JPS59111379A - Manufacture of light emitting semiconductor device - Google Patents

Manufacture of light emitting semiconductor device

Info

Publication number
JPS59111379A
JPS59111379A JP57221326A JP22132682A JPS59111379A JP S59111379 A JPS59111379 A JP S59111379A JP 57221326 A JP57221326 A JP 57221326A JP 22132682 A JP22132682 A JP 22132682A JP S59111379 A JPS59111379 A JP S59111379A
Authority
JP
Japan
Prior art keywords
light emitting
solution
epitaxial
semiconductor device
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57221326A
Other languages
Japanese (ja)
Inventor
Fumiaki Sato
文明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57221326A priority Critical patent/JPS59111379A/en
Publication of JPS59111379A publication Critical patent/JPS59111379A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the light emitting efficiency reducing the dispersion thereof by a method wherein the heat-treatment for reusing epitaxial solution is performed under the atmosphere of inert gas. CONSTITUTION:In the manufacture of a green color light emitting diode comprising III-V group compound, heat-treatment is performed in the atmosphere of argon gas in order to remove Zn as an acceptor impurity contained in Ga solution remained in a quartz made exclusive boat of an liquid epitaxial device. Si is not liberated as inert gas does not react to quartz comprising the liquid epitaxial device. Through these procedures, the uncontrollable melting of Si into epitaxial solution may be prevented from occuring to manufacture a light emitting semiconductor device with high light emitting efficiency and less dispersion restricting the donor impurity concentration at an n type layer in the light emitting region to low and stable level.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は発光半導体装置の製造方法に関し、特にIII
−V族化合物半導体からなる緑色発光ダイオードの製造
に使用される液相エピタキシャル成長法の改良に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a light emitting semiconductor device, and particularly to a method for manufacturing a light emitting semiconductor device.
- This invention relates to an improvement in a liquid phase epitaxial growth method used for manufacturing green light emitting diodes made of group V compound semiconductors.

〔発明の技術的背景〕[Technical background of the invention]

リン化ガリウム(GaP)による緑色発光ダイオードは
第1図に示す構造を有している。同図において、1はド
ナー不純物として硫黄(S)およびテルルrTe)を含
むn型GaP基板である。該n型GaP基板1の上には
ドナー不純物としてシリコン(Si)およびSを含む第
1のn型GaP層2、ドナー不純物としてSiを含む第
2のn型GaP層3、アクセプタ不純物として亜鉛(Z
n)を含むp型GaP層4がハ[ロ次エピタキシャル成
長されている。このうち第2のn型GaP層3およびp
型GaP層4には発光中心となる蟹素(N)が含まれて
おり、そのpn接合領域が発光領域を形成している。他
方、第1のn型GaP層2は発光領域となる第2のn型
GaP層3に良好な結晶性を得るために形成されるもの
で、発光には関与しない。
A green light emitting diode made of gallium phosphide (GaP) has the structure shown in FIG. In the figure, 1 is an n-type GaP substrate containing sulfur (S) and tellurium (rTe) as donor impurities. On the n-type GaP substrate 1, a first n-type GaP layer 2 containing silicon (Si) and S as donor impurities, a second n-type GaP layer 3 containing Si as donor impurities, and zinc ( Z
A p-type GaP layer 4 containing n) is epitaxially grown. Of these, the second n-type GaP layer 3 and p
The type GaP layer 4 contains nitric oxide (N) which serves as a light emitting center, and its pn junction region forms a light emitting region. On the other hand, the first n-type GaP layer 2 is formed in order to obtain good crystallinity in the second n-type GaP layer 3 serving as a light emitting region, and is not involved in light emission.

なお、GaP基板1および夫々のGaP層2,3゜4は
第1図(B)に示す不純物濃変プロファイルを有してい
る。
Incidentally, the GaP substrate 1 and the respective GaP layers 2, 3.4 have an impurity concentration change profile shown in FIG. 1(B).

上記構造を有する緑色発光ダイオードは従来次のような
液相エピタキシャル成長法によって製造されていた。
A green light emitting diode having the above structure has conventionally been manufactured by the following liquid phase epitaxial growth method.

■ まず、液相エピタキシャル装置における石英製専用
ポートの液溜に、GaPが飽和状態で溶解されている金
属Ga溶液を仕込み、略100o℃の温度T!に昇温す
る。続いて、n型GaP基板1を前記専用ylr−トの
基板ホルダーにセットし、前記金属Ga溶液に接触させ
る。その後、Ga溶液の温度を所定の降下速度で970
℃(T2 )まで除冷することによ#)第1のn W 
GaP層2を成長させる。
■ First, a metallic Ga solution in which GaP is dissolved in a saturated state is charged into the liquid reservoir of a dedicated quartz port in a liquid phase epitaxial device, and the temperature T is approximately 100°C! The temperature rises to Subsequently, the n-type GaP substrate 1 is set in the substrate holder of the dedicated ylrt and brought into contact with the metal Ga solution. After that, the temperature of the Ga solution was decreased to 970°C at a predetermined rate of decrease.
℃ (T2) by gradually cooling the first nW
GaP layer 2 is grown.

このとき、第1のn型GaP層2に含まれるドナー不純
物siは、石英製の専用ボートからGa溶液中に導入さ
れたStが混入されたものである。
At this time, the donor impurity si contained in the first n-type GaP layer 2 is a mixture of St introduced into the Ga solution from a special boat made of quartz.

また、ドナー不純物Sはn型GaP基板1に含まれてい
たSがメルトバックして導入されたものである。
Further, the donor impurity S is introduced by melting back S contained in the n-type GaP substrate 1.

(11)  次に、Ga溶液を温度T2にしばらく保持
した後、液相エピタキシャル装置内の雰囲気にアンモニ
アを微量導入してGa溶液中にNl添加する。続いて、
Ga溶液の温度を所定の降下速度で930℃(T3 )
まで徐冷することによシ、Nを含む第2のn型GaP層
3が成長される。このとき第2のn型GaP層3にドナ
ー不純物として混入されるStも、石英製の専用テート
からGa溶液中に導入されたものである。
(11) Next, after holding the Ga solution at temperature T2 for a while, a small amount of ammonia is introduced into the atmosphere inside the liquid phase epitaxial device and Nl is added to the Ga solution. continue,
The temperature of the Ga solution was decreased to 930°C (T3) at a predetermined rate of decrease.
By slowly cooling the layer to a temperature of 10.degree. C., a second n-type GaP layer 3 containing N is grown. At this time, St mixed into the second n-type GaP layer 3 as a donor impurity was also introduced into the Ga solution from a dedicated quartz tate.

(11)次に、温度T3に暫く保持して雰囲気中に亜鉛
蒸気を導入し、Ga溶液中にZnを象加する。
(11) Next, the temperature is maintained at T3 for a while, and zinc vapor is introduced into the atmosphere to add Zn to the Ga solution.

続いて、結晶成長が完了する800℃(T4)まで所定
の降下速度でGa溶液を徐冷することによシ、Znおよ
びNを含むp型GaP層4を成長させて第1図(A)の
緑色発光素子の構造が得られる。
Subsequently, the Ga solution was slowly cooled at a predetermined rate of descent to 800° C. (T4), at which crystal growth was completed, to grow a p-type GaP layer 4 containing Zn and N, as shown in FIG. 1(A). A structure of a green light emitting device is obtained.

その後は専用?−ト中に残留しているGa溶液中にGa
Pを補充した上で、これを再使用して上記の製造工程が
繰シ返される。その際、残留したGa溶液中にはGaP
 + N + Siの他にZnが含まれており、このG
a溶液を再使用して第1のn型GaP層2をエピタキシ
ャル成長させるためには少なくともアクセプタ不純物で
あるZnを除去しなければならない。そこでGa溶液を
再使用する前に水素雰囲気中において1000℃で3〜
4時間熱処理し、Znf追い出す方法が従来採用されて
いる。なお、この熱処理を水素雰囲気中で行なうのはG
a溶液の酸化を防ぐためである。
Is it exclusive after that? -Ga in the Ga solution remaining in the
After replenishing P, it is reused and the above manufacturing process is repeated. At that time, the remaining Ga solution contains GaP
+ N + Zn is included in addition to Si, and this G
In order to epitaxially grow the first n-type GaP layer 2 by reusing the a solution, at least Zn, which is an acceptor impurity, must be removed. Therefore, before reusing the Ga solution, it was heated at 1000℃ in a hydrogen atmosphere for 3~
Conventionally, a method has been adopted in which Znf is expelled by heat treatment for 4 hours. Note that this heat treatment is performed in a hydrogen atmosphere.
This is to prevent oxidation of the a solution.

〔背景技術の問題点〕[Problems with background technology]

ところで、第1図の構造を鳴する緑色発光ダイオードで
は、高い発光効率を得るために第2のn型GaP層3の
ドナー不純物濃度表p型GaP層4のアクセプタ不純物
濃度の差を大きくすることが必要とされる。第1図(B
)に示したように第2のn型GaP層3の不純物濃度を
低くし、p型GaP層4の不純物濃度を高くしているの
はこの理由によるものである。従って、第1図(A) 
(B)の緑色発光効率を更に向上するためには、第2の
n型GaP層3に導入されるドナー不純物StO量を極
力少なくすることが要求される。第2因は第2の11型
GaP層3におけるSt濃度だけを変化させた場合の発
光効率の変化を示している。
By the way, in the green light emitting diode having the structure shown in FIG. 1, in order to obtain high luminous efficiency, the difference between the donor impurity concentration of the second n-type GaP layer 3 and the acceptor impurity concentration of the p-type GaP layer 4 must be increased. is required. Figure 1 (B
), this is the reason why the impurity concentration of the second n-type GaP layer 3 is made low and the impurity concentration of the p-type GaP layer 4 is made high. Therefore, Fig. 1(A)
In order to further improve the green light emission efficiency of (B), it is required to minimize the amount of donor impurity StO introduced into the second n-type GaP layer 3. The second factor shows the change in luminous efficiency when only the St concentration in the second 11-type GaP layer 3 is changed.

ところが、従来の製造方法ではGaのエピタキシャル溶
液を再使用するために水素雰囲気中で熱処理を行なって
いるため、水素と専用−一一ト中のS r 02とが下
記(1)式のように反応してSiが遊離し、Ga溶液中
へのStの溶出が加速される。
However, in the conventional manufacturing method, heat treatment is performed in a hydrogen atmosphere in order to reuse the Ga epitaxial solution, so that hydrogen and S r 02 in the exclusive solution are mixed as shown in equation (1) below. The reaction liberates Si, and the elution of St into the Ga solution is accelerated.

5tOz + 2)12→Si+ 2H20・・・・(
l’)この結果、従来の製造方法ではエピタキシャル溶
液中のSL濃度が高くなるから必然的に第2のn型Ga
p層のドナー温間も高くなり、従って発光効率の向上を
図ることが極めて困虹であるという問題があった。なお
、(1)式の反応によるStの遊離は、熱処理の温度お
よび時間によシ犬きく影響されるから、熱処理の条件を
低温かつ短時間としてStの遊離を抑制することは可能
である。
5tOz + 2) 12→Si+ 2H20...(
l') As a result, in the conventional manufacturing method, the SL concentration in the epitaxial solution increases, so the second n-type Ga
There is a problem in that the donor warmth of the p layer also increases, making it extremely difficult to improve the luminous efficiency. Note that since the release of St due to the reaction of formula (1) is greatly influenced by the temperature and time of heat treatment, it is possible to suppress the release of St by setting the heat treatment conditions to a low temperature and a short time.

ア2 しかし、そうするとGa溶液中に残留すtヶブタ不純物
Znが完全に除去されなくなシ、エピタキシャル成長に
よって形成された第2のn型GaP層3の一部にp型の
反転層が形成されるといった別の問題を生じることにな
る。
A2 However, in this case, the impurity Zn remaining in the Ga solution will not be completely removed, and a p-type inversion layer will be formed in a part of the second n-type GaP layer 3 formed by epitaxial growth. Another problem will arise.

筐だ、(1)式の反応は熱処理の祭件に大きく左右され
るのみならず、制御するのが極めて困難である。このた
め、従来の製造方法では第2のn型GaP層3のドナー
不純物濃度が大きくばらつき、従って得られた発光ダイ
オードの発光効率に大きなばらつきを生じるという問題
があった。
However, the reaction of equation (1) not only depends greatly on the heat treatment conditions, but is also extremely difficult to control. Therefore, in the conventional manufacturing method, there was a problem in that the donor impurity concentration of the second n-type GaP layer 3 varied widely, resulting in large variations in the luminous efficiency of the obtained light emitting diode.

第3図は従来の製造方法における熱処理の温度および時
間を変更し、第2のn型GaP層3におけるドナー不純
物濃度の変化を調べた結果を示しておシ、この結果は上
記の問題点を明瞭に示している。例えば、p型反転層を
生じることなくドナー不純物濃度が最も低く安定してい
るのは熱処理条件を1000℃で3時間とした場合であ
るが、このときでもドナー不純物濃度には5.4〜1.
0X1016と広い範囲でばらつきが生じている。この
ばらつきを第2図の相関に移し替えて見れば1発光効率
は0.15〜0.4%と大きくばらつくことになる。
Figure 3 shows the results of examining changes in the donor impurity concentration in the second n-type GaP layer 3 by changing the temperature and time of heat treatment in the conventional manufacturing method. clearly shown. For example, the donor impurity concentration is lowest and stable without forming a p-type inversion layer when the heat treatment condition is 1000°C for 3 hours, but even in this case, the donor impurity concentration is 5.4 to 1. ..
Variations occur over a wide range of 0x1016. If this variation is transferred to the correlation shown in FIG. 2, the luminous efficiency will vary greatly from 0.15 to 0.4%.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、at−V族
化合物半導体による発光半導体装eを製造する際、エピ
タキシャル溶液を再使用するための熱処理によシ石英製
の液相エピタキシャル装置からドナー不純物となるSi
が遊離されてエピタキシャル溶液中に溶出されるのを制
御し、もって発光領域におけるn型層のドナー濃度を低
く安定化し、発光効率の向上およびばらつき減少を図る
ことができる発光半導体装置の製造方法を提供するもの
である。
The present invention has been made in view of the above circumstances, and when manufacturing a light emitting semiconductor device e using an at-V group compound semiconductor, a donor is transferred from a liquid phase epitaxial device made of quartz by heat treatment for reusing the epitaxial solution. Si as an impurity
A method for manufacturing a light-emitting semiconductor device is provided, in which the donor concentration of an n-type layer in a light-emitting region is kept low and stable by controlling the release and elution into an epitaxial solution, thereby improving luminous efficiency and reducing variations. This is what we provide.

〔発明の概要〕[Summary of the invention]

本発明による発光半導体装置の製造方法は、従来の製造
方法におけるエピタキシャル溶液再使用のための熱処理
をf活性ガス雰囲気下で行なうことを特徴とするもので
ある。
The method for manufacturing a light emitting semiconductor device according to the present invention is characterized in that the heat treatment for reusing the epitaxial solution in the conventional manufacturing method is performed in an atmosphere of active gas.

本発明における不活性ガスとしては、He 。The inert gas in the present invention is He.

Ar 、 Xe等の希ガス類の他、窒素ガスを用いるこ
とができる。
In addition to rare gases such as Ar and Xe, nitrogen gas can be used.

本発明によれば、エピタキシャル溶液を再使用するため
に熱処理を行なう際、不活性ガスによってエピタキシャ
ル溶液の酸化が防止され、しかもこの不活性ガスは液相
エピタキシャル装置を構成する石英と反応しないからS
iの遊離は生じない。従って、エピタキシャル溶液中へ
のStの制御不能な溶出を防止することができ、発光領
域のn型層におけるドナー不純物濃度を低くかつ安定に
抑制して発光効率が高くばらつきの小さい発光半導体装
置を得ることができる。
According to the present invention, when performing heat treatment to reuse the epitaxial solution, oxidation of the epitaxial solution is prevented by the inert gas, and moreover, this inert gas does not react with the quartz constituting the liquid phase epitaxial device.
No release of i occurs. Therefore, uncontrollable elution of St into the epitaxial solution can be prevented, and the donor impurity concentration in the n-type layer of the light emitting region can be suppressed low and stably to obtain a light emitting semiconductor device with high light emitting efficiency and small variation. be able to.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第1図(Al (B)のGaP緑色発光
ダイオードの製造に適用した実施例について説明する。
Hereinafter, an embodiment in which the present invention is applied to the production of a GaP green light emitting diode shown in FIG. 1 (Al(B)) will be described.

Ga溶液を再使用するための熱処理をアルゴンガス雰囲
気中で行なった以外は既述した従来の製造方法と同様に
行なって第1図(A) (B)のGaP緑色発光ダイオ
ードを製造し、得られた発光ダイオードの第2のn型G
aP層3におけるドナー不純物濃度および発光効率を調
べた。
The GaP green light emitting diode shown in FIGS. 1A and 1B was manufactured in the same manner as the conventional manufacturing method described above, except that the heat treatment for reusing the Ga solution was performed in an argon gas atmosphere. The second n-type G of the light emitting diode
The donor impurity concentration and luminous efficiency in the aP layer 3 were investigated.

第4図は、上記の実施例における熱処理を1000℃で
時間を変化させて行ない、得られた夫々の発光ダイオー
ドにおける第2のn型GaP層3中のドナー不純物濃度
を従来の製造方法による結果と比較して示す線図である
。この結果から、上記実施例の方法では石英からSiが
遊離するのを防止でき、これによって第2のn型GaP
 I得2のドナー不純物濃度を従来よりも低下させると
共にそのばらつきを抑制できることが明らかである。ま
た、第4図の結果を第2図での発光効率に移し替えてみ
れは、従来の平均発光率0.25tIjよシも20qb
高い0.3q6ノ発光効率を達成できることが判る。
FIG. 4 shows the donor impurity concentration in the second n-type GaP layer 3 of each light-emitting diode obtained by performing the heat treatment in the above example at 1000° C. for different times, and comparing the result with the conventional manufacturing method. FIG. From this result, the method of the above example can prevent Si from being liberated from quartz, and thereby the second n-type GaP
It is clear that the donor impurity concentration of I and II can be lowered than before and its variations can be suppressed. In addition, if we transfer the results in Figure 4 to the luminous efficiency in Figure 2, we can see that the average luminous efficiency is 20 qb compared to the conventional average luminous efficiency of 0.25 tIj.
It can be seen that a high luminous efficiency of 0.3q6 can be achieved.

更に、熱処理条件を1000℃X3時間とした実施例で
製造された10ロツトのGaP緑色発光ダイオードにつ
いて、その発光効率を測定した。
Furthermore, the luminous efficiency was measured for 10 lots of GaP green light emitting diodes manufactured under the heat treatment conditions of 1000° C. for 3 hours.

その結果全従来のνM造方法で得られた製品の発光効率
と比較して下記ML1 eに示す。
The results are shown in ML1e below, in comparison with the luminous efficiency of all products obtained using the conventional νM manufacturing method.

なお、実施例品および従来品々も発光効率は20A/c
m  で測定した。
In addition, the luminous efficiency of the example product and the conventional product is 20A/c.
Measured in m.

第  1  衣 〔発明の効果〕 以上詳述したように、本発明によれば■−■族化合物半
導体による発光半導体装置を製造する際、エピタキシャ
ル溶液を再使用するための熱処理により石英製の液相エ
ピタキシャル装置がらドナー不純物となるStが遊離さ
れてエピタキシャル溶液中に溶出されるのを抑制し、も
って発光領域におけるn型層のドナー濃度を低く安定化
し、発光効率の向上およびばらつき減少を図ることがで
きる発光半導体装置の製造方法を提供できるものである
First Effect [Effects of the Invention] As detailed above, according to the present invention, when manufacturing a light emitting semiconductor device using a ■-■ group compound semiconductor, a liquid phase made of quartz is formed by heat treatment for reusing the epitaxial solution. It is possible to suppress St, which becomes a donor impurity, from being liberated from the epitaxial device and to be eluted into the epitaxial solution, thereby stabilizing the donor concentration of the n-type layer in the light emitting region at a low level, thereby improving luminous efficiency and reducing variations. Accordingly, it is possible to provide a method for manufacturing a light emitting semiconductor device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)はGaP緑色発光ダイオードの断面図であ
シ、第1図(B)はその不純物濃度プロファイルを示す
線図、第2図は第1図(A)、(B)のGaP緑色発光
ダイオードにおいて、第2のn型GaP層3のドナー不
純物濃度と発光効率との関係を示す線図、第3図は第1
図(A)、(B)のGaP緑色発光ダイオードの従来の
製造方法における問題点を示す線図、第4図は本発明の
実施例における効果を従来の製造方法と比較して示す線
図である。 1− n WGaP基板、2・・・第1のn型層、aP
層、3・・・第2のn型GaP層、4・・・p型GaP
層。 出願人代理人  弁理士 鈴 江 武 彦第1図 へ☆方嶋託鳥1 第2図 384 第4図
Figure 1 (A) is a cross-sectional view of a GaP green light emitting diode, Figure 1 (B) is a diagram showing its impurity concentration profile, and Figure 2 is a GaP green light emitting diode shown in Figures 1 (A) and (B). A diagram showing the relationship between the donor impurity concentration of the second n-type GaP layer 3 and the luminous efficiency in a green light emitting diode, FIG.
Figures (A) and (B) are diagrams showing problems in the conventional manufacturing method for GaP green light emitting diodes, and Figure 4 is a diagram showing the effects of the embodiment of the present invention in comparison with the conventional manufacturing method. be. 1- n WGaP substrate, 2... first n-type layer, aP
layer, 3... second n-type GaP layer, 4... p-type GaP
layer. Applicant's agent Patent attorney Takehiko Suzue Go to Figure 1 ☆Takucho Hoshima 1 Figure 2 384 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 石英製部材を有する液相エピタキシャル装置を用いた液
相エピタキシャル法によ、6、m−v族化合物半導体基
板t=に上にまずn型、続いてp型のIII−V族化合
物半導体層を積層成長させる発光半導体装置の製造方法
において、エピタキシャル成長溶液を再使用するに際し
て該エピタキシャル成長溶液を不活性ガス雰囲気下で熱
処理することを特徴とする発光半導体装置の製造方法0
By a liquid phase epitaxial method using a liquid phase epitaxial apparatus having a quartz member, first an n-type and then a p-type III-V group compound semiconductor layer are formed on the m-v group compound semiconductor substrate t=6. A method for manufacturing a light-emitting semiconductor device by layered growth, characterized in that the epitaxial growth solution is heat-treated in an inert gas atmosphere when the epitaxial growth solution is reused.
JP57221326A 1982-12-17 1982-12-17 Manufacture of light emitting semiconductor device Pending JPS59111379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57221326A JPS59111379A (en) 1982-12-17 1982-12-17 Manufacture of light emitting semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57221326A JPS59111379A (en) 1982-12-17 1982-12-17 Manufacture of light emitting semiconductor device

Publications (1)

Publication Number Publication Date
JPS59111379A true JPS59111379A (en) 1984-06-27

Family

ID=16765044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57221326A Pending JPS59111379A (en) 1982-12-17 1982-12-17 Manufacture of light emitting semiconductor device

Country Status (1)

Country Link
JP (1) JPS59111379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297659A (en) * 1994-04-22 1995-11-10 Nec Corp Power amplifier circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07297659A (en) * 1994-04-22 1995-11-10 Nec Corp Power amplifier circuit

Similar Documents

Publication Publication Date Title
JPH0770755B2 (en) High brightness LED epitaxial substrate and method of manufacturing the same
US3960618A (en) Epitaxial growth process for compound semiconductor crystals in liquid phase
JP2001192300A (en) Nitride-based compound semiconductor substrate and method of producing the same
JP3356041B2 (en) Gallium phosphide green light emitting device
JPH08335715A (en) Epitaxial wafer and its manufacture
JPS59111379A (en) Manufacture of light emitting semiconductor device
JP3324102B2 (en) Manufacturing method of epitaxial wafer
US4298410A (en) Method for growing a liquid phase epitaxial layer on a semiconductor substrate
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JPS5816535A (en) Semiconductor device and its manufacture
JP3097587B2 (en) Epitaxial wafer for light emitting semiconductor device
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JPH0463040B2 (en)
JP3992117B2 (en) GaP light emitting device substrate
JPH05335621A (en) Gallium phosphide green light emitting diode
JPH1197740A (en) Epitaxial wafer for gap light emitting diode and gap light emitting diode
JPH0712093B2 (en) Light emitting semiconductor device substrate and manufacturing method thereof
JPS5929416A (en) Manufacture of semiconductor device
JPS6116759B2 (en)
JPH10270751A (en) Epitaxial wafer for light-emitting semiconductor device
JPS6285480A (en) Manufacture of gallium phosphide green light emitting element
JP2853292B2 (en) Method and apparatus for liquid phase epitaxial growth of semiconductor crystal
JPS6021894A (en) Process for liquid phase epitaxial growth
JPS5818981A (en) Manufacture of semiconductor device
JPS5846876B2 (en) Method for manufacturing gallium phosphide light emitting device