JPS58175860A - Semiconductor memory unit - Google Patents

Semiconductor memory unit

Info

Publication number
JPS58175860A
JPS58175860A JP57059185A JP5918582A JPS58175860A JP S58175860 A JPS58175860 A JP S58175860A JP 57059185 A JP57059185 A JP 57059185A JP 5918582 A JP5918582 A JP 5918582A JP S58175860 A JPS58175860 A JP S58175860A
Authority
JP
Japan
Prior art keywords
storage
word line
semiconductor substrate
memory cell
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57059185A
Other languages
Japanese (ja)
Inventor
Yoichi Hida
洋一 飛田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57059185A priority Critical patent/JPS58175860A/en
Publication of JPS58175860A publication Critical patent/JPS58175860A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To enlarge the storage capacitance value to about two times without enlarging the chip area by a method wherein the capacitors for storage of two memory cells are formed by stacking in the same region on a semiconductor substrate. CONSTITUTION:At the memory unit provided with the plural number of memory cell consisting of an insulated gate field effect transistor MOST and the capacitor for storage on the semiconductor substrate, the capacitors for storage of at least two memory cells are formed stacking mutually in the same region on the semiconductor substrate. Namely, the capacitor 1a for storage on one side is constituted of a region 12a connected to the drain 22a of the MOST, and a word line 4b facing thereto through an insulating film 11. Moreover, the capacitor 1c for storage on another side is constituted by making a poly-silicon layer 32c formed on the word line 4b interposing an insulating film 14 between them, and being connected to the drain 22c of the MOST as an electrode on one side, and by making a poly-silicon word line 4d formed interposing an insulating film 15 between them as an electrode on another side.

Description

【発明の詳細な説明】 この11明はMO8O8トランジスタO8T)を用いた
半導体メモリ装置VC関するものである。
DETAILED DESCRIPTION OF THE INVENTION This eleventh article relates to a semiconductor memory device VC using MO8O8 transistors O8T).

1ビツトのメ毫すセル当、t)141のMO8Tと1個
の容量とを用いるランダムアクセスメモリ(RAM )
は周知であり、第1図はその回路構成を示す。図におい
て、(1m)、(xb)はx11またはIlO″のデー
タを記憶する記憶用容量、(2a)バzb)はそれぞれ
記憶用′S瀘(玩)t(11))のデータの瞥泰込み、
aみ出しまたは保持をするためのスイッチングMOBT
 、  (3a)は記憶用容量(11)とスイッチング
MO8T (2a)とからなる第1のメモリセル、(3
1))は記憶用容量(lb)(Sa&)バ2b)のオン
・オフを制御する信号が供給されるワード線、(k)、
(5b)はそれぞれメモリセル(ム)。
Random access memory (RAM) using 141 MO8Ts and 1 capacity per 1-bit message cell
is well known, and FIG. 1 shows its circuit configuration. In the figure, (1m) and (xb) are storage capacities for storing the data of included,
Switching MOBT for protruding or holding a
, (3a) is a first memory cell consisting of a storage capacitor (11) and a switching MO8T (2a);
1)) is a word line to which a signal for controlling the on/off of the storage capacitor (lb) (Sa&) bar 2b) is supplied; (k);
(5b) are memory cells (mu).

(lb)のデータを伝達するビット線、(6a)バ6′
b)はそれぞれピッ) Il(5m)バ5b)の寄生容
量である。
(lb) bit line transmitting data, (6a) bar 6'
b) are the parasitic capacitances of Il(5m) and 5b), respectively.

この回路が安定に動作するためには、ワード線(4a)
、(4b) Tic電圧が印加δれ九とき、すなわちメ
モリセルの読み出し時に、ビット41 (5a)バ5b
)に現われる電圧の振幅がで自るだけ大きいことが望ま
しく、この電圧嶽−は記憶用容量(ム)s(1b) o
容量と寄生容量(6a)、(ab)の容量と電圧の大き
さとできまる。
In order for this circuit to operate stably, the word line (4a)
, (4b) When the Tic voltage is applied δ, that is, when reading the memory cell, bit 41 (5a)
It is desirable that the amplitude of the voltage appearing at
It is determined by the capacitance, the parasitic capacitance (6a), and the capacitance (ab) and the magnitude of the voltage.

とツ) M (5a)、(5b)への読み出し電圧振幅
AV は次式で与えられる。
) The read voltage amplitude AV to M (5a) and (5b) is given by the following equation.

IV、 @@ (’v8o−V、。) /(1+ (o
V/a、 ))ここで、08は記憶HA谷盪(la)、
(1b)ノ容1k 値、Omは沓生容量(aaL(ab
) o容量値、vgoおよびVia ifそれぞれ続み
出し区画の記憶用容量(−)バ1b)およびビット線(
5a)、(5b) の電圧値である。
IV, @@ ('v8o-V,.) /(1+ (o
V/a, )) Here, 08 is the memory HA valley (la),
(1b) Volume 1k value, Om is the permeable capacity (aaL(ab
) o capacitance value, vgo and Via if respectively storage capacity (-) bar 1b) of the continuation section and bit line (
5a) and (5b) are the voltage values.

上式力(o、 Vso、 VBO,On ヲ一定とLI
とき、Jvlを大きくするにはOaを太き(すればよい
ことが判る。そして、こO記憶用容量の容量値O11は
通常メモリセルが形成される半導体基体上に形成され危
絶縁鹸化膜の面積と厚δとKよってその大部分が決定さ
れる。
Above formula force (o, Vso, VBO, On constant and LI
It turns out that in order to increase Jvl, Oa should be made thicker.The capacitance value O11 of the O storage capacitor is normally formed on a semiconductor substrate on which a memory cell is formed, and is made of a dangerously insulating saponified film. Most of it is determined by the area, thickness δ, and K.

第3図は従来技術によるメモリセルの4ビット分を示す
平FkJ図、第5図は第2図の門一層線での断面図で、
亀1図の回路図に対応する部分には同一符号をつけであ
る。以下メモリセル(3a)と(3b)とを区別する添
字a、bは必要な場合を除いて省略する。−は、p形半
導体基体、(2)、@はn形不純物拡散領14のスイッ
チングMO8丁(2)のソースおよびドレイン領域を形
成している。α鱒はドレイン−域(2)から伸びるn形
饋域、ワード線(4b)を構成するポリシリコン層が絶
縁酸化膜Nilりを介してn形額域α譜と対向して記憶
用容量(la)を構成している。
FIG. 3 is a flat FkJ diagram showing 4 bits of a memory cell according to the prior art, and FIG. 5 is a cross-sectional view taken along the gate single layer line in FIG.
Parts corresponding to the circuit diagram in Figure 1 are given the same reference numerals. Hereinafter, subscripts a and b to distinguish between memory cells (3a) and (3b) will be omitted unless necessary. - forms the p-type semiconductor substrate, (2), and @ forms the source and drain regions of the switching MO8 (2) of the n-type impurity diffusion region 14. The α trout is an n-type region extending from the drain region (2), and a polysilicon layer constituting the word line (4b) is opposed to the n-type forehead region α through an insulating oxide film Nil layer, and is a memory capacitor ( la).

ワード# (41))もポリシリコン層からなりスイッ
チングMO8? (2!L)のゲート電極を形成すると
ともに、隣接するメモリセル(3b)の記憶用容量(1
b)の一方の電極につながっている。+IIは全表面を
覆う絶縁酸化膜で、(ls8.)バab)はその上にワ
ード線(4a)バ4b)と直交する方向に設けられたビ
ット線でそれぞれソース′領域(2Xa)t (21b
)に接続されている。
Word # (41)) is also made of a polysilicon layer and is a switching MO8? (2!L) gate electrode is formed, and the storage capacitor (1!L) of the adjacent memory cell (3b) is formed.
b) is connected to one electrode. +II is an insulating oxide film that covers the entire surface, and (ls8.) bar ab) is a bit line provided thereon in a direction perpendicular to the word line (4a) and bar 4b), and the source region (2Xa) t ( 21b
)It is connected to the.

さて、このような従来の構成において前述のように記憶
用容量値Csを大きくするには記憶用容Ill (11
の面積を大きくするか、その絶縁酸化膜1ll)の厚さ
を薄くする必要があるが、前者はRAMの歩留9の大き
な装本であるチップ面積の大部分を占めるメモリセル(
a)の面積の増大を招き、歩留りの低下を招来する。ま
た後者の方法は絶縁耐力の低下によりチップの信頼性の
低下を招くことになる。
Now, in such a conventional configuration, in order to increase the storage capacity value Cs as described above, the storage capacity Ill (11
It is necessary to increase the area of the memory cell (1ll) or reduce the thickness of its insulating oxide film (1ll), but the former is necessary because the memory cell (1ll) that occupies most of the chip area is
(a) This results in an increase in area and a decrease in yield. Furthermore, the latter method leads to a decrease in chip reliability due to a decrease in dielectric strength.

この発明は以上のような点に鑑みてなされ友もので、チ
ップの面積および絶縁酸化薄膜の厚さを・従来のものと
ほぼ同一にした家\紀憶用容量値08を約2倍以上にし
てメモリセルの動作の安定化を計ることを目的としてい
る。
This invention was made in view of the above points, and it has made the area of the chip and the thickness of the insulating oxide thin film almost the same as that of the conventional chip, and has more than doubled the memory capacitance value 08. The purpose is to stabilize the operation of memory cells.

34I4図はこの発明の一実施例を示す平面図、第5図
は第4rI!Jのマーマ線における断面図、第6図およ
び1Mγ図はそれぞれ第5図の1−M線および■−■線
における断面に相当する平面図である。
Figure 34I4 is a plan view showing one embodiment of this invention, and Figure 5 is the 4rI! The cross-sectional view taken along the Marma line of J, FIG. 6, and the 1Mγ view are plan views corresponding to the cross-sections taken along the 1-M line and the ■-■ line in FIG. 5, respectively.

この実施例はメモリ゛セル(3m)、(Sb)、(3c
)および(3i)の4ビット分の構成を示している。第
4図の左下部に形成されているメモリセル(諷)の記憶
用容量(論)はスイッチングMOI3? (2a)のド
レイン領域(Da) VCつながって延びるn形頒域(
上)と絶縁酸化膜[1%HIl)を介して対向する第1
層のポリシリコンワード線(4b)とで構成されており
、このワード線(4b)は第4囚の右上部に形成されて
いるメモリセル(3b)のスイッチングMO8テ(21
))のゲート電極につながっている。(32G )はワ
ードMl (4b)の上方に比較的厚い絶縁酸化151
1cnを介して形成されfc第3層のポリシリコン層で
、第4図の右上部に形成されているメモリセル(シ)の
スイッチングMO8T(20)のドレイン領域(12a
)に埋め込み接続部によって接M!され、記憶容量(1
o)の一方の電極を構成する。そして更に絶縁酸化薄膜
−を介して形成され、この記憶容量(lc)の他方の電
極を構成する第3層のポリシリコンワード線(4A)は
44図の左上部に形成されているメモリセル(又)のス
イッチングMOBY (21)のゲート電極につながっ
ている。すなわち第2層のポリシリコン層(32a)と
第3層のポリシリコンワード線(砿)との間でメモリセ
ル(k)の紀憶容it (la)を構成している。全表
面を覆う絶縁酸化II(IIの上にはワード! (4a
)バ4b)等と直交する方向にビット線(ハ)などが設
けられている。
This example includes memory cells (3m), (Sb), (3c).
) and (3i) for 4 bits. Is the storage capacity (theory) of the memory cell formed at the lower left of FIG. 4 a switching MOI of 3? (2a) Drain region (Da)
(above) and the first layer facing each other via an insulating oxide film [1% HIl].
The word line (4b) is connected to the switching MO8 terminal (21) of the memory cell (3b) formed in the upper right corner of the fourth cell.
)) is connected to the gate electrode. (32G) is a relatively thick insulating oxide 151 above word Ml (4b).
The drain region (12a) of the switching MO8T (20) of the memory cell (shi) formed in the upper right corner of FIG.
) by the embedded connection part M! storage capacity (1
constitute one electrode of o). Further, the third layer polysilicon word line (4A), which is formed via an insulating oxide thin film and constitutes the other electrode of this storage capacitor (lc), is connected to the memory cell (4A) formed at the upper left of Fig. 44. It is also connected to the gate electrode of the switching MOBY (21). That is, the memory capacity it (la) of the memory cell (k) is formed between the second layer polysilicon layer (32a) and the third layer polysilicon word line (red). Insulating oxide II covering the entire surface (word above II! (4a
) A bit line (c) etc. are provided in a direction perpendicular to the bar 4b).

このビット線(馳)はスイッチングMO8’l’ (2
m)のソース鎖酸(21m)およびスイッチングgO8
? (2o)のソース領域(社0)にコンタクト孔を介
して接続されている。
This bit line (cross) is the switching MO8'l' (2
m) source chain acid (21m) and switching gO8
? (2o) is connected to the source region (company 0) via a contact hole.

第4図のこの実施例の平面図は、第2図の従来例の平面
図と同一寸法ルールで描かれた図であり、2ビット当り
のメモリセルiiO積は実質的に同一であるが、これら
の記憶容量値Oaを比較すると、第2図の従来例の記憶
容量【11の面積をSとすると、#I4図のこの実施例
では相隣りあうメモリセルについて一方の記憶容量の面
積は1.98.他方の記憶容量の面積は2・6Sとなり
、ともかく、従来の約2倍の記憶容量値Csが得られ、
それだけメモリセルの動作は安定になる。
The plan view of this embodiment in FIG. 4 is drawn using the same dimensional rules as the plan view of the conventional example in FIG. 2, and the memory cell iiO product per 2 bits is substantially the same. Comparing these storage capacity values Oa, we find that if S is the area of the storage capacity [11] in the conventional example shown in Figure 2, then in this embodiment shown in Figure #I4, the area of one storage capacity for adjacent memory cells is 1. .98. The area of the other storage capacity is 2.6S, and in any case, a storage capacity value Cs that is approximately twice that of the conventional one is obtained.
This makes the operation of the memory cell more stable.

以上詳述し次ように、この発明になる半導体メモリ装置
では相隣接する少なくとも2つのメモリセルの記憶容量
を半導体基体上の同−鎖酸に互いに重ねて形成し友ので
、同一のビット当りのメモリセル面積で記憶用容量値を
約2倍以上にすることができ、メモリセルの動作を安定
にすることができる。また、記憶用容量値を一定にすれ
ば1ビット当りのメモリセルの面積は減少し、動作安定
度を一定に保持しつつ装置の小形化が達成で嚢る。
As described above in detail and as follows, in the semiconductor memory device of the present invention, the storage capacity of at least two adjacent memory cells is formed by overlapping each other on the same chain on the semiconductor substrate, so that the storage capacity of at least two adjacent memory cells is formed by overlapping each other on the same chain acid on the semiconductor substrate. The storage capacitance value can be approximately doubled or more based on the memory cell area, and the operation of the memory cell can be stabilized. Furthermore, if the storage capacitance value is kept constant, the area of the memory cell per bit is reduced, and the device can be miniaturized while maintaining constant operational stability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の対象となる半導体メモリ装置の回路
図、第2図は従来技術によるメモリセルの4ピット分の
構成を示す平面図、纂3因は第2図の■−厘線での断面
図、84図はこの発明の一実施例を示す平面図、第5図
は784図のマーマ線での断面図、第6f!Aおよび第
7図はそれぞれ第5図の■−W繊および■−■線番でお
けるIfr面に相当する3ド面図である。 図において、  (la)、(lb)−・・は紀憶用容
瀘、(2a) 、(ab)−・はMO8T、(ハ)、(
sb)−・はメモリセル、(4a)、(4b)川はワー
ド城、  (5m)、(5b)・・・はビット線である
。 なお、図中同一符号は同一または相当部分を示す。 代理人 葛 野 信 −(外1名) 第1図 第2図 第3[′2I 第4図 第5図 1
FIG. 1 is a circuit diagram of a semiconductor memory device to which the present invention is applied, and FIG. 2 is a plan view showing the configuration of four pits of a memory cell according to the prior art. Fig. 84 is a plan view showing an embodiment of the present invention, Fig. 5 is a sectional view taken along the marma line of Fig. 784, and Fig. 6f! A and FIG. 7 are three-dimensional views corresponding to the Ifr plane in the ■-W fiber and ■-■ wire numbers of FIG. 5, respectively. In the figure, (la), (lb)-- are ki-meiyo-ro, (2a), (ab)-- are MO8T, (c), (
sb)-- are memory cells, (4a) and (4b) rivers are word castles, and (5m) and (5b) are bit lines. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Shin Kuzuno - (1 other person) Figure 1 Figure 2 Figure 3 ['2I Figure 4 Figure 5 Figure 1

Claims (1)

【特許請求の範囲】[Claims] (111i11の主電極がビット#!に、ゲートiga
がIIlのワード線に接411され九絶縁ゲート電界m
sトランジスタと、一方の電極が上記絶縁ゲート電界効
果トランジスタの第8の主電極に、他方の電極が第8の
ワード線に接続δれ九記憶用S量とからなるメモリセル
が半導体基板上に複数個配役され九もOにおいて、少な
くとも2個の上記メモリセルの上記記憶用容量を上記半
導体基板上Otill −領域忙互いに重ねて形成し九
ことを特徴とする半導体メモリ装置。
(The main electrode of 111i11 is on bit #!, gate iga
is connected to the word line IIl 411 and the insulated gate electric field m
A memory cell consisting of an S transistor, one electrode connected to the eighth main electrode of the insulated gate field effect transistor, and the other electrode connected to the eighth word line, is provided on a semiconductor substrate. 9. A semiconductor memory device characterized in that a plurality of memory cells are arranged, and the storage capacitors of at least two of the memory cells are formed overlapping each other in an area on the semiconductor substrate.
JP57059185A 1982-04-07 1982-04-07 Semiconductor memory unit Pending JPS58175860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57059185A JPS58175860A (en) 1982-04-07 1982-04-07 Semiconductor memory unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57059185A JPS58175860A (en) 1982-04-07 1982-04-07 Semiconductor memory unit

Publications (1)

Publication Number Publication Date
JPS58175860A true JPS58175860A (en) 1983-10-15

Family

ID=13106088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57059185A Pending JPS58175860A (en) 1982-04-07 1982-04-07 Semiconductor memory unit

Country Status (1)

Country Link
JP (1) JPS58175860A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825268A (en) * 1985-03-29 1989-04-25 Kabushiki Kaisha Toshiba Semiconductor memory device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4825268A (en) * 1985-03-29 1989-04-25 Kabushiki Kaisha Toshiba Semiconductor memory device

Similar Documents

Publication Publication Date Title
JP2500102B2 (en) Memory device and method of forming the same
US5047817A (en) Stacked capacitor for semiconductor memory device
US5005072A (en) Stacked cell design for 16-megabit DRAM array having a pair of interconnected poly layers which enfold a single field plate layer and connect to the cell's storage node junction
JPS6373553A (en) Transistor varactor and manufacture of the same
JPH0412564A (en) Semiconductor memory device and its manufacture
US5177574A (en) Semiconductor memory device having a stacked type capacitor and manufacturing method therefor
JPH029165A (en) Semiconductor memory
JPH04304670A (en) Semiconductor memory and manufacture thereof
JPS6065559A (en) Semiconductor memory
JPH01143254A (en) Semiconductor storage device
JPS58175860A (en) Semiconductor memory unit
KR19990075176A (en) Semiconductor memory device using silicon-on-insulator structure and method of manufacturing the same
US5219781A (en) Method for manufacturing semiconductor memory device having a stacked type capacitor
JPH02135775A (en) Semiconductor storage device and manufacture thereof
JPH0691216B2 (en) Semiconductor memory device
JPS63244769A (en) Semiconductor memory device
JPH04365375A (en) Semiconductor memory device and its manufacture
JPH06151768A (en) Semiconductor device and manufacture thereof
JPS63197368A (en) Semiconductor device and its manufacturing method
JP2835414B2 (en) Semiconductor device
KR0133831B1 (en) Sram maufacturing method
KR100233560B1 (en) DRAM DEVICE AND MANUFACTURING METHOD
JPH05243515A (en) Semiconductor memory
JPH06326266A (en) Semiconductor memory device and fabrication thereof
KR19990048904A (en) Capacitor Manufacturing Method of Semiconductor Device