JPS58180005A - Manufacture of rare-earth intermetallic compound magnet - Google Patents

Manufacture of rare-earth intermetallic compound magnet

Info

Publication number
JPS58180005A
JPS58180005A JP57062937A JP6293782A JPS58180005A JP S58180005 A JPS58180005 A JP S58180005A JP 57062937 A JP57062937 A JP 57062937A JP 6293782 A JP6293782 A JP 6293782A JP S58180005 A JPS58180005 A JP S58180005A
Authority
JP
Japan
Prior art keywords
powder
coarse
rare
intermetallic compound
coarse powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57062937A
Other languages
Japanese (ja)
Inventor
Shigeo Tanigawa
茂穂 谷川
Noriaki Meguro
目黒 訓昭
Masaaki Tokunaga
徳永 雅亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57062937A priority Critical patent/JPS58180005A/en
Publication of JPS58180005A publication Critical patent/JPS58180005A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • H01F1/0558Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together bonded together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the rare-earth intermetallic powder magnet, thermal stability thereof is excellent and shape density thereof is high and which has high magnetic flux density, by utilizing only coarse powder, grain size thereof is adjusted at specific value. CONSTITUTION:Ingot acquired by melting an alloy, which contains rare-earth metals and consists of 25.7% Sm, 13.7% Fe, 7.6% Cu, 2.6% Hf, and the remainder Co in wt%, through high-frequency dissolution is homogenized in an argon atmosphere, water-hardened and age-treated in the argon atmosphere. The material is coarse-ground and fine-ground by using a jaw crusher and a disk mill, a jet mill, etc. after aging, coarse powder coarse-ground is classified by using a screen of 635 meshes, and the coarse powder of +635 meshes is obtained. Coarse powder and fins of the grain size of 20-500 micron of rare-earth intermetallic compound powder acquired in this manner are each kneaded with an epoxy group binder, and pressed in a magnetic field of approximately 8,000Oe.

Description

【発明の詳細な説明】 本発明は希土類金属R(Sm、Y、La、Ce、Nd、
Rn、ミッシユメタル等)と1種以上のその他の元素(
CosNt、Fe、Cu、Mn、Cr等)からなる析出
硬化型希土類金属間化合物粉末磁石と適当なバインダか
らなるマトリックス磁石の製造方法に関するものである
Detailed Description of the Invention The present invention provides rare earth metals R (Sm, Y, La, Ce, Nd,
Rn, missing metal, etc.) and one or more other elements (
The present invention relates to a method for manufacturing a matrix magnet comprising a precipitation hardening rare earth intermetallic compound powder magnet (CosNt, Fe, Cu, Mn, Cr, etc.) and a suitable binder.

一般に希土類磁石の製造方法としては、焼結法、鋳造法
および粉末法等が知られている。焼結法は粉末法に比較
すると高い磁気特性が得られるが、固くて脆いため複雑
な加工を施すことが出来ないという欠点を有している。
Generally, sintering methods, casting methods, powder methods, and the like are known as methods for producing rare earth magnets. Although the sintering method provides higher magnetic properties than the powder method, it has the disadvantage that it is hard and brittle and cannot be subjected to complex processing.

鋳造法も粉末法に比較すると加工性が劣っており、複雑
な加工を施せないという点においては、焼結法と同様の
欠点を有している。近年かかる焼結法・鋳造法の欠点を
改善する目的で、冶金学的な手法等で製造した希土類金
槁関化合物の塊を機械的な手法で粉砕した粉末を、有機
物樹脂等と混錬し成形したり、あるいは粉砕した粉末を
成形後、有機物樹脂等を含浸させたマトリックス磁石が
工業的に注目されているしかし、従来の粉末磁石は粒子
径が20μ以下の微粉末を主体として製造されるため、
ひとつには焼結磁石等に比較して著しく熱安定性が劣る
ため、経年変化が大きく信頼性が低いという欠点を有し
ている。またひとつには、20μ以下の微粉末を成形す
ると成形時の粉と粉との筆線が大きく、成形時の抵抗が
大きいため成形体密度が上りにくいという欠点を有して
いる。
The casting method also has the same drawbacks as the sintering method in that its workability is inferior to the powder method, and complex processing cannot be performed. In recent years, in order to improve the shortcomings of the sintering and casting methods, powder obtained by mechanically crushing lumps of rare earth metal compounds produced by metallurgical methods, etc., is mixed with organic resins, etc. Matrix magnets, which are formed from molded or pulverized powder and then impregnated with organic resin, are attracting industrial attention.However, conventional powder magnets are mainly manufactured from fine powder with a particle size of 20μ or less. For,
One of the disadvantages is that it has significantly lower thermal stability than sintered magnets, and therefore suffers from large changes over time and low reliability. Another drawback is that when molding fine powder of 20 μm or less, the brush lines between the powders during molding are large and the resistance during molding is large, making it difficult to increase the density of the molded product.

本発明ではかかる上記の欠点を改善し、熱安定性に優れ
、かつ成形体密度(充填率)が高く、高嶽束密度を有す
る希土類金属間粉末磁石を提供することを目的としたも
のである。
The present invention aims to improve the above-mentioned drawbacks and provide a rare earth intermetallic powder magnet that has excellent thermal stability, high compact density (filling rate), and high flux density. .

一般に希土類金属間化合物粉末の粒子径が大きくなると
、成形性が低下し成形体密度(充填率)が低下するとい
うのが通説となっている。しかし同容積に同1量の粉末
を充填し成形する場合K。
It is generally accepted that as the particle size of rare earth intermetallic compound powder increases, the moldability decreases and the compact density (filling rate) decreases. However, when the same volume is filled with the same amount of powder and molded, K.

粒子径が小さくなればなる程合表面積が大きくなる。し
たがって成型時の粉と粉との接触による摩擦抵抗は、粉
末粒子径が小さくなる程大きくなるので成形体密度(充
填率)は粉末粒子径が小さい捏上りにくくなる。よりて
、成形体密度を上げ得られる磁束密度のポテンシャルを
上昇させるには出来るだけ大きな粒子径の粉末を用いる
ことが重要である。また、熱安定性という観点から考え
てみるに、希土類金属間化合物微粉末はそれ自体非常に
酸化され易く、不安定であり室温くおいても空気中に長
時間放置することで徐々に磁気特性は劣化する。この劣
化は周辺温度が室温より上昇するにつれて加速度的に進
行し%特に60℃以上ではこれが著しいものである。し
たがって、このような熱的に不安定な礁粉を成形して製
造したマトリックス磁石は、例え適当なバインダを選択
し保護したとしても酸化等による経年変化は避けられず
、焼結磁石等に比較して熱安定性が著しく劣るため、そ
の用途はおのずから限定されてしまう。よって熱的安定
なマトリックス磁石を得るためには、粒子径の大きな粉
末を用いることが望ましい。
The smaller the particle size, the larger the surface area. Therefore, the frictional resistance due to contact between powders during molding increases as the powder particle size becomes smaller, so that the compact density (filling rate) becomes more difficult to knead when the powder particle size is small. Therefore, in order to increase the density of the compact and the potential of the magnetic flux density obtained, it is important to use powder with a particle size as large as possible. In addition, from the perspective of thermal stability, rare earth intermetallic compound fine powder itself is very easily oxidized and unstable, and even if it is left at room temperature for a long time in the air, its magnetic properties will gradually change. deteriorates. This deterioration progresses at an accelerated rate as the ambient temperature rises above room temperature, and is particularly noticeable at temperatures above 60°C. Therefore, matrix magnets manufactured by molding such thermally unstable reef powder cannot avoid aging due to oxidation, etc., even if an appropriate binder is selected and protected, and compared to sintered magnets, etc. Because of its extremely poor thermal stability, its applications are naturally limited. Therefore, in order to obtain a thermally stable matrix magnet, it is desirable to use powder with a large particle size.

本発明者等は、かかる2つの考察に基づいて希土類金属
間化合物の粒子径と成形体密度、熱安定性、磁気特性の
関係等を詳細に検討した結果、粒子径が20〜500μ
に調整した粗粉のみを利用して希土類金属間化合物マト
リックス磁石を製造すれば、従来のマ) IJフックス
石に較べて、熱安定性の良好な高磁束密度のマトリック
ス磁石が得られることを見出した。なお、粒子径の上限
の5oOμは、粒子径が500μを越えると粒子内の7
グロiレージ冒ンから結果的に配向度が低下するので、
磁束密度の低下が避けられないためであり、下限の20
μは、熱安定性および成形体密度を考慮したものである
。更に、析出硬化屋希土類磁石に限定したのは、例えば
Sm−Co、轡の核生成型の保磁力機構を有する希土類
金属間化合物の粉末では、粒子径を大きくしても表面が
酸化されると容易に磁化反転が起こるので、熱安定性に
対する効果はあ1り大きくないからである。以下本発明
の実施例につき詳細に説明する。
Based on these two considerations, the present inventors conducted a detailed study on the relationship between the particle size of rare earth intermetallic compounds, compact density, thermal stability, magnetic properties, etc., and found that the particle size was 20 to 500 μm.
It has been discovered that if a rare earth intermetallic compound matrix magnet is manufactured using only coarse powder adjusted to Ta. Note that the upper limit of the particle size is 5oOμ, which means that if the particle size exceeds 500μ, the
As the degree of orientation decreases as a result of gloriage deterioration,
This is because a decrease in magnetic flux density is unavoidable, and the lower limit of 20
μ takes into consideration thermal stability and compact density. Furthermore, the reason for using precipitation-hardened rare earth magnets is that, for example, powders of Sm-Co and rare earth intermetallic compounds that have a nucleation type coercive force mechanism do not oxidize the surface even if the particle size is increased. This is because magnetization reversal easily occurs, so the effect on thermal stability is not very large. Examples of the present invention will be described in detail below.

実施例1 重量* Sm25.7%、 Fe 1 !L7%、 C
u7.6% 、Hf 24%、残部COなる合金を高周
波浩解にて溶製して得られたインゴットを、 1200
℃で2時間アルゴン雰囲気中で均質化処理し水焼入れし
た後、820℃で2時間アルゴン雰囲気中で時効処理し
た。時効後、ジ璽つクラッシャおよびディスクミル、ジ
ェットミル等を用いて、粗粉砕および微粉砕を行りた。
Example 1 Weight* Sm25.7%, Fe1! L7%, C
An ingot obtained by melting an alloy consisting of 7.6% U, 24% Hf, and the balance CO by high-frequency hydrolysis,
After homogenization treatment and water quenching at 820°C for 2 hours in an argon atmosphere, aging treatment was performed at 820°C for 2 hours in an argon atmosphere. After aging, coarse pulverization and fine pulverization were performed using a dike crusher, a disk mill, a jet mill, and the like.

ディスクミルにて粗粉砕した粗粉を、635メツシ為(
20μ)のふるいを用いて分級し+665メツシエの粗
粉を得た。このようにして得られた粗粉とジェットミル
粉砕して得られた微粉(平均粒径約4μ)を各々エポキ
シ系バインダと混錬し、約80000eのi場中でプレ
スした。プレス成形後の磁気特性を、B−H)レーザに
て測定後、150℃に設定された恒温槽中にセットし空
気中で2000時間保持後、再びB−H)レーザにて磁
気特性を測定した。
Coarse powder coarsely ground with a disc mill is made into 635 pieces (
The mixture was classified using a 20 μm sieve to obtain a coarse powder of +665 mesh size. The coarse powder thus obtained and the fine powder (average particle diameter of about 4 μm) obtained by jet mill pulverization were each kneaded with an epoxy binder and pressed in an i-field of about 80,000 e. After measuring the magnetic properties after press molding with a B-H) laser, set it in a thermostat set at 150°C and hold it in air for 2000 hours, then measure the magnetic properties again with a B-H) laser. did.

その結果を表1および図1に示す。The results are shown in Table 1 and FIG.

表1から明らかなように20μ以上の粗粉を使用した場
合は、微粉を使用した場合に比較して成形後の成形体密
度が高く得られ、飽和磁束密度、残留磁束密度が高くよ
り良好な磁気特性が得られ、また熱的な不安定性も大巾
に改善される。
As is clear from Table 1, when coarse powder of 20μ or more is used, the density of the compact after molding is higher than when fine powder is used, and the saturation magnetic flux density and residual magnetic flux density are higher and better. Magnetic properties are obtained, and thermal instability is also greatly improved.

実施例2 実施例1と同様の組成で時効処理まで施し、得られたイ
ンゴットをディスクミルにて粗粉砕した。
Example 2 An ingot having the same composition as Example 1 was subjected to aging treatment, and the obtained ingot was coarsely ground using a disk mill.

この粗粉を、665メッシ為、325メッシ、、150
メツシユ、100メッシェ、80メッシェ、32メツシ
瓢の6樵類のふるいを用いて分級した。分級した粉末を
各々エポキシ系バインダと混錬し、実施例1と同様の方
法で成形し、成形後の成形体密度と磁気特性を測定した
。その結果を表2および図2に示す。
This coarse powder is 665 mesh, 325 mesh, 150
It was classified using six types of sieves: mesh, 100 mesh, 80 mesh, and 32 mesh. Each of the classified powders was kneaded with an epoxy binder and molded in the same manner as in Example 1, and the density and magnetic properties of the molded product after molding were measured. The results are shown in Table 2 and FIG.

鴫 表  2 表2および図2から数子径が大きくなると、成形体密度
が上昇することがわかる。しかし、粒子径が500μ(
32メッシj−)を越えると一粒子内でのアグロTレー
ジ曹ンにより成形体密度は、高いにもかかわらず4に■
$、4πIrの値は逆に低下する。
It can be seen from Table 2 and FIG. 2 that as the number diameter increases, the density of the compact increases. However, the particle size was 500μ (
When the mesh size exceeds 32 mesh, the density of the compact decreases to 4 due to the agro-T resin in one particle, even though it is high.
On the contrary, the values of $ and 4πIr decrease.

実施例6 実施例21表2中のA1〜6のデストピースを、500
000eのパルス磁界中で飽和着磁し、オープンフラッ
クスを測定した後、100℃に設定した恒温槽中で10
00時間空気中で放置後、再び500000eノパルス
磁界で飽和着磁し、オープンフラックスを測定した。表
3にその時のオープンフラックスの低下率すなわち、不
可逆減磁率を示す。
Example 6 Example 21 The death pieces A1 to 6 in Table 2 were
After saturation magnetization in a pulsed magnetic field of 000e and measuring open flux, magnetization was carried out for 10 minutes in a constant temperature bath set at 100℃.
After being left in the air for 00 hours, it was again saturated and magnetized with a 500,000 e pulse magnetic field, and the open flux was measured. Table 3 shows the rate of decrease in open flux at that time, that is, the irreversible demagnetization rate.

表3 表6より、粒子径が20μ以下となると、著しく熱安定
性が劣化することがわかる。
Table 3 From Table 6, it can be seen that when the particle size becomes 20 μm or less, the thermal stability deteriorates significantly.

参考例1 重量*Sm55%、残部コバルトなる合金をアーク溶解
にて連装して得たインゴットを、1000℃で1時間時
効後、ディスク建ルに【粗粉砕し、半分はジェットミル
粉砕し、残り半分は525メツシ凰のふるいを用いて分
級して+325メツシ凰の粗粉を得た。これ轡の粗粉と
微粉を各々エポキシ系バインダと混錬後磁界中で成形し
て、実施例5と同様の方法で100℃で1000時間空
気中で時効後、その不可逆減磁率を測定した。微粉を用
いた場合の不可逆減磁率は22チ、粗粉を用いた場合の
それは約16優であり、粗粉を用いたとしても10チ以
上の不可逆減磁は避けられず著しい効果が期待出来ない
Reference Example 1 An ingot obtained by stacking an alloy of weight * Sm 55% and balance cobalt by arc melting was aged at 1000°C for 1 hour, and then placed in a disk building. Half of the mixture was classified using a 525 mesh sieve to obtain +325 mesh coarse powder. The resulting coarse powder and fine powder were each kneaded with an epoxy binder, then molded in a magnetic field, aged in air at 100° C. for 1000 hours in the same manner as in Example 5, and then their irreversible demagnetization rates were measured. The irreversible demagnetization rate when fine powder is used is 22 degrees, and when coarse powder is used it is about 16 degrees, so even if coarse powder is used, irreversible demagnetization of 10 degrees or more is inevitable and a remarkable effect can be expected. do not have.

以上、実施例で明らかなように、析出硬化型希土類金属
間化合物磁石粉末を原料とするマトリックス磁石の製造
において、粉末粒子径を44〜500μに調整すること
で磁束密度の高い熱安定性の良い磁石が集塊出来るもの
である。なお、本実施例においては、Sm−Fe−Co
−Cu−Hf系を例[9’)fi明したが、本発明は広
く析出硬化重希土類金属間化合物マトリックス磁石に応
用が可能であり、8m−Fe−Co−Cu−Hf系に限
定されるものではない。
As is clear from the examples above, in the production of matrix magnets using precipitation hardening rare earth intermetallic compound magnet powder as a raw material, by adjusting the powder particle size to 44 to 500μ, a high magnetic flux density and good thermal stability can be achieved. It is something that can agglomerate magnets. Note that in this example, Sm-Fe-Co
Although the -Cu-Hf system has been described as an example [9')fi, the present invention can be widely applied to precipitation-hardened heavy rare earth intermetallic compound matrix magnets, and is limited to the 8m-Fe-Co-Cu-Hf system. It's not a thing.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、実施例1における微粉と粗粉を混合比率を段階
的に変化させた時の成形体密度と磁気特性の関係を示す
図、図2は粗粉粒子径を変えた時の成形体密度と磁気特
性の関係を示す図である。 72   rf2J
Figure 1 is a diagram showing the relationship between the density of a compact and magnetic properties when the mixing ratio of fine powder and coarse powder was changed in stages in Example 1, and Figure 2 is a diagram showing the relationship between the density of a compact and magnetic properties when the particle size of coarse powder was varied. FIG. 3 is a diagram showing the relationship between density and magnetic properties. 72 rf2J

Claims (1)

【特許請求の範囲】[Claims] 希土類金属Rが1種以上と少くとも1種以上の他の元素
からなる析出硬化型金属間化合物磁石を原料とする粉末
磁石の製造方法において、希土類金属間化合物粉末の粒
子径を20〜500イクロンに調整することを%黴とす
る希土類金属間化合物磁石の製造方法。
In a method for manufacturing a powder magnet using a precipitation hardening intermetallic compound magnet consisting of one or more rare earth metals R and at least one other element, the particle size of the rare earth intermetallic compound powder is 20 to 500 microns. A method for producing a rare earth intermetallic compound magnet, which adjusts the % mold to % mold.
JP57062937A 1982-04-15 1982-04-15 Manufacture of rare-earth intermetallic compound magnet Pending JPS58180005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57062937A JPS58180005A (en) 1982-04-15 1982-04-15 Manufacture of rare-earth intermetallic compound magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57062937A JPS58180005A (en) 1982-04-15 1982-04-15 Manufacture of rare-earth intermetallic compound magnet

Publications (1)

Publication Number Publication Date
JPS58180005A true JPS58180005A (en) 1983-10-21

Family

ID=13214709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57062937A Pending JPS58180005A (en) 1982-04-15 1982-04-15 Manufacture of rare-earth intermetallic compound magnet

Country Status (1)

Country Link
JP (1) JPS58180005A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568539B2 (en) 2010-03-31 2013-10-29 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568539B2 (en) 2010-03-31 2013-10-29 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same
US10102950B2 (en) 2010-03-31 2018-10-16 Kabushiki Kaisha Toshiba Permanent magnet and method for manufacturing the same, and motor and power generator using the same

Similar Documents

Publication Publication Date Title
JP2006213985A (en) Method for producing magnetostriction element
JPH04133406A (en) Rare earth-fe-b permanent magnet powder and bonded magnet having excellent magnetic anisotropy and corrosion-resisting property
JPS6181606A (en) Preparation of rare earth magnet
JPH0551656B2 (en)
JP3303044B2 (en) Permanent magnet and its manufacturing method
JPS58180005A (en) Manufacture of rare-earth intermetallic compound magnet
JP7031544B2 (en) Binder for Sm-Fe-N magnets
JPH0146575B2 (en)
JP3275055B2 (en) Rare earth bonded magnet
JPS5945745B2 (en) Permanent magnet material and its manufacturing method
JP2003217918A (en) Alloy powder for rare earth sintered magnet superior in magnetization, the rare earth sintered magnet and its manufacturing method
JPH0146574B2 (en)
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JPH0620818A (en) Rare earth cobalt magnet
JPS619551A (en) Rare earth element-iron type permanent magnet alloy
JPH07211570A (en) Manufacture of rare-earth permanent magnet
JPS5848650A (en) Permanent magnet alloy
JPS5822348A (en) Permanent magnet alloy
JP2665812B2 (en) Fe-Al-Ni-Co magnet powder for resin magnets
JPS6271201A (en) Bond magnet
JP3284563B2 (en) Manufacturing method of alloy for rare earth magnet
JPS62158852A (en) Permanent magnet material
JPS6257701B2 (en)
JPS62257704A (en) Permanent magnet
JPH0449762B2 (en)