少なくとも1/2以
下、通N1/4〜115 に下けることか可耗となる。
Therefore, the wiring resistance for power supply and grounding must be reduced to at least 1/2 or less, typically N1/4 to 115, or it will become worn out.

全ワイヤを接続し終った後は、シール・リング9に金属
キャップをかぶせ、シーム・ウェルド法中Au/8n合
金法などにより封止する。
After all the wires have been connected, the seal ring 9 is covered with a metal cap and sealed by Au/8n alloy method or the like in the seam weld method.

次に、切り欠き部の側面メタライズ法について第3図管
用いて説明する。
Next, a method of metallizing the side surface of the notch will be explained with reference to FIG.

内部に一一以上の金属配線を有するセラミック基板は、
通常、アルミナAt1Os の微粒子音バインダーで練
って弾性を有するシート状にした4の(=クリーンシー
ト)に穴開は加工や金属配配を施した抜、何枚かのグリ
ーンシートを重ね合わせて焼成して作られる。本発明の
切シ欠き部への側面メタライズは次のようにして形成さ
れる0先つ、第3図(a)のように、約α5m厚のグリ
ーンシート10に所望の金属配−ノくタンをスクリーン
印刷法で形成する。印刷に用いるインクは、通常タング
ステンWの微粒子を分散させた液体を用いる。次にNi
3図(b)のように直径約200μmの貫通孔11.1
1’を開ける。以上の印刷工程と穴開は工程は順序が逆
でも曳い。更に、第3図(c)のように、貫通孔11.
11’上にインクを滴下し、層側から吸引によ軌貴通孔
内の壁面にインクを付ける。次に、第3図(d)のよう
に、後にキャビティとなるべき穴を、貫通孔11.11
’の−Sを含んで打ち抜くと、前記貫通孔11 、11
’は切り欠き部12となり、そこにメタライズされたノ
(タンが得られる。更に、他のグリーンシー)101.
、IUbを第3図(e+のように重ね合わせ、連層な形
状に切断し、外周の1111面にインクを印刷して焼成
すると、第3図(f)のような切り火き部12に側面メ
タライズされたセラミック基板かできる0この後は通常
通りニッケルNiめっきし、外部リードビンとシールリ
ングをロウ句けし、史にニッケル(Ni)と金(Au)
めっきを施して完成する。
Ceramic substrates with eleven or more metal wiring inside are
Normally, alumina At1Os is kneaded into an elastic sheet (=clean sheet) using a microparticle sonic binder, holes are punched and metal is arranged, and several green sheets are layered and fired. It is made by The metallization on the side surface of the notch of the present invention is first formed as follows: As shown in FIG. is formed using a screen printing method. The ink used for printing is usually a liquid in which fine particles of tungsten W are dispersed. Next, Ni
As shown in Figure 3(b), a through hole 11.1 with a diameter of approximately 200 μm
Open 1'. The above printing process and hole punching can be done even if the order is reversed. Furthermore, as shown in FIG. 3(c), through holes 11.
Ink is dropped onto the layer 11' and applied to the wall inside the track through hole by suction from the layer side. Next, as shown in FIG. 3(d), the hole that will later become a cavity is inserted into the through hole 11.11.
' When punched out including -S, the through holes 11, 11
' becomes a notch 12, and a metalized tongue is obtained there.Furthermore, other green seas) 101.
, IUb are overlapped as shown in Fig. 3 (e+), cut into a continuous layered shape, printed with ink on the 1111th surface of the outer periphery, and fired, resulting in an opening 12 as shown in Fig. 3 (f). Ceramic substrate with metallized side surfaces can be created. After this, nickel (Ni) plating is performed as usual, the external lead bottle and seal ring are soldered, and then nickel (Ni) and gold (Au) are applied.
Complete with plating.

以上、代表的な例で説明したが、全綱配線ノくタンやセ
ラミ り基板の形転、使用材料、半導体装置の組み立て
法等は、この例に眠らない。
Although we have explained the above using typical examples, the examples do not cover all wiring connections, the shape of ceramic substrates, the materials used, the assembly methods of semiconductor devices, etc.

例えば、電源や接地のように、金属配線のうちのいくつ
かか常に同電位でめる場合は、Ni4図のようにリング
状の第2の層5′に、切り欠き部12″を通して接続す
れは・各全綱配組の長さや太さの相違による電位差が是
正され、良好な半導体装置を得ることができる。
For example, if some of the metal wiring is always connected at the same potential, such as for power supply or grounding, connect it through the notch 12'' through the ring-shaped second layer 5' as shown in the Ni4 diagram. - Potential differences due to differences in length and thickness of each wire arrangement are corrected, and a good semiconductor device can be obtained.

また、切シ欠き部の形状は上記の例では半日形状で説明
したが、矩形やV形、艇内形、その他任意の形で作るこ
とができるのは言うまでもない。
Further, although the shape of the notch is described as a half-hundred shape in the above example, it goes without saying that it can be made in a rectangular shape, a V shape, an inside shape, or any other arbitrary shape.

更に、セラミック基板の形態も、デュアル・インライン
(DIP)形だけでなくプラグ・イン(Plug−in
)形(別名エリア・アレイ形)やフラット形、QIP(
Quadle−4nline Package)形、シ
ングル・インライン形等、その形状を問わず不発明が適
用できることは勿論である。
Furthermore, the form of ceramic substrates is not only dual in-line (DIP) but also plug-in (plug-in).
) type (also known as area array type), flat type, QIP (
Of course, the invention can be applied regardless of the shape, such as the Quadle-4nline Package type or the single inline type.

また、使用材料も、セラミックはアルミナ11203だ
けでなく、ベリリアBeO、シリコン−カーバイド8i
Cなどを主成分としたものでも可能であシ、外部リード
ピンやシールリング、キャンプ、金属配線材も種々のも
のが使用できる。
In addition, the ceramic materials used include not only alumina 11203 but also beryllia BeO and silicon carbide 8i.
It is also possible to use a material mainly composed of C or the like, and various external lead pins, seal rings, camps, and metal wiring materials can be used.

更に組立法も、上記のようなワイヤ・ポンチインク法で
な(TAB法を用いても同様な効果が得られるたけでな
く、半導体素子に接続されたリードの導通抵抗が小さい
ので、全体としての導通抵抗を一層下げることができる
Furthermore, the assembly method is not the wire-punch-ink method as described above (the same effect can be obtained using the TAB method, but also the conduction resistance of the leads connected to the semiconductor element is small, so the overall The conduction resistance can be further reduced.

以上、詳細に説明したように、本発明によれは、セラミ
ック基板の金属配線の導通抵抗を大幅に低減できるだけ
でなく、このセラミック基板の製造も容易に且つ高い歩
留でできるようになった。
As described in detail above, according to the present invention, not only can the conduction resistance of the metal wiring of a ceramic substrate be significantly reduced, but also the ceramic substrate can be manufactured easily and with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のセラミック基板の断面図、第2図は本発
明の実施例を示す斜視図、第3図は本発明の製造方法を
示す断面図、84図は、本発明の他の実施例を示す斜視
図である。 図中で、1・・・・・半導体素子、2 ・・・金属配線
層、3・・・ワイヤ、5 ・・・・落2の全綱配線層、
8・・・・・・アイランド、10・ ・・・グリーン・
シー)、11.11’・・ 貫通孔、12・・・・・・
切り欠き部である・帛 3 目 第4 図
FIG. 1 is a sectional view of a conventional ceramic substrate, FIG. 2 is a perspective view showing an embodiment of the present invention, FIG. 3 is a sectional view showing a manufacturing method of the present invention, and FIG. It is a perspective view showing an example. In the figure, 1...semiconductor element, 2...metal wiring layer, 3...wire, 5...all wire wiring layers of drop 2,
8...Island, 10...Green...
Sea), 11.11'... Through hole, 12...
This is the notch part. 3rd item Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)凹部を有しその周囲に金属配線層を設けたセラミ
ック基板に於いて、前記凹部011面には前記金属配線
層の一部が延在し前記金属配線面とは異なる面の金属配
線層に接続されていることt−特徴とするセラミック基
板。
(1) In a ceramic substrate having a recess and a metal wiring layer provided around the recess, a part of the metal wiring layer extends on the surface of the recess 011, and the metal wiring is on a surface different from the metal wiring surface. A ceramic substrate characterized in that it is connected to layers.
(2)焼成前のセラミック・シートに貫通孔を設け、該
°貫通孔に金属粒子を分散させた液体を流し込んだ後、
該貫通孔の一部を切断し、他のセラミック・シートを積
層して焼成したこと1*黴とするセラミック基板の製造
方法。
(2) After making a through hole in the ceramic sheet before firing and pouring a liquid in which metal particles are dispersed into the through hole,
A method for manufacturing a ceramic substrate, in which a part of the through hole is cut, another ceramic sheet is laminated and fired.
JP8092882A 1982-05-14 1982-05-14 Ceramic substrate and manufacture thereof Granted JPS58197861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092882A JPS58197861A (en) 1982-05-14 1982-05-14 Ceramic substrate and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092882A JPS58197861A (en) 1982-05-14 1982-05-14 Ceramic substrate and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS58197861A true JPS58197861A (en) 1983-11-17
JPS6331101B2 JPS6331101B2 (en) 1988-06-22

Family

ID=13732093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092882A Granted JPS58197861A (en) 1982-05-14 1982-05-14 Ceramic substrate and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS58197861A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045045A (en) * 1983-08-23 1985-03-11 Shinko Electric Ind Co Ltd Multilayer ceramic package
EP0275973A2 (en) * 1987-01-19 1988-07-27 Sumitomo Electric Industries Limited Integrated circuit package
JPH0497548A (en) * 1990-08-14 1992-03-30 Matsushita Electric Works Ltd Semiconductor chip carrier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045045A (en) * 1983-08-23 1985-03-11 Shinko Electric Ind Co Ltd Multilayer ceramic package
JPH0478014B2 (en) * 1983-08-23 1992-12-10 Shinko Elec Ind
EP0275973A2 (en) * 1987-01-19 1988-07-27 Sumitomo Electric Industries Limited Integrated circuit package
JPH0497548A (en) * 1990-08-14 1992-03-30 Matsushita Electric Works Ltd Semiconductor chip carrier

Also Published As

Publication number Publication date
JPS6331101B2 (en) 1988-06-22

Similar Documents

Publication Publication Date Title
US4608592A (en) Semiconductor device provided with a package for a semiconductor element having a plurality of electrodes to be applied with substantially same voltage
US4407007A (en) Process and structure for minimizing delamination in the fabrication of multi-layer ceramic substrate
US11145587B2 (en) Electronic component mounting substrate, electronic device, and electronic module
JPH07147352A (en) Semiconductor integrated circuit device
US20190148278A1 (en) Electronic component mounting substrate, electronic device, and electronic module
JPS58197861A (en) Ceramic substrate and manufacture thereof
JPH03196664A (en) Package for semiconductor device
JPS5910240A (en) Semiconductor device
WO2019044706A1 (en) Substrate for mounting electronic components, electronic device, and electronic module
JPWO2018155434A1 (en) Wiring board, electronic device and electronic module
JPS6322615B2 (en)
JPH05144953A (en) Electronic component containing package
JP2560630B2 (en) Semiconductor package
JPH05160284A (en) Semiconductor device containing package
JP3441199B2 (en) Package for storing semiconductor elements
JPH09167810A (en) Package for semiconductor chip housing use and its manufacture
JPH07130900A (en) Semiconductor device
JPS62279663A (en) Semiconductor device
JP4331957B2 (en) Piezoelectric vibrator storage package
JPS58197863A (en) Semiconductor device
JPS60124957A (en) Semiconductor device
JPS6056299B2 (en) semiconductor container
JPS63261860A (en) Hermetic seal type semiconductor device
JPS6341052A (en) Package for semiconductor device
JPH08125049A (en) Package for containing semiconductor chip