JPS5818981A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5818981A
JPS5818981A JP56118086A JP11808681A JPS5818981A JP S5818981 A JPS5818981 A JP S5818981A JP 56118086 A JP56118086 A JP 56118086A JP 11808681 A JP11808681 A JP 11808681A JP S5818981 A JPS5818981 A JP S5818981A
Authority
JP
Japan
Prior art keywords
type
heat treatment
diffusion
light emitting
group element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56118086A
Other languages
Japanese (ja)
Inventor
Shigeru Nagao
長尾 茂
Susumu Furuike
進 古池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP56118086A priority Critical patent/JPS5818981A/en
Publication of JPS5818981A publication Critical patent/JPS5818981A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To obtain an infrared light emitting diode having a long life and high reliability by a method wherein the II group element to be made as P type impurities is diffused in high concentration in the P type region of a compound semiconductor crystal provided with a P-N junction, and the heat treatment is performed in an atmosphere not containing the II group element to promote rearrangement of the introduced II group element to the position of crystal lattice. CONSTITUTION:An N type GaAs layer 7 and a P type GaAs layer 8 are made to grow liquid phase epitaxially in succession on an N type GaAs substrate 6, and moreover additional diffusion is performed to the layer 8 using Zn to form the P<+> type region 9. After then, the heat treatment is performed at 600 deg.C for 15-24hr in the atmosphere having no existence of a diffusion source consisting of Zn or a compound containing Zn to promote rearrangement of diffused Zn to the position of crystal lattice. Accordingly influence of thermal distortion, etc., remaining inside of the crstal can be removed, and the P-N junction having the stable characteristic can be enabled to obtain.

Description

【発明の詳細な説明】 本発明は高信頼性を有する半導体装置の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a highly reliable semiconductor device.

砒化ガリウム(GaAa’)、燐化ガリウム(GaP)
等のi−v族化合物半導体は、現在1発光ダイオードや
レーザー等の発光装置の材料として広く使用されている
。これらの発光装置においては、良好なオーミック接触
を得るために、pn接合形成た構造が用−られている。
Gallium arsenide (GaAa'), gallium phosphide (GaP)
IV group compound semiconductors such as 1-V compound semiconductors are currently widely used as materials for light-emitting devices such as light-emitting diodes and lasers. In these light emitting devices, a structure in which a pn junction is formed is used in order to obtain good ohmic contact.

このp+層の形成には■族元素または1族元索を含む化
合物を拡散源に用い、一般には気相より拡散する方法が
採用されている。第1図は、この方法の概略を示す図で
あり、ヒータ1Vcよって加熱される石英管2の中へI
−■化合物半導体基板として例えばGaAs基板3t−
1一方拡散源4として例えば■族の亜鉛化合物砒化亜鉛
(znA112)を収容する石英アンプル6を配置し、
加熱処理を施す方法を用iている。
To form this p+ layer, a compound containing a group Ⅰ element or a group 1 element is used as a diffusion source, and a method of diffusion from a gas phase is generally adopted. FIG. 1 is a diagram schematically showing this method.
-■For example, a GaAs substrate 3t as a compound semiconductor substrate-
1. On the other hand, as a diffusion source 4, for example, a quartz ampoule 6 containing a group III zinc compound zinc arsenide (znA112) is arranged,
A method of applying heat treatment is used.

第2図は、第1図のp+拡散法により製作した発光装置
例えば発光ダイオードの代表的な構造を示す図であV、
図中6はn型Gaム8基板、7はn型0&ムSエピタキ
シャル領域、8はp型G&ムSエピタキシャル領域、9
はZnの拡散により形成したp+領領域10および11
はn型Gaム8基板6ならびにp+領域9にオーミック
接触する電極である。
FIG. 2 is a diagram showing a typical structure of a light emitting device, such as a light emitting diode, manufactured by the p+ diffusion method shown in FIG.
In the figure, 6 is an n-type GaM 8 substrate, 7 is an n-type 0&M S epitaxial region, 8 is a p-type G&M S epitaxial region, 9
are p+ regions 10 and 11 formed by Zn diffusion.
is an electrode that makes ohmic contact with the n-type Ga 8 substrate 6 and the p + region 9 .

ところで1図示した構造で代表される発光ダイ3・8−
ジ オードに一定時間順方向電流を流すと1発光出力が初期
値に比べて低下し、出力劣化が生じることが広く知られ
ている。その原因としては、p領域内で格子間位置にあ
る亜鉛(Zn )イオンの拡散係数が大きく、順方向電
圧印加下では亜鉛イオンが正孔と同様に空間電荷層に拡
散し、非発光再結合中心を作るためと言われている。
By the way, light emitting dies 3 and 8- represented by the structure shown in Figure 1
It is widely known that when a forward current is passed through a geode for a certain period of time, the output of one light emission decreases compared to the initial value, resulting in deterioration of the output. The reason for this is that the diffusion coefficient of zinc (Zn) ions located at interstitial positions in the p region is large, and when a forward voltage is applied, zinc ions diffuse into the space charge layer like holes, resulting in non-radiative recombination. It is said to be used to create a center.

本発明は、かかる出力劣化等の性能劣化を著しく改善す
る方法を提供する覧のであり、不純物特に■族元素不純
物を気相法により拡散した後は。
The present invention provides a method for significantly improving such performance deterioration such as output deterioration, after diffusing impurities, particularly group (I) element impurities, by a vapor phase method.

拡散温度よりも低い温度で熱処理することを特徴とした
ものである。以下1本発明について実施例を参照して詳
細に述べる。
It is characterized by heat treatment at a temperature lower than the diffusion temperature. The present invention will be described in detail below with reference to Examples.

ここでは、Gaム8全材料に用いた赤外発光ダイオード
に亜鉛拡散を行なった場合について述べるが、他のX−
V化合物例えばGaP、GaAIP。
Here, we will discuss the case where zinc is diffused into an infrared light emitting diode using all Ga-8 materials, but other X-
V compounds such as GaP, GaAIP.

InGaムsP等にも同様の効果が期待でき、また。Similar effects can be expected from InGamusP, etc.

■族元素としてZnの他にHg 、 Cd等を用い几場
合にも適用できる。
It can also be applied to cases in which Hg, Cd, etc. are used in addition to Zn as group (2) elements.

第3図は赤外発光ダイオードの製造方法を、従て示した
ものである。実験に用いたn−Ga五8基板6は、 S
iドープ(約1018cIL−3)ノ(100)n型鏡
面スライスである。
FIG. 3 shows a method of manufacturing an infrared light emitting diode. The n-Ga58 substrate 6 used in the experiment was S
It is an i-doped (approximately 1018 cIL-3) (100) n-type mirror slice.

n型およびp型不純物には1両性不純物のSii用い、
第4図に示すプログラム図に従う連続工・ピタキシャル
法によりpn接合を形成した。n成長開始温度(Tn!
!3は926℃、n成長停止温度(Tne)は886℃
であり、冷却速度0n=1.es℃/m inでn−G
aAsエピタキシャル領域7′ft:成長した。pエピ
タキシャル成長は成長開始温度(TpS)885℃、成
長停止温度(TpS)780℃であり、冷却速度Op 
= 0.3℃/winで冷却し、・・p−GILA!!
エピタキシャル領域8を形成した。
For n-type and p-type impurities, monoampholytic impurity Sii is used,
A pn junction was formed by a continuous process/pitaxial method according to the program diagram shown in FIG. n Growth start temperature (Tn!
! 3 is 926℃, n growth stop temperature (Tne) is 886℃
and the cooling rate 0n=1. n-G at es℃/min
aAs epitaxial region 7'ft: grown. The p epitaxial growth has a growth start temperature (TpS) of 885°C, a growth stop temperature (TpS) of 780°C, and a cooling rate of Op.
= Cooled at 0.3℃/win,...p-GILA! !
Epitaxial region 8 was formed.

以上の成長法により得られるエピタキシャル領域の厚さ
は、n領域約60〜60μm、p領域約70〜80μm
である。エビタ十シャル成長後のp領域表面近傍におけ
るpキャリ゛ア濃度は、約6〜8 X 10”(m”−
3である。
The thickness of the epitaxial region obtained by the above growth method is approximately 60 to 60 μm for the n region and approximately 70 to 80 μm for the p region.
It is. The p carrier concentration in the vicinity of the surface of the p region after the evipitational growth is approximately 6 to 8 x 10"(m"-
It is 3.

そこで、良好なオーミック接触性を得るため。Therefore, in order to obtain good ohmic contact.

’C,40分であり、拡散源にはZnh82を用いた。'C, 40 minutes, and Znh82 was used as the diffusion source.

形成されたp+領域9は、厚さ1μs、Zn濃度約1Q
20(1’#l ’の高濃度層である。
The formed p+ region 9 has a thickness of 1 μs and a Zn concentration of about 1Q.
20 (1'#l' high concentration layer).

次に1本発明の特徴である熱処理ftp+領域形成後の
GaAB基板に施した。熱処理条件は1石英封管法によ
り600℃、16〜24時間である。
Next, heat treatment, which is a feature of the present invention, was performed on the GaAB substrate after the ftp+ region was formed. The heat treatment conditions are 600° C. for 16 to 24 hours using the quartz sealed tube method.

その結果、第1表に示すように前述の拡散後と比べて1
表面Zn濃度は約1桁低下し、拡散長は約1.2μmに
変化していた。第1表は、p+拡散後と熱処理後での、
表面Zn濃度、拡散長、V/Iの比較衣である。またp
+領領域V/Iも増大している。
As a result, as shown in Table 1, compared to the above-mentioned after diffusion,
The surface Zn concentration decreased by about one order of magnitude, and the diffusion length changed to about 1.2 μm. Table 1 shows the results after p+ diffusion and heat treatment.
This is a comparison of surface Zn concentration, diffusion length, and V/I. Also p
The +region V/I is also increasing.

第   1   表 理を施すと高濃度のZn原子の再分布が起こV。Chapter 1 Table When subjected to treatment, redistribution of Zn atoms at a high concentration occurs.

前述した悪影響を与える格子間Zn原子が減少している
ものと考えられる。ここで、熱処理時に拡散源を入れな
いのは、前記の理由かられかるように格子間位置にある
Znn原子斬新に追加させないためである。かかる熱処
理を施した後、p側電極11としてムl全n側電極10
として金−ゲルマニウム合金(ムu/G6)’i用い、
フォーミングガス中で、480℃、10分間の合金処理
を行なって、第2図のごとき赤外発光ダイオードを作成
した。
It is thought that the number of interstitial Zn atoms, which have the above-mentioned adverse effect, is reduced. Here, the reason why a diffusion source is not introduced during the heat treatment is to prevent Znn atoms located at interstitial positions from being newly added, as explained above. After performing such heat treatment, the entire n-side electrode 10 is used as the p-side electrode 11.
Gold-germanium alloy (MU/G6)'i was used as
An infrared light emitting diode as shown in FIG. 2 was produced by performing alloying treatment at 480° C. for 10 minutes in a forming gas.

第2表は、従来法と本発明の方法を用いて製作しfcG
!LAS赤外発光ダイオードの100時間。
Table 2 shows the fcG produced using the conventional method and the method of the present invention.
! 100 hours of LAS infrared light emitting diode.

200時間、300時間、600時間、1000時間で
の順方向電流通電後の発光出力の値Δpot初期値=1
00%として表わしたものである。
Value of light emission output after forward current application at 200 hours, 300 hours, 600 hours, and 1000 hours Δpot initial value = 1
It is expressed as 00%.

(ニーc”p免b) 7ペーン 第   2   表 である。同表には、熱処理を行なっていない従来の赤外
発光ダイオードについての測定結果も比較して示す。Δ
pOは、この値が大きいほど一定時間通電後の発光出力
が低下していないことを意味していた。第2表から明ら
かなように1本発明の製造方法によって製作された発光
′ダイオードは、順方向電流Xy :100ILムで、
1000時間の順方向通電を行なっても発光出力が初期
値の96%になるたけで、出力劣化が極めて小さくなる
ことがわかる。
This is Table 2 on page 7. The table also shows a comparison of measurement results for conventional infrared light emitting diodes that have not been subjected to heat treatment.Δ
The larger the pO value, the less the luminescence output decreased after energization for a certain period of time. As is clear from Table 2, the light emitting diode manufactured by the manufacturing method of the present invention has a forward current Xy of 100IL,
It can be seen that even after 1000 hours of forward energization, the light emission output is only 96% of the initial value, and the output deterioration is extremely small.

18MS8−18981 (8) 一方、従来の製造方法によって製作された赤外発光ダイ
オードに対しては、全く同様の順方向電流の通電によっ
て1000時間後の発光出力が初期値の68%に低下し
、非常に大きな出力劣化が生じていることがわかる。
18MS8-18981 (8) On the other hand, for an infrared light emitting diode manufactured by the conventional manufacturing method, the light emission output after 1000 hours decreased to 68% of the initial value by applying a completely similar forward current. It can be seen that a very large output deterioration has occurred.

このように5発光半導体装置の製造に際して本発明の特
徴である熱処理を施した場合、気相により高温で拡散さ
れた亜鉛原子の再分布が熱処理によってはかられ、出力
劣化の要因となる格子間位置にある亜鉛原子数を減少さ
せること、また、拡散直後の急激な過冷却過程において
結晶内部に残存する熱歪み等の影響を緩和することなど
の効果の奏されることが前述の結果から推定され、出力
劣化を大幅に改善する効果は、これらによってもたらさ
れるものと考えられる。
In this way, when heat treatment, which is a feature of the present invention, is performed when manufacturing a light-emitting semiconductor device, the heat treatment redistributes the zinc atoms that have been diffused at high temperatures in the gas phase, resulting in the formation of interstitial structures that cause output deterioration. It is estimated from the above results that the effect of reducing the number of zinc atoms in the position and mitigating the effects of thermal strain remaining inside the crystal during the rapid supercooling process immediately after diffusion is achieved. It is thought that the effect of significantly improving output deterioration is brought about by these factors.

以上説明してきたことから明りかなよ・うに1本発明の
製造方法を採用することによって、高寿命。
From what has been explained above, it is clear that by adopting the manufacturing method of the present invention, a long life can be achieved.

高信頼性を有する赤外発光ダイオード等の高性能な半導
体装置を製作することができ、その工業的価値は大であ
る。
High performance semiconductor devices such as infrared light emitting diodes with high reliability can be manufactured, and their industrial value is great.

9ベーン9 vanes

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は石英封管法によるG&ムSへのZnの拡散法を
説明するための図、第2図は発光ダイオードの断面図、
第3図(fLl 、 (b)はそれぞれ従来と本発明の
一実施例にかかる赤外発光ダイオードの製造工程の概略
図、第4図は液相エピタキシャ/し成長の温度ダイアグ
ラムを示す図である。 1・・・・・化−タ、2・・・・・・石英管、3・・・
・・・G&ムS基板、4・・・・・・ZnAg2拡散源
、6・・・・・・石英アンプル。 6・・・・・・n型G&ムS基板、7・・・−・・n型
GaAsgエピタキシャル領域、8・・・・・・p型G
aAsエピタキシャル領域、9・・・・・・Zn f拡
散したp+領領域10−n側オーミック電極、11・・
・−・・p側オーミック電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名@i
ll @2  図 f
Figure 1 is a diagram for explaining the method of diffusing Zn into G&M S using the quartz sealed tube method, Figure 2 is a cross-sectional view of a light emitting diode,
FIGS. 3(b) and 3(b) are schematic diagrams of the manufacturing process of infrared light emitting diodes according to a conventional method and an embodiment of the present invention, respectively, and FIG. 4 is a diagram showing a temperature diagram of liquid phase epitaxial growth. 1...Catalyzer, 2...Quartz tube, 3...
...G&MUS substrate, 4...ZnAg2 diffusion source, 6...quartz ampoule. 6...n-type G&MUS substrate, 7...-n-type GaAsg epitaxial region, 8...p-type G
aAs epitaxial region, 9...Zn f diffused p+ region 10-n side ohmic electrode, 11...
...p-side ohmic electrode. Name of agent: Patent attorney Toshio Nakao and one other person @i
ll @2 Figure f

Claims (1)

【特許請求の範囲】[Claims] pn接合を形成した化合物半導体結晶のp型頭域に、p
型不純物となる■族元素を高濃度に拡散導入する第1工
程と、前記I族元素もしくはI族元素を含む化合物の拡
散源を有しない雰囲気内において熱処理をほどこし、前
記拡散導入したI族元素の結晶格子位置への再配置を促
進する第2工程とを備えたことを特徴とする半導体装置
の製造方法。
In the p-type head region of the compound semiconductor crystal that has formed the p-n junction, p
A first step of diffusing and introducing a group I element, which will become a type impurity, at a high concentration, and heat treatment in an atmosphere that does not have a diffusion source for the group I element or a compound containing the group I element. A method for manufacturing a semiconductor device, comprising: a second step of promoting rearrangement of the components into crystal lattice positions.
JP56118086A 1981-07-27 1981-07-27 Manufacture of semiconductor device Pending JPS5818981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56118086A JPS5818981A (en) 1981-07-27 1981-07-27 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56118086A JPS5818981A (en) 1981-07-27 1981-07-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5818981A true JPS5818981A (en) 1983-02-03

Family

ID=14727645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56118086A Pending JPS5818981A (en) 1981-07-27 1981-07-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5818981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104148A (en) * 1981-12-14 1983-06-21 Furukawa Electric Co Ltd:The Copper alloy for lead material of semiconductor apparatus
US5064611A (en) * 1990-04-26 1991-11-12 Mitsubishi Denki Kabushiki Kaisha Process for producing copper alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58104148A (en) * 1981-12-14 1983-06-21 Furukawa Electric Co Ltd:The Copper alloy for lead material of semiconductor apparatus
US5064611A (en) * 1990-04-26 1991-11-12 Mitsubishi Denki Kabushiki Kaisha Process for producing copper alloy

Similar Documents

Publication Publication Date Title
JPS5856963B2 (en) Method for manufacturing electroluminescent compound semiconductor
JP3325713B2 (en) Manufacturing method of semiconductor light emitting device
US4417262A (en) Green light emitting device
JPS5818981A (en) Manufacture of semiconductor device
US3951700A (en) Method of manufacturing a gallium phosphide light-emitting device
JPS5816535A (en) Semiconductor device and its manufacture
JPH08139358A (en) Epitaxial wafer
JPS6021894A (en) Process for liquid phase epitaxial growth
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JPH02110983A (en) Manufacture of light emitting semiconductor element
JPS6012794B2 (en) Method for producing electroluminescent material
JP3116495B2 (en) Manufacturing method of light emitting diode
JPH0547996B2 (en)
JPH03209883A (en) Gallium phosphide green light emitting element
JP2889653B2 (en) Manufacturing method of light emitting diode
JPH0294577A (en) Vapor phase epitaxial wafer for light emitting element
JPS58100471A (en) Semiconductor device
JPS584833B2 (en) Method for manufacturing G↓aA↓s light emitting diode
JPS5846876B2 (en) Method for manufacturing gallium phosphide light emitting device
JPH0322526A (en) Manufacture of silicon carbide semiconductor device
JPS59111379A (en) Manufacture of light emitting semiconductor device
JPS5831736B2 (en) Hatsukoudai-o-donoseizouhou
JPS6175573A (en) Manufacture of light emitting diode
JPS6156473A (en) Manufacture of light emitting semiconductor device
JPH0964416A (en) Epitaxial wafer and manufacture thereof