JPS58190059A - Manufacture of mos type semiconductor device - Google Patents

Manufacture of mos type semiconductor device

Info

Publication number
JPS58190059A
JPS58190059A JP7242182A JP7242182A JPS58190059A JP S58190059 A JPS58190059 A JP S58190059A JP 7242182 A JP7242182 A JP 7242182A JP 7242182 A JP7242182 A JP 7242182A JP S58190059 A JPS58190059 A JP S58190059A
Authority
JP
Japan
Prior art keywords
substrate
region
ion
film
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7242182A
Other languages
Japanese (ja)
Inventor
Shinji Onga
恩賀 伸二
Naoyuki Shigyo
直之 執行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP7242182A priority Critical patent/JPS58190059A/en
Publication of JPS58190059A publication Critical patent/JPS58190059A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To enable to previously prevent the phenomenon of abnormal decrease in threshold voltage and thus enable to attain the threshold voltage as the designed value with good controllability, by forming a source-drain region consisting of a two stage impurity region. CONSTITUTION:A B contained P type Si substrate 1 is prepared, then the element forming region of the substrate is covered with a mask 2, and the field region of the Si substrate 1 is etched. An inversion prevention layer 3 is formed by ion implantation of B, and a Si oxide film 4 is buried in the field region. A fluid film 8 which is fluid and becomes equal to a CVDSiO2 film 6 in etching speed is formed, then a recess 7 is bruied, and its surface is flatted. At the time of forming the source-drain by ion implantation, first and acceleration voltage is set at 50kV at a low dosage 3X10<14>/cm<3>, and then As is ion-implanted into the source-drain formng region. Ion implantation is performed by using a mask and a high accuracy aligner which go inside from the W direction respectively by 0.6mum from both sides.

Description

【発明の詳細な説明】 本発明は、BOX法を利用したMOS型半導体装置のf
J!!遣方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides f
J! ! Regarding improvement of delivery method.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

酸化膜を用いた素子分離技術は種々考案されているが、
その中でも素子平面の平坦化及びバーズビーク(フィー
ルド酸化膜が鳥のくちばしのように素子部分に食い込む
こと)部分の激減の2点を考慮に入れるとBOX法(B
uryingOxide 1nto 5ilicon 
GrOOVe 、黒沢1%願昭56−88257号)が
あげられる。このBOX法を簡単に説明する。まず、シ
リコン基板の素子形成領域を残して他の領域(フィール
ド領域)のSiをエツチングする。このエツチングされ
て低くなった凹部に艮絶縁性である酸化膜(Si02)
を埋め込み素子形成領域のシリコン表面と同じ高さにす
る。かくして絶縁分離されたシリコン素子領域に通常の
工程で素子を形成することができる。このBOX法の利
点は−F記にも記したように、素子平面の平坦化とバー
ズビークの激減であり、素子の高集積化には非常に有益
で画期的な新技術である。
Various device isolation technologies using oxide films have been devised, but
Among them, the BOX method (B
uryingOxide 1nto 5ilicon
GrOOVe, Kurosawa 1% Gansho No. 56-88257). This BOX method will be briefly explained. First, Si is etched in other regions (field regions) of the silicon substrate, leaving only the element formation region. An insulating oxide film (Si02) is placed in this etched and lowered recess.
to the same height as the silicon surface of the buried element forming area. Elements can thus be formed in the insulated and isolated silicon element region through normal steps. As mentioned in section -F, the advantages of this BOX method are flattening of the device plane and drastic reduction of bird's beak, and it is a revolutionary new technology that is extremely useful for increasing the integration of devices.

ところが、上記BOX法によって作成された素子には、
その後いくつかの付加的な問題が生じている。例えば、
MOSトランジスタのチャネル@Wが、3.0(μm)
程度からさらに20〔μm〕近傍の短い領域になると、
しきい値電圧(VT)が、設計値よりも下がる現象が見
い出されてきた。この現象は、素子の信頼性に対し、プ
ロセス及び設計の分野に大きな波もんを来し、ぜひ回避
する必要があった。この対策として、現在ではNチャネ
ルMO8素子においては予め不純物ポロンをチャネル幅
W方向の側面近傍にだけ多く含まぜる方法をとっている
。具体的にはイオン注入技術を用い、注入時における不
純物イオンの横力間の素子領域へのひろがりを利用して
いるのが現状である。
However, the device created by the above BOX method has
Several additional problems have since arisen. for example,
Channel @W of MOS transistor is 3.0 (μm)
When it comes to a shorter region around 20 [μm],
A phenomenon has been discovered in which the threshold voltage (VT) is lower than the designed value. This phenomenon has a major impact on the reliability of devices in the fields of process and design, and must be avoided. As a countermeasure against this problem, a method is currently used in which N-channel MO8 devices include a large amount of impurity poron only in the vicinity of the side surfaces in the direction of the channel width W. Specifically, the current practice is to use ion implantation technology and take advantage of the spread of impurity ions into the device region during lateral force during implantation.

しかしながら、このようなイオン注入による方法では、
イオン注入による本来の深さ方向への不純物注入を利用
せず派生的に生ずる横方向へのひろがりを利用している
ため、その効果は小さく、またその制御も極めて困難で
あった。
However, with this method of ion implantation,
Because ion implantation does not utilize impurity implantation in the original depth direction, but instead utilizes the resulting lateral spread, the effect is small and its control is extremely difficult.

このため、チャネル幅の短い(3)1m以下)MO8型
半導体装置を製造する場合、そのしきい値電圧を設計値
に制御性良く合わせることは困難であった。
For this reason, when manufacturing an MO8 type semiconductor device with a short channel width (3) 1 m or less), it has been difficult to adjust the threshold voltage to a designed value with good controllability.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、BOX法を利用してMO8型半導体装
置を製造するに際し、しきい値電圧の異常な低下の現象
を未然に防止することができ、制御性良く設計値通りの
しきい値電圧の達成が可能で、かつその工程が簡略なM
O8型半導体装置の製造方法を提供することにある。
An object of the present invention is to prevent the phenomenon of an abnormal drop in threshold voltage when manufacturing an MO8 type semiconductor device using the BOX method, and to maintain the threshold voltage as designed with good controllability. M that can achieve high voltage and has a simple process
An object of the present invention is to provide a method for manufacturing an O8 type semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明は、MO8型半導体装置を製造するに際し、半導
体基板の素子形成領域上に被膜を形成しこの被膜をマス
クとして選択エツチングし該基板のフィールド領域に凹
部を形成したのち、少なくとも上記凹部の底に上記基板
と同導電型を作る不純物をイオン注入し、次いで周辺に
溝が形成された状態で上記凹部に第1の絶縁膜を埋め込
んだのち抜溝を埋めるよう第2の絶縁膜を被着し、次い
で全面エツチングを施し前記四部に上記第1および第2
の絶縁膜を埋め込んだ状態で前記基板の素子形成領域を
露出させ、次いで露出された素子形成領域のソース・ド
レイン形成領域に前記基板と逆導電型を作る不純物をイ
オン注入し、しかるのち上記ソース・ドレイン形成領域
にイオン注入した不純物のドーズ量より1桁以上高いド
ーズ量で、上記ソース・ドレイン形成領域の幅方向両側
部を除く部分に前記基板と逆導電型を作る不純物をイオ
ン注入す不ようにした方法である。
When manufacturing an MO8 type semiconductor device, the present invention involves forming a film on an element formation region of a semiconductor substrate, selectively etching the film using the film as a mask, forming a recess in a field region of the substrate, and then at least the bottom of the recess. An impurity having the same conductivity type as the substrate is ion-implanted into the substrate, a first insulating film is buried in the recess with a groove formed around the periphery, and a second insulating film is deposited to fill the groove. Then, the entire surface is etched to form the first and second parts on the four parts.
The element formation region of the substrate is exposed with the insulating film buried therein, and then impurities that form a conductivity type opposite to that of the substrate are ion-implanted into the source/drain formation regions of the exposed element formation region.・Ion implantation of an impurity that creates a conductivity type opposite to that of the substrate into the source/drain formation region except for both sides in the width direction at a dose that is at least one order of magnitude higher than the dose of the impurity ion-implanted into the drain formation region. This is how I did it.

すなわち本発明の骨子は、BoX法を用いて素子分離を
達成したのち、ひきつづき素子作成工程を続はソース・
ドレイン領域形成のためのイオン注入工程において、ま
ず低ドーズ量で所定のソース及びドレイン領域を形成し
、しがるのちにこのドーズ量より1桁以上高いドーズ量
で前記ソースドレイン領域の幅方向において両側からそ
れぞれ0.25〜0.3〔μm〕程度せはめられた領域
に再びイオン注入することにある。
In other words, the gist of the present invention is to achieve device isolation using the BoX method, and then continue the device fabrication process by performing the source/source process.
In the ion implantation process for forming the drain region, a predetermined source and drain region is first formed at a low dose, and then a dose at least one order of magnitude higher than this dose is implanted in the width direction of the source and drain regions. The purpose is to implant ions again into regions separated by about 0.25 to 0.3 [μm] from both sides.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、2段の不純物領域からなるソース・ド
レイン領域を形成することによって、特にチャネル幅W
が短い時BOX法において出現するしきい値電圧の異常
な低下を容易に回避することができる。このため、MO
8型半導体装置のしきい値電圧を制御性良く設計値に合
わせることができる。また、2回のイオン注入を行うの
みでその工程も簡略である等の効果を奏する。
According to the present invention, by forming the source/drain regions consisting of two stages of impurity regions, in particular, the channel width W
When is short, the abnormal drop in threshold voltage that occurs in the BOX method can be easily avoided. For this reason, M.O.
The threshold voltage of an 8-type semiconductor device can be adjusted to a designed value with good controllability. In addition, the process is simple since ion implantation is performed only twice.

〔発明の実施例〕[Embodiments of the invention]

第1図(a) 、 (b) 〜第8図(a) 、 (b
)は本発明の一実施例に係わるMOS)ランジスタ製造
工程を示すもので、(a)は断面図0))は平面図をそ
わ、それ示している。まず、第1図(a) T (b)
に示す如く面方位(100)、比抵抗が5〜50〔fノ
ー―〕程度のボロンを含んだPffiシリコン基板1を
用意し、通常の写真喰刻工程により基板の素子形成領域
をマスク2で徨い、シリコン基板1のフィールド領域を
所望のフィールド膜厚相当分だけエツチングする。
Figures 1 (a), (b) to Figure 8 (a), (b)
) shows the manufacturing process of a MOS transistor according to an embodiment of the present invention, (a) is a sectional view, and (0)) is a plan view. First, Figure 1 (a) T (b)
A Pffi silicon substrate 1 containing boron with a plane orientation (100) and a resistivity of about 5 to 50 [f-no-] as shown in the figure is prepared, and the element formation area of the substrate is etched with a mask 2 by a normal photolithography process. Then, the field region of the silicon substrate 1 is etched by an amount corresponding to the desired field film thickness.

次いで、第2図(a) 、 (b)に示す如く、同じマ
スク2を用いてフィールド領域に、フィールド反転防止
のためにシリコン基板1と同電型を作る不純物、例えば
ボロンBをイオン注入し、反転防止層3を形成する。そ
の後、第3図(a) 、 (b)に示す如く、リフトオ
フ加工を用いて、フィールド領域にシリコン酸化膜4を
埋め込む。このリフトオフ加工は、例えば次のようにし
て行なう。
Next, as shown in FIGS. 2(a) and 2(b), an impurity, such as boron B, which forms the same electric type as the silicon substrate 1, is ion-implanted into the field region using the same mask 2 to prevent field reversal. , forming the anti-inversion layer 3. Thereafter, as shown in FIGS. 3(a) and 3(b), a silicon oxide film 4 is buried in the field region using a lift-off process. This lift-off processing is performed, for example, as follows.

すなわち、シリコン基板I上の全面にプラズマCVD5
j02膜を堆積する。次に、弗化アンモニウムで全面エ
ツチングすると、フィールド領域と素子形成領域との境
界にできている段差部の側面に堆積したプラズマcvn
sio、膜が平坦部に比べてそのエツチング速度が3〜
20倍はやいため、上記段差部側面のプラズマCVD5
io2膜が選択的に除去される。その後、素子形成領域
上のマスク2を除去すると、マスク2上に堆積したプラ
ズマCVD5iO□膜も一緒に除去され、フィールド領
域lこのみプラズマCVD5iO□膜4が埋め込まれる
。この時、フィールド領域と素子形成領域との境界には
第3図(a)に示すように断面形状が一定の細い溝5が
残される。
That is, plasma CVD5 is applied to the entire surface of the silicon substrate I.
Deposit the j02 film. Next, when the entire surface is etched with ammonium fluoride, the plasma CVN deposited on the side surface of the step formed at the boundary between the field region and the element formation region is removed.
sio, the etching rate of the film is 3 to 3 compared to the flat part.
Because it is 20 times faster, plasma CVD5 on the side surface of the step part
The io2 film is selectively removed. Thereafter, when the mask 2 on the element forming region is removed, the plasma CVD5iO□ film deposited on the mask 2 is also removed, and the plasma CVD5iO□ film 4 is buried in the field region. At this time, a narrow groove 5 with a constant cross-sectional shape is left at the boundary between the field region and the element forming region, as shown in FIG. 3(a).

次に、第4図(a) 、 ’(b)に示す如く前記細い
溝5を埋め込むよう全面にcvDsio2膜6を被着す
るとCVD5 to□膜6の表面には上記細い溝5の上
部に一定の凹部7ができる。続いて、流動性でかつ上記
CVD5iO,膜6とエツチング速度が等しくなるよう
な流動性膜8を形成し、上記臼s7を埋め込みその表面
を平担にする。
Next, as shown in FIGS. 4(a) and 4(b), when a CVD sio2 film 6 is deposited on the entire surface so as to bury the narrow groove 5, a constant layer is formed on the surface of the CVD5 to □ film 6 at the top of the narrow groove 5. A recess 7 is formed. Subsequently, a fluid film 8 is formed which is fluid and has an etching rate equal to that of the CVD 5iO film 6, and the mortar s7 is embedded and its surface is flattened.

次いで、第5図(a) 、 (b)に示す如く、上記流
動性膜8及びcvDsjot膜6を全面エツチング除去
し、素子形成領域を露出させると、フィールド領域はC
vDS1026膜とプラズマCvDS1024膜とによ
り略平坦に埋め込まれる。
Next, as shown in FIGS. 5(a) and 5(b), when the fluid film 8 and the cvDsjot film 6 are etched away from the entire surface to expose the element formation region, the field region becomes C.
It is buried substantially flat with the vDS1026 film and the plasma CvDS1024 film.

次いで、上記露出された素子形成領域に所定の素子を形
成する。すなわち、ドライ酸化炉にオイテ、例えば90
0(C)とし、第6図(a)。
Next, a predetermined element is formed in the exposed element formation region. That is, in a dry oxidation furnace, for example, 90
0(C) and FIG. 6(a).

(b)に示す如(310[:A)のゲート酸化膜9を成
長させ、しかるのちにゲート電極用材料として多結晶シ
リコン10を例えば3000(A)堆積させる。これを
写真蝕刻法により所定部をのこしてエツチングする。
A gate oxide film 9 (310 [:A) as shown in FIG. This is etched by photolithography, leaving a predetermined portion.

次に、本発明の特徴であるイオン注入によりソース・ド
レインを形成するに当り、まず低ドーズ量3 X 10
” (/cd)で加速電圧を50KVとし、第7図(a
) 、 (b)に示す如くソース・ドレイン形成領域に
ひ素A8.)イオン注入(第7図(1))の斜線部)し
た。なお、この実施例ではソース及びドレインの幅Wは
2.0〔μm〕であった。ひきつづき、両側からそれぞ
れ0.6〔μm〕づつW方向から内側に入ったマスクと
高精度アライナ−を用い4オン注入した。ちなみに、こ
の用いた高精度アライナ−の合わせ精度は3vで0.3
〔μm〕であった。すなわち、第8図(a) 、 (b
)に示す如く幅方向に少しせまい領域に昼ドーズ量例え
ば5xlO(/−)で加速電圧を50〔防〕とし、再び
ひ素ABをイオン注入(第8図(blの斜線部)した。
Next, when forming sources and drains by ion implantation, which is a feature of the present invention, first a low dose of 3 x 10
” (/cd) and set the acceleration voltage to 50KV, Figure 7(a)
), as shown in (b), arsenic A8. ) Ion implantation (shaded area in FIG. 7 (1)) was performed. In this example, the width W of the source and drain was 2.0 [μm]. Subsequently, 4-on implantation was performed using a mask and a high-precision aligner that entered inward from the W direction by 0.6 [μm] on each side. By the way, the alignment accuracy of the high-precision aligner used is 0.3 at 3V.
[μm]. That is, Fig. 8(a), (b
), arsenic AB was ion-implanted again into a slightly narrow region in the width direction (Fig. 8 (hatched area in BL)) at a daytime dose of, for example, 5xlO (/-) and an accelerating voltage of 50 [proof].

なお、この実施例では、第2回目の高ドーズイオン注入
用として1枚のマスクをもうけた。才たこのマスクでは
、多結晶シリコンゲート部にもイオン注入し、ゲート電
極がN+になるように考慮しである。また、多結晶シリ
コンのイオン注入時におけるチャネル方向におけるマス
クズレを考慮して、先の第1回目の低ドーズ量部分にイ
オン注入されないように配慮シタ。かくしてソース・ 
ドレインを形成した。
In this example, one mask was prepared for the second high-dose ion implantation. In this mask, ions are also implanted into the polycrystalline silicon gate part, so that the gate electrode becomes N+. In addition, in consideration of mask misalignment in the channel direction during ion implantation of polycrystalline silicon, care was taken to avoid ion implantation into the first low dose area. Thus the sauce
formed a drain.

次に、素子形成領域及びフィールド領域上にCVD酸化
膜を堆積し、さらに燐不純物を含んだ所謂PSGCVD
膜を堆積し所定の熱工程を完了させた。しかるのち、写
真蝕刻法とエツチング技術とを用い、配線用コンタクト
ホール穿け、ソース・ドレインゲート用の電極部分に所
定の配線をした。この時点でチャネル幅に関しては高ド
ーズ領域は横方向にも少しひろがり、紡期の低ドーズ量
領域よりそれぞれ027〔μm〕ずつ内部に入っていた
。その後、シンターを施し、形成されたMOSトランジ
スタの電気的特性を測定した。測定結果を第9図にO印
で示す。
Next, a CVD oxide film is deposited on the element formation region and field region, and a so-called PSGCVD film containing phosphorus impurities is deposited.
The film was deposited and the prescribed thermal steps were completed. Thereafter, using photolithography and etching techniques, contact holes for wiring were made, and predetermined wiring was placed in the source/drain/gate electrode portions. At this point, in terms of channel width, the high-dose region had expanded a little in the lateral direction, and was 027 [μm] deeper into the channel than the low-dose region in the spinning period. Thereafter, sintering was performed, and the electrical characteristics of the formed MOS transistor were measured. The measurement results are shown in FIG. 9 by O.

同図には、さらにマスク上のチャネル幅Wを種々変化さ
せた場合についても示した。いづれの場合においても、
例えば所定のしきい値電圧tO(V)に対して略期待ど
おりの値を達成している。なお、第9図にはそのバラツ
キも示した。このとき、前記第1.第2のイオン注入以
後同じ熱工程を経たテスト用シリコン基板でシート抵抗
(fs)及び接合深さくXj )を検査したところ第1
回目のイオン注入のみの場合の領域ではfsが70〔Ω
/口〕であり、Xjは0、29 (、μm〕であった。
The figure also shows cases in which the channel width W on the mask is varied in various ways. In any case,
For example, a substantially expected value is achieved for a predetermined threshold voltage tO (V). Incidentally, FIG. 9 also shows the variation. At this time, the first. When the sheet resistance (fs) and junction depth (Xj) were inspected on a test silicon substrate that had undergone the same thermal process after the second ion implantation, the first
In the region where only the second ion implantation is performed, fs is 70 [Ω
/mouth] and Xj was 0.29 (, μm).

さらに第1回目及び第2回目の両方の工程を経た領域は
fsが28(#/c+)でxjは0.31(μm)であ
った。
Further, in the area that underwent both the first and second steps, fs was 28 (#/c+) and xj was 0.31 (μm).

本発明の効果をさらにくわしくしらべるため比較用とし
て従来の方法、すなわちBOX法による素子分離工程の
みの場合を第9図中・印でBOX法特有のしきい値電圧
の降下を克服する方法としてイオン注入をこよる横方向
ひろがりを利用した場合の結果を第2図中口印で示した
In order to examine the effects of the present invention in more detail, we will compare the conventional method, that is, the case of only the element isolation process using the BOX method. The results obtained when using the lateral spread due to injection are shown by the mark in the middle of Figure 2.

第9図から判るように、チャネル幅Wに対してしきい値
電圧の変動が大きくしかもそのバラツキも、実施例に比
して大きい。BOX法による素子分離工程と1.BOX
法特有のしきい値電圧の降下ヲ完服する方法として従来
のようにイオン注入によるよこ方向ひろがりを利用した
工程とを組み合せたものの場合、次のような欠点がある
。すなわち、不純物の横方向拡がりを得るために第1回
のイオン注入工程においては、その後形成する凹部の深
さの約半分程度の射影飛程Rfをもつ加速電圧でホロン
のイオン注入を行なう必要がある。この場合、深さ方向
の標準偏差値△RfはRfの1./2〜1//3の大き
さζこ相轟する。そして、ボロンのようなイオンは比較
的軽く、該マスクの下へのイオンの横方向拡がり△Xも
比較的大きいが、それでもせいぜい△X+△Rfである
ので、その大きさ自体実際には非常に小さい。才だ、△
Xをかせぐためには△Rfを大きくする必要があり、そ
の場合は加速電圧を大きくとることになる。こうすると
、射影飛程Rfが大きくなりVTの降下の制御にはきか
なくなる。また、この凹部の側面にのこすポロンの注入
量が多すぎるとそもそもポロンの拡散係数自体が大きい
ので、ボロンがその後の熱処理で素子形成領域の中央部
才で不必安に拡散することがめる。こうなると、本来の
しきい値電圧自体をくるわせることになり、さらに素子
形成領域に形成した拡散層の耐圧の低下や寄生容量の増
大等素子特性への慾い影響がある。
As can be seen from FIG. 9, the fluctuation of the threshold voltage is large with respect to the channel width W, and the variation thereof is also large compared to the example. Element isolation process by BOX method and 1. BOX
As a method for completely eliminating the drop in threshold voltage peculiar to the method, a method in which a conventional process utilizing lateral spreading by ion implantation is combined has the following drawbacks. That is, in order to obtain lateral spread of impurities, in the first ion implantation step, it is necessary to perform ion implantation of holons at an accelerating voltage with a projection range Rf that is approximately half the depth of the recess that will be formed thereafter. be. In this case, the standard deviation value ΔRf in the depth direction is 1. /2 to 1//3 in size ζ. Although ions such as boron are relatively light and the lateral spread △X of the ions under the mask is relatively large, it is still only △X + △Rf at most, so the size itself is actually very large. small. Talented, △
In order to increase X, it is necessary to increase ΔRf, and in that case, the acceleration voltage must be increased. In this case, the projected range Rf becomes large and it becomes difficult to control the descent of the VT. Furthermore, if too much poron is implanted on the side surfaces of the recess, the diffusion coefficient of poron itself is large, so that boron will inevitably diffuse in the center of the element formation region during subsequent heat treatment. If this happens, the original threshold voltage itself will be distorted, and furthermore, there will be negative effects on the device characteristics, such as a decrease in the withstand voltage of the diffusion layer formed in the device formation region and an increase in parasitic capacitance.

本発明者等は本発明の効果の検証のためさらに次の3つ
の点について検討した。すなわち、(1)ソース・ドレ
イン形成のためのイオン注入において第1回目と第2回
目との注入ドーズ量の比較、(2)第2回目の高ドーズ
イオン注入における注入領域の範囲、さらに、(3)本
発明の効果が得られる物性上の根拠である。第1の検討
項目に関しては、まず高ドーズ量領域は素子特性として
必要なxj、fsを達成するため、略通常の3〜5 X
 10  (/ cd )程度のドーズ量がよく、低ド
ーズ量領域は種々綿密に調査した結果いづれの値の場合
に対しても上記値より1桁以下のものがよいことが判明
した。また、第2の点に関して調査した結果、しあがり
寸法でそれぞれ0.25〜0.3 C,μm〕ずつW方
向両側から狭められるのが最適であることが判明した。
The present inventors further investigated the following three points in order to verify the effects of the present invention. That is, (1) a comparison of the implantation doses of the first and second ion implantations for source/drain formation, (2) the range of the implanted region in the second high-dose ion implantation, and ( 3) This is the physical property basis for obtaining the effects of the present invention. Regarding the first consideration, first, in the high dose region, in order to achieve the xj and fs required for the device characteristics, the approximately normal 3 to 5
A dose of about 10 (cd) is good, and as a result of various careful investigations into the low dose range, it has been found that for any value, one order of magnitude or less than the above value is better. Further, as a result of investigation regarding the second point, it was found that it is optimal to narrow the end dimensions by 0.25 to 0.3 C, μm from both sides in the W direction.

ちなみに、L方向ζこおいて高ドーズ量領域をせばめる
と、電圧電流特性が悪化した。また、第3の点に関して
は、これは本来BOX法のみによる場合、特にWが小さ
いときのしきい値電圧の降下の現象を究明することにつ
ながり、チャネル幅方向のはじて構造的に電流が流れや
すくなっていることに起因していることが判った。この
通路の寄与を下げるために、本発明の如くソース・ドレ
インの幅方向のはじにおける領域を予め電流が通り難く
シておくのが良く、こうしてこの部分のVTへの寄与を
下げ、全体としてしきい値VTの変動を抑えることにつ
ながる。また、本発明者等の考察によれば、本発明の効
果はチャネル長が短かい場合に一層効果をはつきするこ
とが確かめられた。
Incidentally, when the high dose region was narrowed in the L direction ζ, the voltage-current characteristics deteriorated. Regarding the third point, this will lead to investigating the phenomenon of threshold voltage drop especially when W is small, which would be possible if only the BOX method was used. It turns out that this is due to the fact that it flows easily. In order to reduce the contribution of this path, it is better to make it difficult for current to pass through the region at the edge of the source/drain in the width direction in advance, as in the present invention, thereby reducing the contribution of this portion to VT and reducing the overall effect. This leads to suppressing fluctuations in the threshold value VT. Further, according to the studies of the present inventors, it has been confirmed that the effect of the present invention is even more effective when the channel length is short.

なお、本発明は上述した実施例に限定されるものではな
く、その要旨を逸脱しない範囲で種々変形して実施する
ことかできる。例えは、前記ソース・ドレイン領域およ
び該領域の一部にイオン注入する不純物はヒ素に限るも
のではなく、前記基板と逆導胃、型を作るものであれば
よい。さらに、イオン注入のドース量は、2回目を1回
目より1桁μ上大きい範囲で適宜定めればよい。またM
OS hランジスタに限らす、その他各種のMO8型半
導体装置に適用できるのに勿論のことである。
Note that the present invention is not limited to the embodiments described above, and can be implemented with various modifications without departing from the gist thereof. For example, the impurity to be ion-implanted into the source/drain region and a part of the region is not limited to arsenic, but may be any impurity that forms a reverse conductor and a mold with the substrate. Furthermore, the dose of ion implantation may be appropriately determined within a range where the second ion implantation is one order of magnitude larger than the first ion implantation. Also M
Of course, the present invention can be applied not only to OS h transistors but also to various other MO8 type semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b) 〜第8図(a) 、 (b
)は本発明の一実施例に係わるMOS )ランジスタ製
造工程を示すもので、(a)は断面図、(b)は平面図
をそれぞれ示し、第9図は上記実施例方法の作用を説明
するためのものでチャネル幅に対するしきい値電圧の変
化を示す特性図である0 1・・・P型シリコン基板(半導体基板)、2・・・マ
スク膜、4,6・・・シリコン酸化膜、8・・・流動性
膜、9・・・ゲート酸化膜、10・・・多結晶シリコン
膜。 出願人代理人 弁理土鈴江武彦 第5図 第6図
Figures 1 (a), (b) to Figure 8 (a), (b)
) shows the manufacturing process of a MOS transistor according to an embodiment of the present invention, (a) shows a cross-sectional view, (b) shows a plan view, and FIG. 9 explains the operation of the method of the above embodiment. 0 1... P-type silicon substrate (semiconductor substrate), 2... Mask film, 4, 6... Silicon oxide film, 8... Fluid film, 9... Gate oxide film, 10... Polycrystalline silicon film. Applicant's agent: Patent attorney Takehiko Suzue Figure 5 Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板の素子形成領域上に被膜を形成し、こ
の被膜をマスクとして上記基板を選択エツチングし該基
板のフィールド領域に凹部を形成する工程と、少なくと
も上記凹部の底に上記基板と同導電型を作る不純物をイ
オン注入する工程と、次いで周辺に溝が形成された状態
で上記凹部に第1の絶縁膜を埋め込んだのち、上記溝を
埋めるよう第2の絶縁膜を被着する工程と、全面エツチ
ングを施し前記凹部に上記第1および第2の絶縁膜を埋
め込んだ状態で前記基板の素子形成領域を露出せしめる
工程と、上記露出された素子形成領のソース・ドレイン
形成領域に前記基板と逆導電型を作る不純物をイオン注
入する工程と、次いで上記ソース・ドレイン形成領域に
イオン注入した不純物のドーズ量より1桁以上高いドー
ズ量で、上記ソース・ ドレイン形成領域の幅方向両側
部を除く部分に前記基板と逆導電、型を作る不純物をイ
オン注入する工程とを具備したことを特徴とするMOS
型半導体装置の製造方法。
(1) A step of forming a film on the element formation region of a semiconductor substrate, selectively etching the substrate using the film as a mask, and forming a recess in the field region of the substrate, and forming a recess at least at the bottom of the recess in the same manner as the substrate. A process of ion-implanting impurities that create a conductivity type, and then burying a first insulating film in the recess with a groove formed around it, and then depositing a second insulating film to fill the groove. a step of etching the entire surface to expose the element formation region of the substrate with the first and second insulating films buried in the recesses; A step of ion-implanting an impurity that has a conductivity type opposite to that of the substrate, and then implanting ions into both sides of the source/drain formation region in the width direction at a dose that is at least one order of magnitude higher than the dose of the impurity ion-implanted into the source/drain formation region. A MOS characterized by comprising a step of ion-implanting an impurity that has a conductivity opposite to that of the substrate and forms a mold into a portion other than the substrate.
A method for manufacturing a type semiconductor device.
(2)  前記ソース・ ドレイン形成領域の幅方向両
側部を除く部分に不純物をイオン注入する工程は、後述
する各工程が終了した時点において該イオン注入による
イオン注入層が前記ソース・ドレイン形成領域の幅方向
両端よりそれぞれ0.25〜03〔μm〕内側となるよ
うイオン注入するものである特許請求の範凹第1項記載
のMOS型半導体装置の製造方法。
(2) The step of ion-implanting impurities into the portions of the source/drain formation region other than both sides in the width direction is such that the ion-implanted layer formed by the ion implantation is formed in the source/drain formation region at the time when each step described below is completed. A method for manufacturing a MOS type semiconductor device according to claim 1, wherein ions are implanted so as to be 0.25 to 03 μm inside from both ends in the width direction.
JP7242182A 1982-04-28 1982-04-28 Manufacture of mos type semiconductor device Pending JPS58190059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7242182A JPS58190059A (en) 1982-04-28 1982-04-28 Manufacture of mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7242182A JPS58190059A (en) 1982-04-28 1982-04-28 Manufacture of mos type semiconductor device

Publications (1)

Publication Number Publication Date
JPS58190059A true JPS58190059A (en) 1983-11-05

Family

ID=13488800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7242182A Pending JPS58190059A (en) 1982-04-28 1982-04-28 Manufacture of mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS58190059A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263693A (en) * 1994-02-24 1995-10-13 Samsung Electron Co Ltd Preparation of fet and integration structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263693A (en) * 1994-02-24 1995-10-13 Samsung Electron Co Ltd Preparation of fet and integration structure

Similar Documents

Publication Publication Date Title
US4935379A (en) Semiconductor device and method of manufacturing the same
KR0170457B1 (en) Method of manufacturing semiconductor device with mosfet
JPH0351108B2 (en)
JPS6055665A (en) Manufacture of semiconductor device
JP3360064B2 (en) Method for manufacturing semiconductor device
JPS58190059A (en) Manufacture of mos type semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
JPS5846648A (en) Manufacture of semiconductor device
JPS60175458A (en) Semiconductor device and manufacture thereof
JP2595058B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPH0423329A (en) Manufacture of semiconductor device
JPH04155932A (en) Production of semiconductor device
JPH06318698A (en) Semiconductor device and its manufacture
JPS60134477A (en) Nonvolatile memory and manufacture thereof
JPS59224141A (en) Manufacture of semiconductor device
JP4206768B2 (en) Method for forming a transistor
JPS62101074A (en) Semiconductor device
JPH01107555A (en) Mis semiconductor device and manufacture thereof
JPS63302562A (en) Manufacture of mos type semiconductor device
JPH01270272A (en) Manufacture of mis type semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JPS5940563A (en) Manufacture of semiconductor device
KR100903467B1 (en) A semiconductor device and the fabricating method thereof
JPS6049672A (en) Semiconductor integrated circuit device
JP2674568B2 (en) Method for manufacturing semiconductor device